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Supervised Learning Setting
(Regression)

• Given a labeled training set:
x1 y1

x2 y2

…
xn yn

• Learn a mapping
f(x) a y

in order to predict labels on future data:
x ?

target labels

objects, e.g. movies, 
options, etc, described 

as a feature vector

?



Target Labels

• Common types of target labels:
– Binary (positive/negative; ☺)
– Multiclass (discrete, unordered categories)
– Real valued

• Discrete ordinal labels

☺

“undesirable”, “indifferent”, “preferred”



Background:
Binary Regression

• Labeled training set (x1, y1), (x2, y2), …, (xn, yn)
• Learn z(x) = w’x+w0

minimizing ∑i loss(z(xi);yi)

+1 / -1 
labels

Focus on linear 
regression as an 
example.  Same 
ideas apply to 

any other family 
of predictors

such that z(x)>0 when y=+1,
and z(x)<0 when y=-1

loss(z;y) = 0 yz>0
1 otherwise



Background:
Binary Regression

• Labeled training set (x1, y1), (x2, y2), …, (xn, yn)
• Learn z(x) = w’x+w0

minimizing ∑i loss(z(xi);yi) + λ|w|2

+1 / -1 
labels

Focus on linear 
regression as an 
example.  Same 
ideas apply to 

any other family 
of predictors

w loss(z;y) = 0 yz>1
1 otherwise
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loss(z;y) = 0 yz>1
1-yz otherwise
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loss(z;y) = log(1+e-yz)
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Discrete Ordinal Labels

• Instead of y = -1 or +1,
we have y = 1, 2, 3, …, k

• Treat as k multiple unrelated classes, learn separate 
classifier for each value?

• Treat as a real valued objective, minimize, e.g. sum-
squared error?

1 2 3 4 5

loss(z ; y=4)

z



Threshold based approach

z(x)=w’x
0

y=+1
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Threshold based approach

z(x)=w’x
y=3

θ1 θ2 θ6θ5θ4θ3

[Shashua Levin 03]
Immediate-threshold loss

all-threshold loss
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Threshold based approach

z(x)=w’x
y=3

θ1 θ2 θ6θ5θ4θ3

[Shashua Levin 03]
Immediate-threshold loss

all-threshold loss
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• All-threshold loss is a bound on the absolute rank-difference

• For both constructions:
– can use any penalty function (e.g. logistic) instead of hinge
– learn per-user θ’s (different users use ratings differently)



Results on MovieLens Data
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Least squares: 1.33

Least squares: 0.76

All-Threshold vs others 
significant at p<10-16

All-Threshold vs others 
barely significant at p<0.14



Beyond Linear Regression

• Same constructions can be used 
whenever a loss function is needed:
– Kernel methods (SVMs)
– Collaborative prediction

(matrix completion)
[Srebro Rennie Jaakkola NIPS’04]
[Rennie Srebro ICML’05]
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Other Loss Functions

• Generalization to the logistic motivated by 
probabilistic generative model (see paper)

• Similar generative model with additive 
Gaussian “noise” [Chu Ghahramani 2004]

Alternative approach:
• Map ordinal labels to “<“ relationships

[Herbrich et al 2000]
– quadratic number of relationships



Summary

• Studied different constructions for loss-functions 
for discrete ordinal labels

• All-threshold construction best,
much better then treating as multiclass or using 
squared error

• Can be used whenever a (scale sensative) loss 
function is needed

www.cs.toronto.edu/~nati
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