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Abstract

We establish that stability is necessary and suf-
ficient for learning, even in the General Learn-
ing Setting where uniform convergence conditions
are not necessary for learning, and where learning
might only be possible with a non-ERM learning
rule. This goes beyond previous work on the rela-
tionship between stability and learnability, which
focused on supervised classification and regres-
sion, where learnability is equivalent to uniform
convergence and it is enough to consider the ERM.

1

We consider the General Setting of Learning [10] where we
would like to minimize a population risk functional (stocha
tic objective)

Introduction

F(h) =Ezwp [f(h; Z)] (2)

where the distributionD of Z is unknown, based on
ii.d. samplez,...,z, drawn fromD (and full knowl-
edge of the functiorf). This General Setting subsumes su-
pervised classification and regression, certain unsugestvi
learning problems, density estimation and stochastic- opti
mization. For example, in supervised learning= (x,y)
is an instance-label paih, is a predictor, ang'(h, (x,y)) =
losgh(x),y) is the loss functional.

For supervised classification and regression problems, it
is well known that a problem iarnable(see precise defi-
nition in Section 2) if and only if the empirical risks

Fs(h) =" f(h,z) 2)

=1
converge uniformly to their expectations [1]. If uniformreo
vergence holds, then the empirical risk minimizer (ERM) is
consistenti.e. the population risk of the ERM converges to
the optimal population risk, and the problem is learnable us
ing the ERM. That s, learnability is equivalent to learriypi
by ERM, and so we can focus our attention solely on empir-
ical risk minimizers.

Stability has also been suggested as an explicit alternate

condition for learnability. Intuitively, stability noties focus
on particular algorithms, or learning rules, and measwe# th
sensitivity to perturbations in the training set.
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In particular, it has been established that various forms
of stability of the ERM are sufficient for learnability.
Mukherjee et al [7] argue that since uniform conver-
gence also implies stability of the ERM, and is nec-
essary for (distribution independent) learning in the su-
pervised classification and regression setting, then Istabi
ity of the ERM is necessary and sufficient for learn-
ability in the supervised classification and regression set-
ting. It is important to emphasize that this characteriza-
tion of stability as necessary for learnability goes thioug
uniform convergence, i.e. the chain of implications is:

Uniform
Convergence

Learnable
with ERM

ERM Stable

However, the equivalence between (distribution indepen-
dent) consistency of empirical risk minimization and uni-
form convergence is specific to supervised classificatiah an
regression. The results of Alogt al [1] establishing this
equivalence dmot always hold in the General Learning
Setting. In particular, we recently showed that in strongly
convex stochastic optimization problems, the ERM is sta-
ble and thus consistent, even though the empirical risks do
not converge to their expectations uniformly (Example 7.1,
taken from [9]). Since the other implications in the chain
above still hold in the general learning setting (e.g., ommif
convergence implies stability and stability implies lestvit-
ity by ERM), this example demonstrates that stability is a
strictly more general sufficient condition for learnalyilit

A natural question is then whether, in the General
Setting, stability is also necessary for learning. Here
we establish that indeed, even in the general learning
setting, (distribution independent) stability of ERM is
necessary and sufficient for (distribution independent)-co
sistency of the ERM. The situation is therefore as follows:

Uniform Learnable
Convergence ERM Stable with ERM

We emphasize that, unlike the arguments of Mukheégee

al [7], the proof of necessity doa®t go through uniform
convergence, allowing us to deal also with settings beyond
supervised classification and regression.

The discussion above concerns only stability and
learnability of the ERM. In supervised classification
and regression there is no need to go beyond the ERM,
since learnability is equivalent to learnability by em-




pirical risk minimization. But as we recently showed, Here and whenever talking about a “ratgin), we require
there are learning problems in the General Setting which it be monotone decreasing witlim) "=~ 0. A learning
are learnable using some alternate learning rule, but inrule isuniversally an AERM with rate e (m), if it is an
which ERM is neither stable nor consistent (Example AERM with rateee,., (1) under all distribution® over Z.
7.2, taken from [9]). Stability of ERM is therefore Returning to our goal of minimizing the expected risk,
a sufficient, but not necessary, condition for learnability we say a ruleA is consistentwith rate econs(m) under dis-

Uniform ERM Learnable tribution D if for all m,
= <> . Learnable
[ Stable} [Wlth ERM}:) Egopm [F(A(S)) _ F(h*)] < Econs(m)- (5)

