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Abstract

We establish that stability is necessary and suf-
ficient for learning, even in the General Learn-
ing Setting where uniform convergence conditions
are not necessary for learning, and where learning
might only be possible with a non-ERM learning
rule. This goes beyond previous work on the rela-
tionship between stability and learnability, which
focused on supervised classification and regres-
sion, where learnability is equivalent to uniform
convergence and it is enough to consider the ERM.

1 Introduction

We consider the General Setting of Learning [10] where we
would like to minimize a population risk functional (stochas-
tic objective)

F (h) = EZ∼D [f(h; Z)] (1)

where the distributionD of Z is unknown, based on
i.i.d. samplez1, . . . , zm drawn fromD (and full knowl-
edge of the functionf ). This General Setting subsumes su-
pervised classification and regression, certain unsupervised
learning problems, density estimation and stochastic opti-
mization. For example, in supervised learningz = (x, y)
is an instance-label pair,h is a predictor, andf(h, (x, y)) =
loss(h(x), y) is the loss functional.

For supervised classification and regression problems, it
is well known that a problem islearnable(see precise defi-
nition in Section 2) if and only if the empirical risks

FS(h) = 1
m

m
∑

i=1

f(h, zi) (2)

converge uniformly to their expectations [1]. If uniform con-
vergence holds, then the empirical risk minimizer (ERM) is
consistent, i.e. the population risk of the ERM converges to
the optimal population risk, and the problem is learnable us-
ing the ERM. That is, learnability is equivalent to learnability
by ERM, and so we can focus our attention solely on empir-
ical risk minimizers.

Stability has also been suggested as an explicit alternate
condition for learnability. Intuitively, stability notions focus
on particular algorithms, or learning rules, and measure their
sensitivity to perturbations in the training set.

In particular, it has been established that various forms
of stability of the ERM are sufficient for learnability.
Mukherjee et al [7] argue that since uniform conver-
gence also implies stability of the ERM, and is nec-
essary for (distribution independent) learning in the su-
pervised classification and regression setting, then stabil-
ity of the ERM is necessary and sufficient for learn-
ability in the supervised classification and regression set-
ting. It is important to emphasize that this characteriza-
tion of stability as necessary for learnability goes through
uniform convergence, i.e. the chain of implications is:

ERM Stable
Learnable
with ERM

Uniform
Convergence

However, the equivalence between (distribution indepen-
dent) consistency of empirical risk minimization and uni-
form convergence is specific to supervised classification and
regression. The results of Alonet al [1] establishing this
equivalence donot always hold in the General Learning
Setting. In particular, we recently showed that in strongly
convex stochastic optimization problems, the ERM is sta-
ble and thus consistent, even though the empirical risks do
not converge to their expectations uniformly (Example 7.1,
taken from [9]). Since the other implications in the chain
above still hold in the general learning setting (e.g., uniform
convergence implies stability and stability implies learnabil-
ity by ERM), this example demonstrates that stability is a
strictly more general sufficient condition for learnability.

A natural question is then whether, in the General
Setting, stability is also necessary for learning. Here
we establish that indeed, even in the general learning
setting, (distribution independent) stability of ERM is
necessary and sufficient for (distribution independent) con-
sistency of the ERM. The situation is therefore as follows:

Uniform
Convergence ERM Stable

Learnable
with ERM

We emphasize that, unlike the arguments of Mukherjeeet
al [7], the proof of necessity doesnot go through uniform
convergence, allowing us to deal also with settings beyond
supervised classification and regression.

The discussion above concerns only stability and
learnability of the ERM. In supervised classification
and regression there is no need to go beyond the ERM,
since learnability is equivalent to learnability by em-



pirical risk minimization. But as we recently showed,
there are learning problems in the General Setting which
are learnable using some alternate learning rule, but in
which ERM is neither stable nor consistent (Example
7.2, taken from [9]). Stability of ERM is therefore
a sufficient, but not necessary, condition for learnability:

Uniform
Convergence

ERM
Stable

Learnable
with ERM

Learnable

This prompts us to study the stability properties of non-ERM
learning rules.

We establish that, even in the General Setting, any con-
sistent and generalizing learning rule (i.e. where in addition
to consistency, the empirical risk is also a good estimate of
the population risk) must be asymptotically empirical risk
minimizing (AERM, see precise definition in Section 2). We
thus focus on such rules and show that also for an AERM,
stability is sufficient for consistency and generalization. The
converse is a bit weaker for AERMs, though. We show that a
strict notion of stability, which is necessary for ERM consis-
tency, is not necessary for AERM consistency, and instead
suggest a weaker notion (averaging out fluctuations across
random training sets) that is necessary and sufficient for
AERM consistency. Noting that any consistent learning rule
can be transformed to a consistent and generalizing learn-
ing rule, we obtain a sharp characterization of learnability in
terms of stability—learnability is equivalent to the existence
of a stable AERM:

Exists Stable
AERM

Learnable
with AERM

Learnable

2 The General Learning Setting
A “learning problem” is specified by a hypothesis domainH,
an instance domainZ and an objective function (e.g. “loss
functional” or “cost function”)f : H × Z → R. Through-
out this paper we assume the function is bounded by some
constantB, i.e. |f(h, z)| ≤ B for all h ∈ H andz ∈ Z.

A “learning rule” is a mappingA : ∪mZm → H from
sequences of instances inZ to hypotheses. We refer to se-
quencesS = {z1, . . . , zm} as “sample sets”, but it is impor-
tant to remember that the order and multiplicity of instances
may be significant. A learning rule that does not depend on
the order is said to besymmetric. We will generally consider
samplesS ∼ Dm of m i.i.d. draws fromD.

A possible approach to learning is to minimize the empir-
ical riskFS(h). We say that a ruleA is anERM (Empirical
Risk Minimizer) if it minimizes the empirical risk

FS(A(S)) = FS(ĥ) = min
h∈H

FS(h). (3)

where we useFS(ĥ) = minh∈H FS(h) to refer to the min-
imum empirical risk. But since there might be several hy-
potheses minimizing the empirical risk,ĥ does not refer to a
specific hypotheses and there might be many rules which are
all ERM.

We say that a ruleA is anAERM (Asymptotical Em-
pirical Risk Minimizer) with rateεerm(m) under distribu-
tionD if:

ES∼Dm

[

FS(A(S)) − FS(ĥS)
]

≤ εerm(m) (4)

Here and whenever talking about a “rate”ε(m), we require
it be monotone decreasing withε(m)

m→∞→ 0. A learning
rule isuniversally an AERM with rateεerm(m), if it is an
AERM with rateεerm(m) under all distributionsD overZ.

