SVM Optimization: An Inverse Dependence on Data Set Size

Shai Shalev-Shwartz

Nati Srebro

Toyota Technological Institute—Chicago

(a philanthropically endowed academic computer science institute dedicated to basic research and graduate education in computer science)

More Data \Rightarrow More Work?

10k training examples

1 hour

2.3% error

(when using the predictor)

1M training examples

1 week (or more...) 2.29% error

Can always sample and get same runtime:

1 hour

2.3% error

Can we leverage the excess data to **reduce** runtime?

10 minutes

2.3% error

But I really care about that 0.01% gain

Study runtime increase as a function of target accuracy

My problem is so hard, I have to crunch 1M examples

Study runtime increase as a function of problem difficulty (e.g. small margin)

SVM Training

• Optimization objective:
$$f(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^{n} [1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle]_+$$

True objective: prediction error

$$err(w) = \mathbf{E}_{x,y}[error of \langle w,x \rangle vs. y]$$

- Would like to understand computational cost in terms of:
- **Increasing** function of:
 - Desired generalization performance (i.e. as err(w) decreases)
 - Hardness of problem: margin, noise (unavoidable error)
- Decreasing function of available data set size

Error Decomposition

- Approximation error:
 - Best error achievable by large-margin predictor
 - Error of population minimizer $w_0 = \operatorname{argmin} E[f(w)] = \operatorname{argmin} \lambda |w|^2 + E_{x,y}[\operatorname{loss}(\langle w, x \rangle; y)]$
- Estimation error:
 - Extra error due to replacing E[loss] with empirical loss
 w* = arg min f_n(w)
- Optimization error:
 - Extra error due to only optimizing to within finite precision

The Double-Edged Sword

- When data set size increases:
 - Estimation error decreases
 - Can increase optimization error,
 i.e. optimize to within lesser accuracy ⇒ fewer iterations

But handling more data is expensive
 e.g. runtime of each iteration increases

- Stochastic Gradient Descent,
 e.g. PEGASOS (Primal Efficient Sub-Gradient Solver for SVMs)
 [Shalev-Shwartz Singer Srebro, ICML'07]
 - Fixed runtime per iteration
 - Runtime to get fixed accuracy does not increase with n

PEGASOS: Stochastic (sub-)Gradient Descent

$$f(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^{n} [1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle]_+$$

- Initialize w=0
- At each iteration t, with random data point $(\mathbf{x_i,y_i})$: $\nabla = 2\lambda \,\mathbf{w} \begin{cases} y_i \mathbf{x_i} & \text{if } y_i \,\langle w, \mathbf{x_i} \rangle < 1 \\ 0 & \text{otherwise} \end{cases}$ subgradient of $\mathbf{x_i|w|^2+[1-y_i< w, x_i>]_+}$ $\mathbf{w} \leftarrow \mathbf{w} \frac{1}{2\lambda t} \,\nabla$
- Theorem: After at most $\tilde{O}\left(\frac{1}{\lambda \epsilon}\right)$ iterations, $\mathsf{E}[\mathsf{f}(\mathsf{w}_{\mathsf{PEGASOS}})] \leq \mathsf{min}_{\mathsf{w}} \, \mathsf{f}(\mathsf{w}) + \epsilon$
- With d-dimensional (or d-sparse) features, each iteration takes time O(d)
- Conclusion: Run-time required for PEGASOS to find ε accurate solution:

$$\tilde{O}\left(\frac{d}{\lambda \epsilon}\right)$$

Run-time does not depend on #examples

Comparison of Runtime Guarantees

$$f(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \frac{1}{n} \sum_{i=1}^{n} [1 - y_i \langle \mathbf{w}, \mathbf{x}_i \rangle]_+$$

• Runtime to get ϵ_{acc} -accurate solution: $f(w) \leq min f(w) + \epsilon_{acc}$

- Would like to understand computational cost in terms of:
- Increasing function of:
 - Desired generalization performance (i.e. as err(w) decreases)
 - Hardness of problem: margin, noise (unavoidable error)
- Decreasing function of available data set size

Comparison of Runtime Guarantees

large margin M=1/|w₀|

If there is some predictor w_0 with $low |w_0|$ and $low err(w_0)$, how much time to find predictor with $err(w) \le err(w_0) + \varepsilon$

$$\begin{array}{ll} err(w) = err(w_0) + \lambda(|w_0|^2 - |w|^2) & + E[f(w)] - E[f(w_0)] \\ & \leq err(w_0) + \lambda|w_0|^2 & + 2(f(w) - f(w_0)) & + O(1/(\lambda n)) \\ & \leq err(w_0) + \lambda|w_0|^2 & + 2\epsilon_{acc} & + O(1/(\lambda n)) \\ & & O(\epsilon) & O(\epsilon) & O(\epsilon) \end{array}$$

```
To get err(w) \leq err(w<sub>0</sub>)+O(\epsilon): \lambda = O(\epsilon/|w_0|^2)
Unlimited data available, can choose working data-set size n = \Omega(1/(\lambda \epsilon)) = \Omega(|w_0|^2/\epsilon^2)
```

Comparison of Runtime Guarantees

large margin M=1/|w₀|

If there is some predictor w_0 with $|w_0|$ and $|w_0|$ and $|w_0|$ how much time to find predictor with $|w_0|$ and $|w_0| + \epsilon$

Traditional

 $f(w) < f(w^*) + \varepsilon_{acc}$

IP $n^{3.5} \log(\log(1/\epsilon_{acc}))$

SMO $n^2 d \log(1/\epsilon_{acc})$

SVMPerf $n d / (\lambda \epsilon_{acc})$

PEGASOS $d/(\lambda \epsilon_{acc})$

(ignoring log-factors)

```
To get err(w) \leq err(w<sub>0</sub>)+O(\epsilon): \lambda = O(\epsilon/|w_0|^2)
Unlimited data available, can choose working data-set size n = \Omega(1/(\lambda \epsilon)) = \Omega(|w_0|^2/\epsilon^2)
```

Data Laden analysis: Restricted by computation, not data

Dependence on Data Set Size

PEGASOS guaranteed runtime to get error $err(w_0)+\epsilon$ with n training points:

Dependence on Data Set Size

Dependence on Data Set Size: Traditional Optimization Approaches

Dependence on Data Set Size: Traditional Optimization Approaches

Beyond PEGASOS

- Stochastic sub-gradient descent (e.g. PEGASOS) effective for SVMs with a linear kernel (i.e. feature vectors given explicitly)
 - Relevant especially in text analysis, where feature vectors are sparse, very high dimensional, bags-of-words
- Kernalized SVMs (i.e. given access to a non-linear kernel):
 - Stochastic sub-gradient descent applicable, but runtime to get fixed ϵ_{acc} does increase linearly with n
 - Can we get similar behavior for general kernels?
- Can we more explicitly leverage excess data?
 - Playing only on the error decomposition, const × minimum-sample-complexity is enough to get to const × minimum-data-laden-runtime
- Other machine learning problems...

More Data ⇒ Less Work

- Required runtime:
 - increases with complexity of the answer (separation, decision boundary)
 - increases with desired accuracy
 - decreases with amount of available data
- Stochastic (sub)-Gradient Descent for linear SVMs:
 - Runtime to get fixed optimization accuracy doesn't depend on data set size
 - Runtime to get fixed prediction accuracy decreases as more data is available

Clustering (and other combinatorial search problems): Excess data, beyond what is statistically necessary, makes problem tractable [Srebro Shakhnarovich Roweis ICML'06]

