1 Eigenvalues and eigenvectors

Definition 1.1 Let V be a vector space over the field \mathbb{F} and let $\varphi : V \to V$ be a linear transformation. $\lambda \in \mathbb{F}$ is said to be an eigenvalue of φ if there exists $v \in V \setminus \{0\}$ such that $\varphi(v) = \lambda \cdot v$. Such a vector v is called an eigenvector corresponding to the eigenvalue λ. The set of eigenvalues of φ is called its spectrum:

$$\text{spec}(\varphi) = \{ \lambda \mid \lambda \text{ is an eigenvalue of } \varphi \}.$$

Example 1.2 Consider the following transformations:

- Differentiation is a linear transformation on the class of (say) infinitely differentiable real-valued functions over $[0, 1]$ (denoted by $C^\infty([0, 1], \mathbb{R})$). Each function of the form $c \cdot \exp(\lambda x)$ is an eigenvector with eigenvalue λ. If we denote the transformation by φ_0, then $\text{spec}(\varphi_0) = \mathbb{R}$.

- We can also consider the transformation $\varphi_1 : \mathbb{R}[x] \to \mathbb{R}[x]$ defined by differentiation i.e., for any polynomial $P \in \mathbb{R}[x]$, $\varphi_1(P) = dP/dx$. Note that now the only eigenvalue is 0, and thus $\text{spec}(\varphi) = \{0\}$.

- Consider the transformation $\varphi_{\text{left}} : \mathbb{R}^N \to \mathbb{R}^N$. Any geometric progression with common ratio r is an eigenvector of φ_{left} with eigenvalue r (and these are the only eigenvectors for this transformation).

Example 1.3 As was pointed out in class, it can also be the case that $\text{spec}(\varphi) = \emptyset$, as witnessed by the rotation matrix

$$M_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

when viewed as a linear transformation from \mathbb{R}^2 to \mathbb{R}^2.

Proposition 1.4 Let $U_\lambda = \{ v \in V \mid \varphi(v) = \lambda \cdot v \}$. Then for each $\lambda \in \mathbb{F}$, U_λ is a subspace of V.

1
Note that $U_\lambda = \{0_V\}$ if λ is not an eigenvalue. The dimension of this subspace is called the geometric multiplicity of the eigenvalue λ.

Proposition 1.5 Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of φ with associated eigenvectors v_1, \ldots, v_k. Then the set $\{v_1, \ldots, v_k\}$ is linearly independent.

Definition 1.6 A transformation $\varphi : V \rightarrow V$ is said to be diagonalizable if there exists a basis of V comprising of eigenvectors of φ.

Exercise 1.7 Recall that $\text{Fib} = \{f \in \mathbb{R}^\mathbb{N} \mid f(n) = f(n-1) + f(n-2) \forall n \geq 2\}$. Show that $\varphi_{\text{left}} : \text{Fib} \rightarrow \text{Fib}$ is diagonalizable. Express the sequence by $f(0) = 1, f(1) = 1$ and $f(n) = f(n-1) + f(n-2) \forall n \geq 2$ (known as Fibonacci numbers) as a linear combination of eigenvectors of φ_{left}.

2 Inner Products

For the discussion below, we will take the field \mathbb{F} to be \mathbb{R} or \mathbb{C} since the definition of inner products needs the notion of a “magnitude” for a field element (these can be defined more generally for subfields of \mathbb{R} and \mathbb{C} known as Euclidean subfields, but we shall not do so here).

Definition 2.1 Let V be a vector space over a field \mathbb{F} (which is taken to be \mathbb{R} or \mathbb{C}). A function $\mu : V \times V \rightarrow \mathbb{F}$ is an inner product if

- The function $\mu(u, \cdot) : V \rightarrow \mathbb{F}$ is a linear transformation for every $u \in V$.
- The function satisfies $\mu(u, v) = \mu(v, u)$.
- $\mu(v, v) \in \mathbb{R}_{\geq 0}$ for all $v \in V$ and is 0 only for $v = 0_V$.

We write the inner product corresponding to μ as $\langle u, v \rangle$. Strictly speaking, the inner product should be written as $\langle u, v \rangle_\mu$ but we usually omit the μ when the function is clear from context (or we are referring to an arbitrary inner product).