Returning to our goal of minimizing the expected risk,
we say a ruleA is consistentwith rateεcons(m) under dis-
tributionD if for all m,

ES∼Dm [F (A(S)) − F (h∗)] ≤ εcons(m). (5)

where we denoteF (h∗) = infh∈H F (h). A rule isuniver-
sally consistentwith rateεcons(m) if it is consistent with rate
εcons(m) under all distributionsD overZ. A problem is said
to be learnable if there exists some universally consistent
learning rule for the problem. This definition of learnability,
requiring a uniform rate for all distributions, is the relevant
notion for studying learnability of a hypothesis class. It is a
direct generalization of agnostic PAC-learnability [4] toVap-
nik’s General Setting of Learning as studied by Haussler [3]
and others.

We say a ruleA generalizeswith rate εgen(m) under
distributionD if for all m,

ES∼Dm [|F (A(S)) − FS(A(S))|] ≤ εgen(m). (6)

A rule universally generalizeswith rateεgen(m) if it gener-
alizes with rateεgen(m) under all distributionsD overZ.

We note that other authors sometimes define “consis-
tency”, and thus also “learnable” as a combination of our
notions of “consistency” and “generalizing”.

3 Stability

We define a sequence of progressively weaker notions of sta-
bility, all based on leave-one-out validation. For a sampleS
of sizem, let S\i = {z1, ..., zi−1, zi+1, ..., zm} be a sample
of m − 1 points obtained by deleting thei-th observation of
S. All our measures of stability concern the effect deleting
zi has onf(h, zi), whereh is the hypotheses returned by the
learning rule. That is, all measures consider the magnitude
of f(A(S\i); zi) − f(A(S); zi).

Definition 1. A rule A is uniform-LOO stable with rate
εstable(m) if for all samplesS of m points and for alli:

∣

∣

∣
f(A(S\i); zi) − f(A(S); zi)

∣

∣

∣
≤ εstable(m).

Definition 2. A rule A is all-i-LOO stable with rate
εstable(m) under distributionsD if for all i:

ES∼Dm

[∣

∣

∣
f(A(S\i); zi) − f(A(S); zi)

∣

∣

∣

]

≤ εstable(m).

Definition 3. A rule A is LOO stable with rateεstable(m)
under distributionsD if

1

m

m
∑

i=1

ES∼Dm

[∣

∣

∣
f(A(S\i); zi) − f(A(S); zi)

∣

∣

∣

]

≤ εstable(m).

For symmetric learning rules, Definitions 2 and 3 are
equivalent. Example 7.5 shows that the symmetry assump-
tion is necessary, and the two definitions are not equivalent
for non-symmetric learning rules.

Our weakest notion of stability, which we show is still
enough to ensure learnability, is:



Definition 4. A ruleA is on-average-LOO stablewith rate
εstable(m) under distributionsD if
∣

∣

∣

∣

∣

1

m

m
∑

i=1

ES∼Dm

[

f(A(S\i); zi) − f(A(S); zi)
]

∣

∣

∣

∣

∣

≤ εstable(m).

We say that a rule isuniversally stable with rate
εstable(m), if the stability property holds with rateεstable(m)
for all distributions.

Claim 3.1. Uniform-LOO stability with rateεstable(m) im-
plies all-i-LOO stability with rateεstable(m), which im-
plies LOO stability with rateεstable(m), which implies on-
average-LOO stability with rateεstable(m).

Relationship to Other Notions of Stability

Many different notions of stability, some under multiple
names, have been suggested in the literature.

In particular, our notion of all-i-LOO stability has
been studied by several authors under different names:
pointwise-hypothesis stability [2], CVloo stability [7], and
cross-validation-(deletion) stability [8]. All are equivalent,
though the rate is sometimes defined differently. Other
authors define stability with respect to replacing, rather
then deleting, an observation. E.g. “CV stability” [5] and
“cross-validation-(replacement)” [8] are analogous to all-i-
LOO stability and “average stability” [8] is analogous to
average-LOO stability for symmetric learning rules. In gen-
eral the deletion and replacement variants of stability are
incomparable—in Appendix A we briefly discuss how the
results in this paper change if replacement stability is used.

A much stronger notion isuniform stability[2], which is
strictly stronger than any of our notions, and is sufficient for
tight generalization bounds. However, this notion is far from
necessary for learnability ([5] and Example 7.3 below).

In the context of symmetric learning rules, all-i-LOO sta-
bility and LOO stability are equivalent. In order to treat non-
symmetric rules more easily, we prefer working with LOO
stability.

For an elaborate discussion of the relationships between
different notions of stability, see [5].

4 Main Results

We first establish that existence of a stable AERM is suffi-
cient for learning:

Theorem 4.1. If a rule is an AERM with rateεerm(m) and
stable (under any of our definitions) with rateεstable(m) un-
der D, then it is consistent and generalizes underD with
rates

εcons(m) ≤ 3εerm(m) + εstable(m + 1) + 2B
m+1

εgen(m) ≤ 4εerm(m) + εstable(m + 1) + 6B√
m

Corollary 4.2. If a rule is universally an AERM and stable
then it is universally consistent and generalizing.

Seeking a converse to the above, we first note that it is
not possible to obtain a converse for each distributionD sep-
arately, i.e. to Theorem 4.1. In Example 7.6, we show a spe-
cific learning problem and distributionD in which the ERM

(in fact, any AERM) is consistent, but not stable, even under
our weakest notion of stability.

However, we are able to obtain a converse to Corollary
4.2. That is, establish that auniversallyconsistent ERM, or
even AERM, must also be stable. For exact ERMs we have:

Theorem 4.3. For an ERM the following are equivalent:
• Universal LOO stability.
• Universal consistency.
• Universal generalization.

Recall that for a symmetric rule, LOO stability and all-i-
LOO stability are equivalent, and so consistency or gener-
alization of a symmetric ERM (the typical case) also imply
all-i-LOO stability.

Theorem 4.3 only guarantees LOO stability as a neces-
sary condition for consistency. Example 7.3 (adapted from
[5]) establishes that we cannot strengthen the condition to
uniform-LOO stability, or any stronger definition: there ex-
ists a learning problem for which the ERM is universally
consistent, but not uniform-LOO stable.

For AERMs, we obtain a weaker converse, ensuring only
on-average-LOO stability:

Theorem 4.4. For an AERM, the following are equivalent:
• Universal on-average-LOO stability.
• Universal consistency.
• Universal generalization.

On-average-LOO stability is strictly weaker then LOO sta-
bility, but this is the best that can be assured. In Example 7.4
we present a learning problem and an AERM that is univer-
sally consistent, but is not LOO stable.

The exact rate conversions of Theorems 4.3 and 4.4 are
specified in the corresponding proofs (Section 6), and are all
polynomial. In particular, anεcons-universal consistentεerm-
AERM is on-average-LOO stable with rate

εstable(m) ≤ 3εerm(m−1) + 3εcons((m−1)1/4) + 6B√
m−1

.

