Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding

Goal: Segmentation and figure/ground from a single image, without joint training

Overview

Complex Affinity Model

Segmentation and Figure/Ground via Embedding

Embedding:
- \((p, q) \) is in effect
- \(p \) and \(q \) lie in the same region as \(r \)
- \(p \) is in more off-field than \(q \)
- \(C(p, q) \) is with \(r \) at a boundary
- \(p \) and \(q \) lie in different regions
- \(p \) in local area for relative displacements
- Low confidence \((C(p, q) = 0) \)
- Positive displacement \((p < q) \)
- Ground transition
- Negative displacement \((p > q) \)

Angular Embedding [2]

Affinity Learning from Globalized Ground-truth

Annotated Ground-truth
- Human-drawn segmentation (boundary map)
- Figure-ground and image boundaries with globalized ground-truth

Affinity from Interactions:
- Context probabilities to consider:
 \(C(p, q) \) over \(r \) at \((c, d) \)
 \(C(p, q) = \text{argmax} C(p, q) \)
 \(C(p, q) \) over \(r \) at \((c, d) \)
 \(C(p, q) = \text{argmax} C(p, q) \)
- Apply contextual action:
 \(W(p, q) = C(p, q) + r \)
 \(W(p, q) = C(p, q) \)
 \(W(p, q) = W(p, q) + r \)
 \(W(p, q) = W(p, q) + r \)
- Sum transition forces and symmetries:
 \(W + W + W + W \)

Results and Evaluation on Berkeley Segmentation Dataset

Image

Cross-Domain Generalization

Learning:
- CNN output \(s_{c} \), \(s_{d} \) : maps per neighbor
- Mixed with soft labels \(s_{d} \), \(s_{d} \) (neighbors)
- SGD with log loss average-pixel-wise:
 \(L = \sum_{c} \sum_{d} \log(s_{c}(p, q)) \)
- Data augmentation: translate, left-right mirror

Michael Maire
TTI Chicago

Takuya Narihira
Sony Corp

Stella X. Yu
UC Berkeley / HKSI

Basic Relationship Types:
- Continuous region:
 \(p \) and \(q \) lie in the same region as \(r \)
- High confidence \((C(p, q) = 1) \)
- Low confidence \((C(p, q) = 0) \)
- Ambiguous boundary:
 \(p \) and \(q \) lie in different regions
 \(C(p, q) = 0 \)
- Positive displacement:
 \(p \) and \(q \) lie in different regions
 \(C(p, q) = 0 \)
- Ground transition:
 \(p \) and \(q \) lie in different regions
 \(C(p, q) = 0 \)

Pairwise Pixel Instructions:
- Probability estimates:
 \(C(p, q) = \text{argmax} C(p, q) \)
 \(C(p, q) = \text{argmax} C(p, q) \)
- Transition error probabilities:
 \(C(p, q) = \text{argmax} C(p, q) \)
 \(C(p, q) = \text{argmax} C(p, q) \)

Affinity from Ground:
- Context probabilities to consider:
 \(C(p, q) = \text{argmax} C(p, q) \)
 \(C(p, q) = \text{argmax} C(p, q) \)

Affinity from Ground:
- Context probabilities to consider:
 \(C(p, q) = \text{argmax} C(p, q) \)
 \(C(p, q) = \text{argmax} C(p, q) \)

M. Maire. Simultaneous Segmentation and Figure/Ground Organization using Angular Embedding. CVPR 2010

• \(k \) and \(q \) lie in the same region as \(r \)
• \(k \) is more off-field than \(q \)
• \(k \) is globally consistent representation of the pairwise local grouping/ordering relationships \(p, q \)
• \(r \) is globally consistent representation of the pairwise local grouping/ordering relationships \(p, q \)

Implementation:
- Learn to classify \(C(k, r) \)
- Sparse multiscale stroke each pixel connects to k neighbors

Image

Figure/Ground

Segmentation