Example 2.2 The following are all examples of inner products:

- The function $\int_{-1}^{1} f(x)g(x)dx$ for $f, g \in C([-1, 1], \mathbb{R})$ (space of continuous functions from $[-1, 1]$ to \mathbb{R}).
- The function $\int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}}dx$ for $f, g \in C([-1, 1], \mathbb{R})$.

- For $x, y \in \mathbb{R}^2$, $\langle x, y \rangle = x_1y_1 + x_2y_2$ is the usual inner product. Check that $\langle x, y \rangle = 2x_1y_1 + x_2y_2 + x_1y_2/2 + x_2y_1/2$ also defines an inner product.

Exercise 2.3 Let $C > 4$. Check that

$$
\mu(f, g) = \sum_{n=0}^{\infty} \frac{f(n) \cdot g(n)}{C^n}
$$

defines an inner product on the space Fib.

The following is an extremely useful inequality.

Proposition 2.4 (Cauchy-Schwarz-Bunyakovsky inequality) Let u, v be any two vectors in an inner product space V. Then

$$
|\langle u, v \rangle|^2 \leq \langle u, u \rangle \cdot \langle v, v \rangle
$$

Proof: To prove for general inner product spaces (not necessarily finite dimensional) we will use the only inequality available in the definition i.e., $\langle w, w \rangle \geq 0$ for all $w \in V$. Taking $w = a \cdot u + b \cdot v$ and using the properties from the definition gives

$$
\langle w, w \rangle = \langle (a \cdot u + b \cdot v), (a \cdot u + b \cdot v) \rangle = a\overline{a} \cdot \langle u, u \rangle + b\overline{b} \cdot \langle v, v \rangle + \overline{a}b \cdot \langle u, v \rangle + ab \langle v, u \rangle
$$

Taking $a = \langle v, v \rangle$ and $b = -\langle v, u \rangle = -\overline{\langle u, v \rangle}$ gives

$$
\langle w, w \rangle = \langle u, u \rangle \cdot \langle v, v \rangle^2 + |\langle u, v \rangle|^2 \cdot \langle v, v \rangle - 2 \cdot |\langle u, v \rangle|^2 \cdot \langle v, v \rangle
$$

$$
= \langle v, v \rangle \cdot \left[\langle u, u \rangle \cdot \langle v, v \rangle - |\langle u, v \rangle|^2 \right].
$$

If $v = 0_V$, then the inequality is trivial. Otherwise, we must have $\langle v, v \rangle > 0$. Thus,

$$
\langle w, w \rangle \geq 0 \Rightarrow \langle u, u \rangle \cdot \langle v, v \rangle - |\langle u, v \rangle|^2 \geq 0,
$$

which proves the desired inequality.

An inner product also defines a norm $\|v\| = \sqrt{\langle v, v \rangle}$ and a hence a notion of distance between two vectors in a vector space. This is a “distance” in the following sense.

Exercise 2.5 Prove that for any inner product space V and any $u, v, w \in V$

$$
\|u - w\| \leq \|u - v\| + \|v - w\|.
$$
This can be used to define convergence of sequences, and to define infinite sums and limits of sequences (which was not possible in an abstract vector space). However, it might still happen that the limit of a sequence of vectors in the vector space, which converges according to the norm defined by the inner product, may not converge to a vector in the space. Consider the following example.

Example 2.6 Consider the vector space \(C([-1, 1], \mathbb{R}) \) with the inner product defined by \(\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx \). Consider the sequence of functions:

\[
 f_n(x) = \begin{cases}
 -1 & x \in [-1, -\frac{1}{n}) \\
 nx & x \in [-\frac{1}{n}, \frac{1}{n}) \\
 1 & x \in [\frac{1}{n}, 1]
\end{cases}
\]

One can check that \(\|f_n - f_m\|^2 = O\left(\frac{1}{n}\right) \) for \(m \geq n \). Thus, the sequence converges. However, the limit point is a discontinuous function not in the inner product space. To fix this problem, one can essentially include the limit points of all the sequences in the space (known as the completion of the space). An inner product space in which all (Cauchy) sequences converge to a point in the space is known as a **Hilbert space**. Many of the theorems we will prove will generalize to Hilbert spaces though we will only prove some of them for finite dimensional spaces.