The above results apply only to AERMs, for which we
also see that universal consistency and generalization are
equivalent. Next we show that if in fact we seek universal
consistency and generalization, then we must consider only
AERMs:

Theorem 4.5. If a rule A is universally consistent with rate
εcons(m) and generalizing with rateεgen(m), then it is uni-
versally an AERM with rate

εerm(m) ≤ εgen(m) + 3εcons(m
1/4) +

4B√
m

Combining theorems 4.4 and 4.5, we get that the exis-
tence of a universally on-average-LOO stable AERM is a
necessary (and sufficient) condition for existence of some
universally consistent and generalizing rule. As we show
in Example 7.7, there might still be a universally consistent
learning rule (hence the problem is learnable by our defini-
tion) that isnotstable even by our weakest definition (and is
not an AERM nor generalizing). Nevertheless, any univer-
sally consistent learning rule can be transformed into a uni-
versally consistent and generalizing learning rule (Lemma
6.11). Thus by Theorems 4.5 and 4.4 this rule must also be a
stable AERM, establishing:



Theorem 4.6. A learning problem is learnable if and only if
there exists a universally on-average-LOO stable AERM.

In particular, if there exists aεcons-universally consistent
rule, then there exists a rule that isεstable-on-average-LOO
stable andεerm-AERM where:

εerm(m) = 3εcons(m
1/4) + 7B√

m
,

εstable(m) = 6εcons((m − 1)1/4) + 19B√
m−1

(7)

5 Comparison with Prior Work

5.1 Theorem 4.1 and Corollary 4.2

The consistency implication in Theorem 4.1 (specifically,
that all-LOO stability of an AERM implies consistency) was
established by Mukherjeeet al [7, Theorem 3.15].

As for the generalization guarantee, Rakhlinet al [8]
prove that for ERM, average-LOO stability is equivalent
to generalization. For more general learning rules, [2] at-
tempted to show that all-i-LOO stability implies generaliza-
tion. However, Mukherjeeet al [7] (in remark 3, pg. 173)
provide a simple counterexample and note that the proof of
[2] is wrong, and in fact all-i-LOO stability alone is not
enough to ensure generalization. To correct this, Mukher-
jeeet al [7] introduced an additional condition, referred to as
Elooerr stability, which together with all-i-LOO stability en-
sures generalization. For AERMs, they use arguments spe-
cific to supervised learning, arguing that universal consis-
tency implies uniform convergence, and establish general-
ization only via this route. And so, Mukherjeeet al obtain a
version of Corollary 4.2 that is specific to supervised learn-
ing.

In summary, comparing Theorem 4.1 to previous work,
our results extend the generalization guarantee also to
AERMs in the general learning setting.

Rakhlinet al [8] also show that the replacement (rather
then deletion) version stability implies generalization for any
rule (even non-AERM), and hence consistency for AERMs.
Recall that the deletion and replacement version are not
equivalent. We are not aware of strong converses for the
replacement variant.

5.2 Converse Results

Mukherjeeet al[7] argue that all-i-LOO stability of the ERM
(in fact, of any AERM) is also necessary for ERM univer-
sal consistency and thus learnability. However, their argu-
ments are specific to supervised learning, and establish sta-
bility only via uniform convergence ofFS(h) to F (h), as
discussed in the introduction. As we now know, in the gen-
eral learning setting, ERM consistency is not equivalent to
this uniform convergence, and furthermore, there might be a
non-ERM universally consistent rule even though the ERM
is not universally consistent. Therefore, our results hereap-
ply to the general learning setting and do not use uniform
convergence arguments.

For an ERM, Rakhlinet al [8] show that generaliza-
tion is equivalent to on-average-LOO stability, for any dis-
tribution and without resorting to uniform convergence ar-
guments. This provides a partial converse to Theorem 4.1.
However, our results extend to AERM’s as well and more

importantly, provide a converse to AERM consistency rather
than just generalization. This distinction between consis-
tency and generalization is important, as there are situations
with consistent but not stable AERM’s (Example 7.6), or
even universally consistent learning rules which are not sta-
ble, generalizing nor AERM’s (Example 7.7).

Another converse result that does not use uniform con-
vergence arguments, but is specific only to therealizable
binary learning setting was given by Kutin and Niyogi [5].
They show that in this setting, for any distributionD, all-i-
LOO stability of the ERM underD is necessary for ERM
consistency underD. This is a much stronger form of con-
verse as it applies to any specific distribution separately,
rather then requiring universal consistency. However, not
only is it specific to supervised learning, but further requires
the distribution be realizable (i.e. zero error is achievable).
As we show in Example 7.6, a distribution-specific converse
is not possible in the general setting.

All the papers cited above focus on symmetric learning
rules where all-i-LOO stability is equivalent to LOO stabil-
ity. We prefer not to limit our attention to symmetric rules,
and instead use LOO stability.

6 Detailed Results and Proofs

We first establish that for AERMs, on-average-LOO stabil-
ity and generalization are equivalent, and that for ERMs the
equivalence extends also to LOO stability. This extends the
work of Rakhlinet al [8] from ERMs to AERMs, and with
somewhat better rate conversions.

6.1 Equivalence of Stability and Generalization

It will be convenient to work with a weaker version of gen-
eralization as an intermediate step: We say a ruleA on-
average generalizeswith rateεoag(m) under distributionD
if for all m,

|ES∼Dm [F (A(S)) − FS(A(S))]| ≤ εoag(m). (8)

It is straightforward to see that generalization implies on-
average generalization with the same rate. We show that for
AERMs, the converse is also true, and also that on-average
generalization is equivalent to on-average stability, establish-
ing the equivalence between generalization and on-average
stability (for AERMs).

Lemma 6.1 (For AERMs: on-average generalization⇔
on-average stability). Let A be AERM with rateεerm(m)
underD. If A is on-average generalizing with rateεoag(m)
then it is on-average LOO stable with rateεoag(m − 1) +
2εerm(m− 1)+ 2B/m. If A is on-average LOO stable with
rate εstable(m) then it is on-average generalizing with rate
εstable(m + 1) + 2εerm(m) + 2B/m.

Proof. For the ERMs of S and S\i we have
∣

∣

∣
FS\i(ĥS\i) − FS(ĥS)

∣

∣

∣
≤ 2B

m , and so sinceA is AERM:

E

[∣

∣

∣
FS(A(S))−FS\i(A(S\i))

∣

∣

∣

]

≤ 2εerm(m−1)+ 2B
m (9)



generalization⇒ stability Applying (8) toS\i and com-
bining with (9) we have

∣

∣E
[

F (A(S\i)) − FS(A(S))
]
∣

∣ ≤
εoag(m − 1) + 2εerm(m − 1) + 2B/m, which does not ac-
tually depend oni, hence:

εoag(m − 1) + 2εerm(m − 1) + 2B/m

≥
∣

∣

∣
E

[

F (A(S\i)) − FS(A(S))
]∣

∣

∣
(10)

=
∣

∣

∣
Ei

[

E

[

F (A(S\i)) − FS(A(S))
]]∣

∣

∣

=
∣

∣

∣
ES\i,zi

[

Ei

[

f(A(S\i), zi)
]]

− ES [f(A(S), zi)]
∣

∣

∣

=
∣

∣

∣
E

[

Ei

[

f(A(S\i), zi) − f(A(S), zi)
]]∣

∣

∣
(11)

which establishes on-average stability.

stability ⇒ generalization Bounding (11) by
εstable(m) and working back we get that (10)
is also bounded by εstable(m). Combined with
(9) we get

∣

∣E
[

F (A(S\i)) − FS\i(A(S\i))
]
∣

∣ ≤
εstable(m) + 2εoag(m − 1) + 2B/m which establishes
on-average generalization.