This prompts us to study the stability properties of non-ERM \yhere we denoté'(h*) = infpes F(h). A rule isuniver-
learning rules. _ _ sally consistenwith ratee..,s(mn) if it is consistent with rate

~ We establish that, even in the General Setting, any con-¢__ () under all distribution® over Z. A problem is said
sistent and generalizing learning rule (i.e. where in aoldit {5 pe learnable if there exists some universally consistent
to consistency, the empirical risk is also a good estimate of |earning rule for the problem. This definition of learnatyjli
the population risk) must be asymptotically empirical risk requiring a uniform rate for all distributions, is the reden
minimizing (AERM, see precise definition in Section 2). We - notion for studying learnability of a hypothesis class.slai
thus focus on such rules and show that also for an AERM, direct genera”zation of agnostic PAC-]earnabi”ty [4}@-

stability is sufficient for consistency and generalizatibhe  pjk's General Setting of Learning as studied by Haussler [3]
converse is a bit weaker for AERMs, though. We show that a 5 others.
strict notion of stability, which is necessary for ERM cassi We say a ruleA generalizeswith rate e, (m) under

tency, is not necessary for AERM consistency, and instead distribution if for all m,

suggest a weaker notion (averaging out fluctuations across

random training sets) that is necessary and sufficient for Eswpm [[F(A(S)) — Fs(A(S))]] < €gen(m).  (6)
AERM consistency. Noting that any consistent learning rule A rule universally generalizeswith ratee,.,, (m) if it gener-
can be transformed to a consistent and generalizing learn-gjizes with rate.,, () under all distribution® over Z.

ing rule, we obtain a sharp characterization of learnafiit We note that other authors sometimes define “consis-
terms of stability—learnability is equivalent to the egiste tency”, and thus also “learnable” as a combination of our
of a stable AERM: notions of “consistency” and “generalizing”.

Exists Stable Learnable .
AERM 1 with ARy <> Leamable | 3 Stability

We define a sequence of progressively weaker notions of sta-

2 The General Learning Setting bility, all based on leave-one-out validation. For a santple
) , - , of sizem, let S\ = {z1, ..., zi_1, zi41, ..., zm } De a sample
A"learning problem”is specified by a hypothesis dom®in  f ;, 1 points obtained by deleting theth observation of

an instance domai and an objective function (e.g. “loss g Ajl our measures of stability concern the effect deleting

functional” or “cost function”)f : H x Z — R. Through- . hag onf(h, z;), whereh is the hypotheses returned by the
23;;?;%’"?? I’}?hass)'r'l‘%t?grgjnnflt'gr;{'saﬁguned? by some|garning rule. That is, all measures consider the magnitude
, l.e. ,2)| < z . AV o
A “learning rule” is a mappin@A : U,,Z™ — H from of f(A(SY); zi) — F(A(S); z).
sequences of instances #to hypotheses. We refer to se- Definition 1. A rule A is uniform-LOO stable with rate
quencesS = {z1,..., 2y} as “sample sets”, but it is impor-  egtan1e(m) if for all samplesS of m points and for alk:
tant to remember that the order and multiplicity of instance _
may be significant. A learning rule that does not depend on ‘f(A(S\l); 2i) — f(A(S); i) | < €stable(m).
the order is said to bgymmetric We will generally consider o _ ) )
samplesS ~ D™ of m i.i.d. draws fromD. Definition 2. A rule A is all-i-LOO stable with rate

A possible approach to learning is to minimize the empir- €stable(m) under distributionsD if for all 4
ical risk Fs(h). We say that a rulé is anERM (Empirical i
Risk Minimizer) if it minimizes the empirical risk Es~pm Hf(A(S\ );zi) — F(A(S); %) } < €stable(m).
Fs(A(S)) = Fs(h) = Hn?r% Fs(h). (3) Definition 3. A rule A is LOO stable with rate egap1c (1)
€ under distributionD if

where we us&s(h) = minyey Fs(h) to refer to the min- m

imum empirical risk. But since thereA might be several hy- 1 ZES~Dm Hf(A(S\i)§Zi) — F(A(S): )
potheses minimizing the empirical ridk,does notrefertoa ™ =

specific hypotheses and there might be many rules which are

:| S €stable (m) .

all ERM. For symmetric learning rules, Definitions 2 and 3 are

We say that a rule\ is anAERM (Asymptotical Em- equivalent. Example 7.5 shows that the symmetry assump-
pirical Risk Minimizer) with rate e (m) under distribu- tion is necessary, and the two definitions are not equivalent
tion D i e for non-symmetric learning rules.

