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More Data ⇒ More Work?
10k training examples 1 hour 2.3% error

(when using
the predictor)

1M training examples 1 week (or more…) 2.29% error

10 minutes 2.3% error

But I really care about that 0.01% gain

Can always sample and get same runtime:

Can we leverage the excess data to reduce runtime?

1 hour 2.3% error

Study runtime increase as a function of target accuracy

Study runtime increase as a function of problem difficulty (e.g. small margin)

My problem is so hard, I have to crunch 1M examples



SVM Training

• Optimization objective:

• True objective: prediction error
err(w) = Ex,y[error of 〈w,x〉 vs. y]

• Would like to understand computational cost in terms of:
• Increasing function of:

– Desired generalization performance (i.e. as err(w) decreases)
– Hardness of problem:

margin, noise (unavoidable error)

• Decreasing function of available data set size



Error Decomposition

• Approximation error:
– Best error achievable by large-margin predictor
– Error of population minimizer

w0 = argmin E[f(w)] = argmin λ|w|2 + Ex,y[loss(〈w,x〉;y)]

• Estimation error:
– Extra error due to replacing E[loss] with empirical loss

w* = arg min fn(w)

• Optimization error:
– Extra error due to only optimizing to within finite precision

err(w0)

err(w*)

err(w)
Prediction error



The Double-Edged Sword

• When data set size increases:
– Estimation error decreases
– Can increase optimization error ,

i.e. optimize to within lesser accuracy ⇒ fewer iterations
– But handling more data is expensive

e.g. runtime of each iteration increases

• Stochastic Gradient Descent,
e.g. PEGASOS (Primal Efficient Sub-Gradient Solver for SVMs) 

[Shalev-Shwartz Singer Srebro, ICML’07]
– Fixed runtime per iteration
– Runtime to get fixed accuracy does not increase with n

err(w0)

err(w*)

err(w)

data set size (n)

Prediction error



PEGASOS: Stochastic (sub-)Gradient Descent

• Initialize w=0

• At each iteration t,
with random data point (xi,yi):

subgradient of
λ|w|2+[1-yi<w,xi>]+

• Theorem: After at most               iterations, E[f(wPEGASOS)] ≤ minw f(w)+ε

• With d-dimensional (or d-sparse) features, each iteration takes time O(d)

• Conclusion : Run-time required for PEGASOS to find ε accurate solution:

• Run-time does not depend on #examples
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Comparison of Runtime Guarantees

• Runtime to get εacc-accurate solution: f(w) ≤ min f(w) + εacc

PEGASOS d / (λ εacc)
SVMPerf n d / (λ εacc)
Dual Decomposition (SMO) n2 d log(1/εacc)
Interior Point n3.5 log(log(1/εacc))

• Would like to understand computational cost in terms of:
• Increasing function of:

– Desired generalization performance (i.e. as err(w) decreases)
– Hardness of problem:

margin, noise (unavoidable error)

• Decreasing function of available data set size

(ignoring log-factors)



err(w) = err(w0) + λ(|w0|2-|w|2) + E[f(w)]-E[f(w0)]
≤ err(w0) + λ|w0|2 + 2(f(w)-f(w0)) + O(1/(λn))
≤ err(w0) + λ|w0|2 + 2εacc + O(1/(λn))

If there is some predictor w0 with low |w0| and low err(w0),
how much time to find predictor with err(w) ≤ err(w0)+ε

large margin M=1/|w0|

λ = O(ε/|w0|2)
εacc = O(ε)
n = Ω(1/(λ ε)) = Ω(|w0|2/ε2)

Unlimited data available, can 
choose working data-set size

≤

O(ε)

≤

O(ε)
≤

O(ε)

Comparison of Runtime Guarantees

To get err(w) ≤ err(w0)+O(ε):



Traditional Data Laden:
f(w)<f(w*)+εacc err(w)≤ err(w0)+ε

IP n3.5 log(log(1/ εacc)) |w0|7/ε7

SMO n2 d log(1/εacc) d |w0|4/ε4

SVMPerf n d / (λ εacc) d |w0|4/ε4

PEGASOS d / (λ εacc) d |w0|2/ε2

If there is some predictor w0 with low |w0| and low err(w0),
how much time to find predictor with err(w) ≤ err(w0)+ε

large margin M=1/|w0|

λ = O(ε/|w0|2)
εacc = O(ε)
n = Ω(1/(λ ε)) = Ω(|w0|2/ε2)

Unlimited data available, can 
choose working data-set size

Comparison of Runtime Guarantees

(ignoring log-factors)

Data Laden analysis: Restricted by computation, not  data

To get err(w) ≤ err(w0)+O(ε):



Dependence on Data Set Size

Training set Size
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PEGASOS guaranteed 
runtime to get error err(w0)+ε
with n training points:
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Dependence on Data Set Size

Training set Size
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Minimal Training Size
(Stat Learning Theory)

PEGASOS guaranteed 
runtime to get error err(w0)+ε
with n training points:
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Training Set Size

err(w) ≤ err(w0) + λ|w0|2 + O(1/(λn)) + O(d/(λT))

Increase λ as training size increases!
More regularization, less predictors allowed
Larger approximation error err(w0)+λ|w0|2

Faster runtime T ∝ 1/λ
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Dependence on Data Set Size:
Traditional Optimization Approaches
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Dependence on Data Set Size:
Traditional Optimization Approaches
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Beyond PEGASOS

• Stochastic sub-gradient descent (e.g. PEGASOS) effective for 
SVMs with a linear kernel (i.e. feature vectors given explicitly)
– Relevant especially in text analysis, where feature vectors are sparse, 

very high dimensional, bags-of-words

• Kernalized SVMs (i.e. given access to a non-linear kernel):
– Stochastic sub-gradient descent applicable, but runtime to get fixed εacc

does increase linearly with n
– Can we get similar behavior for general kernels?

• Can we more explicitly leverage excess data?
– Playing only on the error decomposition,

const × minimum-sample-complexity is enough to get to 
const × minimum-data-laden-runtime

• Other machine learning problems…



• Required runtime:
– increases with complexity of the answer (separation, decision boundary)

– increases with desired accuracy

– decreases with amount of available data
• Stochastic (sub)-Gradient Descent for linear SVMs:

– Runtime to get fixed optimization accuracy doesn’t depend on data set size

– Runtime to get fixed prediction accuracy decreases as more data is available

More Data ⇒ Less Work
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Clustering (and other combinatorial search problems):
Excess data, beyond what is statistically necessary, 
makes problem tractable
[Srebro Shakhnarovich Roweis ICML’06]
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