Lemma 6.2(AERM + on-average generalization⇒ gen-
eralization). If A is an AERM with rateεerm(m) and on-
average generalizes with rateεoag(m) underD, thenA gen-
eralizes with rateεoag(m) + 2εerm(m) + 2B√

m
underD.

Proof. Using respective optimalities of̂hS andh
? we can

bound:

FS(A(S)) − F (A(S))

= FS(A(S)) − FS(ĥS) + FS(ĥS) − FS(h?)

+ FS(h?) − F (h?) + F (h?) − F (A(S))

≤ FS(A(S)) − FS(ĥS) + FS(h?) − F (h?) = Y (12)

Where the final equality defines a new random variableY .
By Lemma 6.3 and the AERM guarantee we haveE [|Y |] ≤
εerm(m) + B/

√
m). From Lemma 6.4 we can conclude that

E [|FS(A(S)) − F (A(S))|]
≤ |E [FS(A(S)) − F (A(S))]| + 2E [|Y |]
≤ εoag(m) + 2εerm(m) + 2B√

m
.

Utility Lemma 6.3. For i.i.d. Xi, |Xi| ≤ B and X =
1
m

∑m
i=1 Xi we haveE [|X − E [X ]|] ≤ B/

√
m.

Proof. E [|X − E [X ]|] ≤
√

Var[X ] =
√

Var[Xi]/m ≤
B/

√
m.

Utility Lemma 6.4. LetX, Y be random variables s.t.X ≤
Y almost surely. ThenE [|X |] ≤ |E [X ]| + 2E [|Y |].
Proof. Denotea+ = max(0, a) and observe thatX ≤ Y
impliesX+ ≤ Y+ (this holds when both have the same sign,
and whenX ≤ 0 ≤ Y , while Y < 0 < X is not possible).
We therefor haveE [X+] ≤ E [Y+] ≤ E [|Y |]. Also note
that |X | = 2X+ − X . We can now calculate:E [|X |] =
E [2X+ − X] = 2E [X+]−E [X ] ≤ 2E [|Y |]+ |E [X ]|.
For exact ERM, we get a stronger equivalence:

Lemma 6.5(ERM+on-average-LOO⇒LOO stable). If an
exact ERMA is on-average-LOO stable with rateεstable(m)
underD, then it is also LOO stable underD with the same
rate.

Proof. By optimality of ĥS = A(S):

f(ĥS\i , zi) − f(ĥS , zi) = FS(ĥS\i) − FS(ĥS)

+ FS\i(ĥS) − FS\i(ĥS\i) ≥ 0. (13)

Then using on-average-LOO stability:

1

m

m
∑

i=1

E

[∣

∣

∣
f(ĥS\i, zi) − f(ĥS , zi)

∣

∣

∣

]

=
1

m

m
∑

i=1

E

[(

f(ĥS\i , zi) − f(ĥS , zi)
)]

≤ εstable(m)

Lemma 6.5 can be extended also to AERMs with rate
o( 1

n ). However, for AERMs with a slower rate, or at least
with rateΩ( 1√

n
), Example 7.4 establishes that this stronger

converse is not possible.
We have nowestablished the stability↔generalization

parts of Theorems 4.1, 4.3 and 4.4(in fact, even a slightly
stronger converse than in Theorems 4.3 and 4.4, as it does
not require universality).

6.2 A Sufficient Condition for Consistency

It is also fairly straightforward to see that generalization
(or even on-average generalization) of an AERM implies its
consistency:

Lemma 6.6 (AERM+generalization⇒consistency). If A

is AERM with rateεerm(m) and it on-average generalizes
with rate εoag(m) underD then it is consistent with rate
εoag(m) + εerm(m) underD.

Proof.

E [F (A(S)) − F (h?)] = E [F (A(S)) − FS(h?)]

= E [F (A(S)) − FS(A(S))] + E [FS(A(S)) − FS(h?)]

≤ E [F (A(S)) − FS(A(S))] + E

[

FS(A(S)) − FS(ĥS)
]

≤ εgen(m) + εerm(m)

Combined with the results of Section 6.1, this completes
the proof of Theorem 4.1 and thestability→consistency
and generalization→consistency parts of Theorems 4.3
and 4.4.

6.3 Converse Direction

Lemma 6.1 already provides a converse result, establishing
that stability is necessary for generalization. However, in or-
der to establish that stability is also necessary for universal
consistency we must prove that universal consistency of an
AERM implies universal generalization. Note that consis-
tency under a specific distribution for an AERM doesnot
imply generalization nor stability (Example 7.6). We must
instead rely on universal consistency. The main tool we use
is the following lemma:



Lemma 6.7 (Main Converse Lemma). If a problem is
learnable, i.e. there exists a universally consistent ruleA

with rateεcons(m), then under any distribution,

E

[
∣

∣

∣
FS(ĥS) − F (h?)

∣

∣

∣

]

≤ εemp(m) where

εemp(m) = 2εcons(m
′) + 2B√

m
+ 2Bm′2

m

for any sequencem′ is such thatm′ → ∞ and m′ =
o(
√

m).

Proof. Let I = {I1, . . . , Im′} be a random sample ofm′

indexes in the range1..m where eachIi is independently
uniformly distributed, andI is independent ofS. Let S′ =

{zIi
}m′

i=1, i.e. a sample of sizem′ drawn from the uniform
distribution over samples inS (with replacements). We first
bound the probability thatI has no repeated indexes (“dupli-
cates”):

Pr (I has duplicates) ≤
∑m′

i=1(i − 1)

m
≤ m′2

2m
(14)

Conditioned on not having duplicates inI, the sampleS′ is
actually distributed according toDm′

, i.e. can be viewed as
a sample from the original distribution. We therefor have by
universal consistency:

E [|F (A(S′)) − F (h?)| | no dups] ≤ εcons(m
′) (15)

But viewed as a sample drawn from the uniform distribution
over instances inS, we also have:

ES′

[
∣

∣

∣
FS(A(S′)) − FS(ĥS)

∣

∣

∣

]

≤ εcons(m
′) (16)

Conditioned on having no duplications inI, S \S′ (i.e. those
samples inS not chosen byI) is independent ofS′, and
|S \ S′| = m − m′, and so by Lemma 6.3:

ES

[∣

∣F (A(S′)) − FS\S′(A(S′))
∣

∣

]

≤ B√
m − m′ (17)

Finally, if there are no duplicates, then for any hypothesis,
and in particular forA(S′) we have:

∣

∣FS(A(S′)) − FS\S′(A(S′))
∣

∣ ≤ 2Bm′

m
(18)

Combining (15),(16),(17) and (18), accounting for a maxi-
mal discrepancy ofB when we do have duplicates, and as-
suming2 ≤ m′ ≤ m/2, we get the desired bound.

