Overview

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Data-Aug?</th>
<th>Auxiliary Regularizer</th>
<th>mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-16 hyperscene</td>
<td>yes</td>
<td>Decoder (32 channel)</td>
<td>50.1</td>
</tr>
<tr>
<td>VGG-16 hyperscene</td>
<td>yes</td>
<td>Decoder (128 channel)</td>
<td>50.1</td>
</tr>
<tr>
<td>DenseNet-47 hyperscene</td>
<td>yes</td>
<td>Decoder (32 channel)</td>
<td>50.1</td>
</tr>
<tr>
<td>DenseNet-47 hyperscene</td>
<td>yes</td>
<td>Decoder (128 channel)</td>
<td>50.1</td>
</tr>
<tr>
<td>ResNet-101 hyperscene</td>
<td>yes</td>
<td>Decoder (32 channel)</td>
<td>50.1</td>
</tr>
<tr>
<td>ResNet-101 hyperscene</td>
<td>yes</td>
<td>Decoder (128 channel)</td>
<td>50.1</td>
</tr>
</tbody>
</table>

Semantic Segmentation Results

- **Qualitative:**
 - Corrects large-scale global labeling errors with respect to baseline CNN.
 - Contrast to CRF-like post-processing, which primarily refines boundaries.

- **Quantitative:**
 - Large accuracy boost (≈10% relative) over baseline when training from scratch.
 - Additional improvement step ImageNet pretraining + data augmentation.
 - Gain consistent over many choices of CNN architecture.

Ablation Experiments

- **Auxiliary Loss Weighting:**
 - Beyond autoencoder architecture, applying our regularizer involves choice of one additional hyperparameter.
 - Can choose relative weight of auxiliary branch loss with respect to primary loss.
 - Robust to this parameter: wide range of weights on the auxiliary loss improves accuracy over the baseline, magnitude of improvement also stable.

- **Encoder Effectiveness:**
 - Regularization effect deteriorates if decoder parameters not held fixed.
 - Performance gains due to label-space model, not dual output pathway architecture.

Label Model Introspection

Commonalities with previous [1]:
- Both provide supplementary training targets.
- Both capture part-like structure.

References