In the supervised learning setting, Lemma 6.7 is just an
immediate consequence of learnability being equivalent to
consistency and generalization of the ERM. However, the
Lemma applies also in the General Setting, where univer-
sal consistency might be achieved only by a non-ERM. The
Lemma states that if a problem is learnable, even though the
ERM might not be consistent (as in, e.g. Example 7.2), the
empirical error achieved by the ERM is in fact an asymptot-
ically unbiased estimator ofF (h?).

Equipped with Lemma 6.7, we are now ready to show
that universal consistency of an AERM implies generaliza-
tion and that any universally consistent and generalizing rule
must be an AERM. What we show is actually a bit stronger:
that if a problem is learnable, and so Lemma 6.7 holds, then
for any distributionD separately, consistency of an AERM
underD implies generalization underD and also any consis-
tent and generalizing rule underD must be an AERM.

Lemma 6.8(learnable+AERM+consistent⇒generalizing).
If Lemma 6.7 holds with rateεemp(m), andA is an εerm-
AERM andεcons-consistent underD, then it is generalizing
underD with rateεemp(m) + εerm(m) + εcons(m).

Proof.

E [|FS(A(S)) − F (A(S))|] ≤ E

[∣

∣

∣
FS(A(S)) − FS(ĥS)

∣

∣

∣

]

+ E [|F (h?) − F (A(S))|] + E

[
∣

∣

∣
FS(ĥS) − F (h?)

∣

∣

∣

]

≤ εerm(m) + εcons(m) + εemp(m)

Lemma 6.9(learnable+consistent+generalizing⇒AERM).
If Lemma 6.7 holds with rateεemp(m), and A is εcons-
consistent andεgen-generalizing underD, then it is AERM
underD with rateεemp(m) + εgen(m) + εcons(m).

Proof.

E

[
∣

∣

∣
FS(A(S)) − FS(ĥS)

∣

∣

∣

]

≤ E [|FS(A(S)) − F (A(S))|]

+ E [|F (A(S)) − F (h?)|] + E

[∣

∣

∣
F (h?) − FS(ĥS)

∣

∣

∣

]

≤ εgen(m) + εcons(m) + εemp(m)

Lemma 6.8 establishes that universal consistency of an
AERM implies universal generalization, and thuscompletes
the proof of Theorems 4.3 and 4.4. Lemma 6.9establishes
Theorem 4.5. To get the rates in 4, we usem′ = m1/4 in
Lemma 6.7.

Lemmas 6.6, 6.8 and 6.9 together establish an interesting
relationship:

Corollary 6.10. For a (universally) learnable problem, for
any distributionD and learning ruleA, any two of the fol-
lowing imply the third :

• A is an AERM underD.
• A is consistent underD.
• A generalizes underD.

Note, however, that any one property by itself is possible,
even universally:
- The ERM in Example 7.2 is neither consistent nor general-
izing, despite the problem being learnable.
- Example 7.7 demonstrates a universally consistent learning
rule which is neither generalizing nor an AERM.
- A rule returning a fixed hypothesis always generalizes, but
of course need not be consistent nor an AERM.

In contrast, for learnable supervised classification and re-
gression problems, it is not possible for a learning rule to
be just universally consistent, without being an AERM and
without generalization. Nor is it possible for a learning rule
to be a universal AERM for a learnable problem, without
being generalizing and consistent.

Corollary 6.10 can also provide a certificate of non-
learnability. E.g. for the problem in Example 7.6 we show
a specific distribution for which there is a consistent AERM
that does not generalize. We can conclude that there isno
universally consistent learning rule for the problem, other-
wise the corollary is violated.



6.4 Existence of a Stable Rule

Theorems 4.5 and 4.4, which we just completed proving,
already establish that for AERMs, universal consistency is
equivalent to universal on-average-LOO stability. Existence
of a universally on-average-LOO stable AERM is thus suffi-
cient for learnability. In order to prove that it is also neces-
sary, it is enough to show that existence of a universally con-
sistent learning rule implies existence of a universally con-
sistent AERM. This AERM must then be on-average-LOO
stable by Theorem 4.4.

We actually show how to transform a consistent rule to
a consistent and generalizing rule. If this rule is universally
consistent, then by Lemma 6.9 we can then conclude it must
an AERM, and by 6.1 that it must be on-average-LOO stable.

Lemma 6.11. For any ruleA there exists a ruleA′, such
that:

• A
′ universally generalizes with rate3B√

m
.

• For anyD, if A is εcons-consistent underD thenA
′ is

εcons(b
√

mc) consistent underD.

Proof. For a sampleS of sizem, letS′ be a sub-sample con-
sisting of the firstb√mc observation inS. DefineA

′(S) =
A(S′). That is,A′ appliesA to only b√mc of the observa-
tion in S.

A
′ generalizes: We can decompose:

FS(A(S′))−F (A(S′)) = 1
b√mc (FS′(A(S′)) − F (A(S′)))

+ (1 − 1
b√mc)(FS\S′ (A(S′)) − F (A(S′)))

The first term can be bounded by2B/b√mc. As for the
second term,S \ S′ is statistically independent ofS′ and so
we can use Lemma 6.3 to bound its expected magnitude to
obtain:

E [|FS(A(S′)) − F (A(S′))|]
≤ 2B

b√mc + (1 − 1
b√mc )

B√
m−b√mc

≤ 3B√
m

(19)

A
′ is consistent: If A is consistent, then:

E

[

F (A′(S)) − inf
h∈H

F (h)

]

≤

E

[

F (A(S′)) − inf
h∈H

F (h)

]

≤ εcons(b
√

mc)

Proof of Converse in Theorem 4.6 If there exists a uni-
versally consistent rule with rateεcons(m), by Lemma 6.11
there existsA′ which is universally consistent and general-
izing. Choosingm′ = m1/4 in Lemma 6.7 and applying
Lemmas 6.9 and 6.1 we get the rates specified in (7).

Remark We can strengthen the above theorem to show
existence of an on-average-LOO stable, always AERM (ie.
a rule which for every sample approximately minimizes
FS(h)). The new learning rule for this purpose chooses the
hypothesis returned by the original rule whenever empirical
risk is small and chooses an ERM otherwise. The proof is
completed via Markov inequality to bound the probability
that we don’t choose the hypothesis returned by the original
learning rule.

7 Examples

Our first example (taken from [9]) shows that uniform con-
vergence isnot necessary for ERM consistency. I.e. univer-
sal ERM consistency holds without uniform convergence. Of
course, this can also happen in “trivial” settings where there
is one hypothesish0 which dominates all other hypothesis
(i.e. f(h0, z) < f(h, z) for all z and all h 6= h0) [10].
However, the example below demonstrates a non-trivial sit-
uation with ERM universal consistency but no uniform con-
vergence: there is no dominating hypothesis, and finding the
optimal hypothesis does require learning. In particular, un-
like “trivial” problems with a dominating hypothesis, in the
example below there is not even local uniform convergence.
I.e. there is no uniform convergence even among hypotheses
that are close to being population optimal.

Example 7.1. There exists a learning problem for which any
ERM is universally consistent, but the empirical risks do not
converge uniformly to their expectations.

Proof. Consider a convex stochastic optimization problem
given by:

f(w; (x, α)) = ‖α ∗ (w − x)‖ + ‖w‖2

=

√

∑

i

α2[i](w[i] − x[i])2 + ‖w‖2
,

wherew is the hypothesis,w,x are elements in a unit ball
around the origin of a Hilbert space with a countably infi-
nite orthonormal basise1, e2, . . ., andα is an infinite binary
sequence.α[i] is the i-th coordinate ofα, w[i] := 〈w, ei〉,
andx[i] is defined similarly. In our other submission [9],
we show that the ERM is stable, hence consistent. How-
ever, whenx = 0 a.s. andα is i.i.d. uniform, there is no
uniform convergence, not even locally. To see why, note
that for a random sampleS of any finite size, with prob-
ability one there exists an “excluded” basis vectorej such
thatαi[j] = 0 for all (xi, αi) ∈ S. For anyt > 0, we have
F (tej) − FS(tej) ≥ t2, regardless of the sample size. Set-
ting t = 1 establishessupw |F (w) − FS(w)| ≥ 1 even as
m → ∞, and so there is no uniform convergence. Choos-
ing t arbitrarily small, we see that even whenF (tej) is close
to optimal, the deviations|F (w) − FS(w)| still do not con-
verge to zero asm → ∞.

Perhaps more surprisingly, the next example (also taken
from [9]) shows that in the general setting, learnability might
require using a non-ERM.

Example 7.2. There exists a learning problem with a uni-
versally consistent learning rule, but for which no ERM is
universally consistent.

Proof. Consider the same hypothesis space and sample
space as before, with:

f(w, z) =
‖α ∗ (w − x)‖

2
+

ε

2

∞
∑

i=1

2−i(wi − 1)2 ,

whereε = 0.01. Whenx = 0 a.s. andα is i.i.d. uniform,
then the ERM must have‖ŵ‖ = 1. To see why, note that



for an excludedej (which exists a.s.) increasingw[j] to-
wards one decreases the objective. But since‖ŵ‖ = 1, we
haveF (ŵ) ≥ 1/2, while infw F (w) ≤ F (0) = ε, and so
F (ŵ) 6→ infw F (w).

On the other hand,A(S) = arg minFS(w)+ 20√
m
‖w‖2

is a uniformly-LOO stable AERM and hence by Theorem
4.1 universally consistent.

In the next three examples, we show that in a certain
sense, Theorem 4.3 and Theorem 4.4 cannot be improved
with stronger stability notions. Viewed differently, theyalso
constitute separation results between our various stability no-
tions, and show which are strictly stronger than the other.
Example 7.4 also demonstrates the gap between supervised
learning and a general learning setting, by presenting a learn-
ing problem and an AERM that is universally consistent, but
not LOO stable.

Example 7.3. There exists a learning problem with a uni-
versally consistent and all-i-LOO stable learning rule, but
there is no universally consistent and uniform LOO stable
learning rule.

Proof. This example is taken from [5]. Consider the hypoth-
esis space{0, 1}, the instance space{0, 1}, and the objective
functionf(h, z) = |h − z|.

It is straightforward to verify that an ERM is a univer-
sally consistent learning rule. It is also universally all-i-LOO
stable, because removing an instance can change the hypoth-
esis only if the original sample had an equal number of0’s
and1′s (plus or minus one), which happens with probability
at mostO(1/

√
m) wherem is the sample size. However, it

is not hard to see that the only uniform LOO stable learning
rule, at least for large enough sample sizes, is a constant rule
which always returns the same hypothesish regardless of
the sample. Such a learning rule is obviously not universally
consistent.

Example 7.4. There exists a learning problem with a uni-
versally consistent (and average-LOO stable) AERM, which
is not LOO stable.

Proof. Let the instance space, hypothesis space and objec-
tive function be as in Example 7.3. Consider the follow-
ing learning rule, based on a sampleS = (z1, . . . , zm):
if
∑

i 11{zi=1}/m > 1/2 +
√

log(4)/2m, return 1. If
∑

i 11{zi=1}/m < 1/2−
√

log(4)/2m, return0. Otherwise,
return Parity(S) = (z1 + . . . zm) mod2.

This learning rule is an AERM, withεerm(m) =
√

2 log(4)/m. Since we have only two hypotheses, we have
uniform convergence ofFS(·) to F (·) for any hypothesis.
Therefore, our learning rule universally generalizes (with
rateεgen(m) =

√

log(4/δ)/2m), and by Theorem 4.4, this
implies that the learning rule is also universally consistent
and average-LOO stable.

However, the learning rule is not LOO stable. Consider
the uniform distribution on the instance space. By Hoeffd-
ing’s inequality, |∑i 11{zi=1}/m − 1/2| ≤

√

log(4)/2m
with probability at least1/2 for any sample sizem. In that
case, the returned hypothesis is the parity function (even
when we remove an instance from the sample, assuming

m ≥ 3). When this happens, it is not hard to see that for
anyi,

f(A(S), zi) − f(A(S\i), zi) = 11{zi=1}(−1)Parity(S).

This implies that

E

[

1

m

m
∑

i=1

∣

∣

∣

(

f(A(S\i); zi) − f(A(S); zi)
)∣

∣

∣

]

(20)

≥ 1

2
E

[

1

m

m
∑

i=1

11{zi=1}

∣

∣

∣

∣

∣

√

log(4)

2m
≥
∣

∣

∣

m
∑

i=1

11{zi=1}
m

− 1

2

∣

∣

∣

]

≥ 1

2

(

1

2
−
√

log(4)

2m

)

−→ 1

4
,

which does not converge to zero with the sample sizem.
Therefore, the learning rule is not LOO stable.

Note that the proof implies that average-LOO stability
cannot be replaced even by weaker stability notions than
LOO stability. For instance, a natural stability notion inter-
mediate between average-LOO stability and LOO stability
is

ES∼Dm

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

(

f(A(S\i); zi) − f(A(S); zi)
)

∣

∣

∣

∣

∣

]

, (21)

where the absolute value is now over the entire sum, but in-
side the expectation. In the example used in the proof, (21)
is still lower bounded by (20), which does not converge to
zero with the sample size.

Example 7.5.There exists a learning problem with a univer-
sally consistent and LOO-stable AERM, which is not sym-
metric and is not all-i-LOO stable.

Proof. Let the instance space be[0, 1], the hypothesis space
[0, 1]∪2, and the objective functionf(h, z) = 11{h=z}. Con-
sider the following learning ruleA: given a sample, check
if the valuez1 appears more than once in the sample. If no,
returnz1, otherwise return2.

SinceFS(2) = 0, andz1 returns only if this value con-
stitutes1/m of the sample, the rule above is an AERM
with rate εerm(m) = 1/m. To see universal consis-
tency, let Pr(z1) = p. With probability (1 − p)m−2,
z1 /∈ {z2, . . . , zm}, and the returned hypothesis isz1, with
F (z1) = p. Otherwise, the returned hypothesis is2, with
F (2) = 0. HenceES [F (A(S))] ≤ p(1 − p)m−2, which
can be easily verified to be at most1/(m − 1), so the learn-
ing rule is consistent with rateεcons(m) ≤ 1/(m − 1). To
see LOO-stability, notice that our learning hypothesis can
change by deletingzi, i > 1, only if zi is the only instance in
z2, . . . , zm equal toz1. Soεstable(m) ≤ 2/m (in fact, LOO-
stability holds even without the expectation). However, this
learning rule is not all-i-LOO-stable. For instance, for any
continuous distribution,|f(A(S\1), z1)− f(A(S), z1)| = 1
with probability1, so it obviously cannot be all-i-LOO-stable
with respect toi = 1.

Next we show that forspecificdistributions, even ERM
consistency does not imply even our weakest notion of sta-
bility.
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Figure 1: Implications of various properties of learning problems. Consistency refers to univeral consistency and stability refers
to univeral on-average-LOO stability.

Example 7.6. There exists a learning problem and a dis-
tribution on the instance space, such that the ERM (or any
AERM) is consistent but is not average-LOO stable.

Proof. Let the instance space be[0, 1], the hypothesis space
consist of all finite subsets of[0, 1], and define the objec-
tive function asf(h, z) = 11{z /∈h}). Consider any contin-
uous distribution on the instance space. Since the under-
lying distributionD is continuous, we haveF (h) = 1 for
any hypothesish. Therefore, any learning rule (including
any AERM) will be consistent withF (A(S)) = 1. On the
other hand, the ERM here always achievesFS(ĥS) = 0, so
any AERM cannot generalize, or even on-average-generalize
(by Lemma 6.2), hence cannot be average-LOO stable (by
Lemma 6.1).

Finally, the following example shows that while learn-
ability is equivalent to the existence of stable and consistent
AERM’s (Theorem 4.4 and Theorem 4.6), there might still
exist other learning rules, which are neither of the above.

Example 7.7. There exists a learning problem with a uni-
versally consistent learning rule, which is not average-LOO
stable, generalizing nor an AERM.

Proof. Let the instance space be[0, 1]. Let the hypothesis
space consist of all finite subsets of[0, 1], and the objective
function be the indicator functionf(h, z) = 11{z∈h}. Con-
sider the following learning rule: given a sampleS ⊆ [0, 1],
the learning rule checks if there are any two identical in-
stances in the sample. If so, the learning rule returns the
empty set∅. Otherwise, it returns the sample.

This learning rule is not an AERM, nor does it neces-
sarily generalize or is average-LOO stable. Consider any
continuous distribution on[0, 1]. The learning rule always
returns a countable setA(S), with FS(A(S)) = 1, while
FS(∅) = 0 (so it is not an AERM) andF (A(S)) = 0
(so it does not generalize). Also,f(A(S), zi) = 0 while
f(A(S\i0, zi) = 1 with probability1, so it is not average-
LOO stable either.

However, the learning rule is universally consistent. If
the underlying distribution is continuous on[0, 1], then the
returned hypothesis isS, which is countable hence ,F (S) =
0 = infh F (h). For discrete distributions, letM1 denote the
proportion of instances in the sample which appear exactly
once, and letM0 be the probability mass of instances which
did not appear in the sample. Using [6, Theorem 3], we have
that for anyδ, it holds with probability at least1 − δ over a
sample of sizem that

|M0 − M1| ≤ O
(

log(m/δ)√
m

)

,

uniformly for any discrete distribution. If this event occurs,
then eitherM1 < 1, or M0 ≥ 1 − O(log(m/δ)/

√
m). But

in the first event, we get duplicate instances in the sample,
so the returned hypothesis is the optimal∅, and in the sec-
ond case, the returned hypothesis is the sample, which has
a total probability mass of at least1 − O(log(m/δ)/

√
m),

and thereforeF (A(S)) ≤ O(log(m/δ)/
√

m). As a result,
regardless of the underlying distribution, with probability of
at least1 − δ over the sample,

F (A(S)) ≤ O
(

log(m/δ)√
m

)

.

Since the r.h.s. converges to0 with m for anyδ, it is easy to
see that the learning rule is universally consistent.

8 Discussion

In the familiar setting of supervised classification or regres-
sion, the question of learnability is reduced to that of uni-
form convergence of empirical risks to their expectation, and
in turn to finiteness of the fat-shattering dimension [1]. Fur-
thermore, due to the equivalence of learnability and uniform
convergence, there is no need to look beyond the ERM.

We recently showed [9] that the situation in the Gen-
eral Learning Setting is substantially more complex. Uni-
versal ERM consistency mightnot be equivalent to uniform
convergence, and furthermore, learnability might be possible
only with a non-ERM. We are therefore in need of a new un-
derstanding of the question of learnability that applies more
broadly then just to supervised classification and regression.

In studying learnability in the General Setting, Vapnik
[10] focuses solely on empirical risk minimization, which
we now know is not sufficient for understanding learnability
(e.g. Example 7.2). Furthermore, for empirical risk mini-
mization, Vapnik establishes uniform convergence as a nec-
essary and sufficient condition not for ERM consistency, but
rather forstrict consistency of the ERM. We now know that
even in rather non-trivial problems (e.g. Example 7.1 taken
from [9]), where the ERM is consistent and generalizes,
strict consistency does not hold. Furthermore, Example 7.1
also demonstrates that ERM stability guarantees ERM con-
sistency, butnot strict consistency, perhaps giving another
indication that strict consistency might be too strict (this and
other relationships are depicted in Figure 1).

In Examples 7.1 and 7.2 we see that stability is a strictly
more general sufficient condition for learnability. This
makes stability an appealing candidate for understanding
learnability in the more general setting.

Indeed, we show that stability is not only sufficient, but
is also necessary for learning, even in the General Learning
Setting. A previous such characterization was based on uni-
form convergence and thus applied only to supervised clas-



sification and regression [7]. Extending the characterization
beyond these settings is particularly interesting, since for su-
pervised classification and regression the question of learn-
ability is already essentially solved. Extending the charac-
terization, without relying on uniform convergence, also al-
lows us to frame stability as the core condition guaranteeing
learnability, with uniform convergence only a sufficient, but
not necessary, condition for stability (see Figure 1).

In studying the question of learnability and its relation to
stability, we encounter several differences between this more
general setting, and settings such as supervised classification
and regression where learnability is equivalent to uniform
convergence. We summarize some of these distinctions:
• Perhaps the most important distinction is that in the

General Setting learnability might be possible only with
a non-ERM. In this paper we establish that if a problem
is learnable, although it might not be learnable with an
ERM, it must be learnable with some AERM. And so,
in the General Setting we must look beyond empirical
risk minimization, but not beyond asymptotic empirical
risk minimization.

• In supervised classification and regression, if one
AERM is universally consistent then all AERMs are
universally consistent. In the General Setting we must
choose the AERM carefully.

• In supervised classification and regression, a uni-
versally consistent rule must also generalize and be
AERM. In the General Setting, a universally consistent
rule need not generalize nor be an AERM, as example
7.7 demonstrates. However, Theorem 4.5 establishes
that, even in the General Setting, if a rule is universally
consistentandgeneralizing then it must be an AERM.
This gives us another reason to not look beyond asymp-
totic empirical risk minimization, even in the General
Setting.

The above distinctions can also be seen through Corol-
lary 6.10, which concerns the relationship between
AERM, consistency and generalization in learnable
problems. In the General Setting, any two conditions
imply the other, but it is possible for any one condition
to exist without the others. In supervised classification
and regression, if a problem is learnable then gener-
alization always holds (for any rule), and so universal
consistency and AERM imply each other.

• In supervised classification and regression, ERM in-
consistency for some distribution is enough to estab-
lish non-learnability. Establishing non-learnability in
the General Setting is trickier, since one must consider
all AERMs. We show how Corollary 6.10 can provide a
certificatefor non-learnability, in the form of a rule that
is consistent and an AERM for some specific distribu-
tion, but does not generalize (Example 7.6).

• In the General Setting, universal consistency of an
AERM only guarantees on-average-LOO stability, but
not LOO stability as in the supervised classification set-
ting [7]. As we show in Example 7.4, this is a real dif-
ference and not merely a deficiency of our proofs.

We have begun exploring the issue of learnability in the Gen-
eral Setting, and uncovered important relationships between
learnability and stability. But many problems are left open.

Throughout the paper we ignored the issue of getting
high-confidence concentration guarantees. We choose to use
convergence in expectation, and defined the rates as rates on
the expectation. Since the objectivef is bounded, conver-
gence in expectation is equivalent to convergence in prob-
ability and using Markov’s inequality we can translate a
rate of the formE [|· · ·|] ≤ ε(m) to a “low confidence”
guaranteePr(|· · ·| > ε(m)/δ) ≤ δ. Can we also obtain
exponential concentration results of the formPr(|· · ·| >
ε(m)polylog(1/δ)) ≤ δ ? It is possible to construct exam-
ples in the General Setting in which convergence in expecta-
tion of the stability doesnot imply exponential concentration
of consistency and generalization. Is it possible to show that
exponential concentration of stability is equivalent to expo-
nential concentration of consistency and generalization?

We showed that existence of an average-LOO stable
AERM is necessary and sufficient for learnability (Theo-
rem 4.6). Although specific AERMs might be universally
consistent and generalizing without being LOO stable (Ex-
ample 7.4), it might still be possible to show that for a learn-
able problem, there always exists some LOO stable AERM.
This would tighten our converse result and establish exis-
tence of a LOO stable AERM as equivalent to learnability.

Even existence of a LOO stable AERM is not as elegant
and simple as having finite VC dimension, or fat-shattering
dimension. It would be very interesting to derive equivalent
but more ’combinatorial’ conditions for learnability.
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A Replacement Stability

We used the Leave-One-Out version of stabilities throughout
the paper, however many of the results hold when we use
the replacement versions instead. Here we briefly survey the
differences in the main results as they apply to replacement-
based stabilities.

Let S(i) denote the sampleS with zi replaced by some
otherz′i drawn from the same unknown distributionD.

Definition 5. A rule A is uniform-RO stable with
rate εstable(m) if for all samples S of m points and
∀z′, z′1, ..., z

′
m ∈ Z :

1

m

m
∑

i=1

∣

∣

∣
f(A(S(i)); z′) − f(A(S); z′)

∣

∣

∣
≤ εstable(m).

Definition 6. A rule A is on-average-RO stablewith rate
εstable(m) under distributionsD if
∣

∣

∣

∣

∣

1

m

m
∑

i=1

ES∼Dm;z′
1
,...,z′

m
∼D
[

f(A(S(i)); zi) − f(A(S); zi)
]

∣

∣

∣

∣

∣

≤ εstable(m).

With the above definitions replacing uniform-LOO sta-
bility and on-average-LOO stability respectively, all theo-
rems in Section 4 other than Theorem 4.3 hold (i.e. Theorem
4.1, Corollary 4.2, Theorem 4.4 and Theorem 4.6).

We do not know how to obtain a replacement-variant of
Theorem 4.3—even for a consistent ERM, we can only guar-
antee on-average-RO stability (as in Theorem 4.4), but we do
not know if this is enough to ensure RO stability.

However, although for ERMs we can only obtain a
weaker converse, we can guarantee the existence of an
AERM that is not only on-average-RO stable but actually
uniform-RO stable. That is, we get a much stronger variant
of Theorem 4.6:

Theorem A.1. A learning problem is learnable if and only
if there exists an uniform-RO stable AERM.

Proof. Clearly if there exists any ruleA that is uniform-RO
stable and AERM then the problem is learnable, since the
learning ruleA is in fact universally consistent by theorem
4.1. On the other hand if there exists a ruleA that is uni-
versally consistent, then consider the ruleA

′ as in the con-
struction of Lemma 6.11. As shown in the lemma this rule is
consistent. Now note thatA′ only uses the first

√
m samples

of S. Hence fori >
√

m we haveA′(S(i)) = A
′(S) and so:

1

m

m
∑

i=1

∣

∣

∣
f(A(S(i)); z′) − f(A(S); z′)

∣

∣

∣

=

√
m
∑

i=1

∣

∣

∣
f(A(S(i)); z′) − f(A(S); z′)

∣

∣

∣
≤ 2B√

m

We thus showed that this rule is consistent, generalizes, and
is 2B√

m
-uniformly RO stable.