. Our weakest notion of stability, which we show is still
Es~pm [Fs(A(S)) — Fs(hs)} < éeam(m)  (4) enough to ensure learnability, is:



Definition 4. Arule A is on-average-LOO stablewith rate
estable(m) under distributionsD if

S Establc("n)-

= S Eseon [£(AGSV):2) - S(AS):2)

We say that a rule isuniversally stable with rate
estable (), If the stability property holds with ratg;,p1. (m)
for all distributions.

Claim 3.1. Uniform-LOO stability with rateapie(m) im-

plies all-i-LOO stability with rateesianie(m), which im-
plies LOO stability with ratesanie(m), which implies on-
average-LOO stability with rates;pie(m).

Relationship to Other Notions of Stability

Many different notions of stability, some under multiple
names, have been suggested in the literature.

In particular, our notion of all-i-LOO stability has
been studied by several authors under different names:
pointwise-hypothesis stability [2], Gy stability [7], and
cross-validation-(deletion) stability [8]. All are eqaient,
though the rate is sometimes defined differently. Other
authors define stability with respect to replacing, rather
then deleting, an observation. E.g. “CV stability” [5] and
“cross-validation-(replacement)” [8] are analogous tei-al
LOO stability and “average stability” [8] is analogous to
average-LOO stability for symmetric learning rules. In gen
eral the deletion and replacement variants of stability are
incomparable—in Appendix A we briefly discuss how the
results in this paper change if replacement stability isluse

A much stronger notion igniform stability[2], which is
strictly stronger than any of our notions, and is sufficiemt f
tight generalization bounds. However, this notion is fanir
necessary for learnability ([5] and Example 7.3 below).

In the context of symmetric learning rules, all-i-LOO sta-
bility and LOO stability are equivalent. In order to treatro
symmetric rules more easily, we prefer working with LOO
stability.

For an elaborate discussion of the relationships between
different notions of stability, see [5].

4 Main Results

We first establish that existence of a stable AERM is suffi-
cient for learning:

Theorem 4.1. If a rule is an AERM with rate,,,(m) and
stable (under any of our definitions) with ratg,p1.(m) un-
der D, then it is consistent and generalizes undzmwith
rates
2B

+ m—+1

6B
+ T
Corollary 4.2. If a rule is universally an AERM and stable
then it is universally consistent and generalizing.

6Cons("n) S 36erm(m) + 6sta’ble(Tn + 1)
6gcn("n) S 4€crm(m) + 6s‘cablc(7n + 1)

Seeking a converse to the above, we first note that it is
not possible to obtain a converse for each distributrosep-
arately, i.e. to Theorem 4.1. In Example 7.6, we show a spe-
cific learning problem and distributidh in which the ERM

(in fact, any AERM) is consistent, but not stable, even under
our weakest notion of stability.

However, we are able to obtain a converse to Corollary
4.2. That is, establish thatumiversallyconsistent ERM, or
even AERM, must also be stable. For exact ERMs we have:

Theorem 4.3. For an ERM the following are equivalent:
e Universal LOO stability.
e Universal consistency.
e Universal generalization.

Recall that for a symmetric rule, LOO stability and all-i-
LOO stability are equivalent, and so consistency or gener-
alization of a symmetric ERM (the typical case) also imply
all-i-LOO stability.

Theorem 4.3 only guarantees LOO stability as a neces-
sary condition for consistency. Example 7.3 (adapted from
[5]) establishes that we cannot strengthen the condition to
uniform-LOO stability, or any stronger definition: there-ex
ists a learning problem for which the ERM is universally
consistent, but not uniform-LOO stable.

For AERMs, we obtain a weaker converse, ensuring only
on-average-LOO stability:

Theorem 4.4. For an AERM, the following are equivalent:
e Universal on-average-LOO stability.
e Universal consistency.
e Universal generalization.

On-average-LOO stability is strictly weaker then LOO sta-
bility, but this is the best that can be assured. In Examgle 7.
we present a learning problem and an AERM that is univer-
sally consistent, but is not LOO stable.

The exact rate conversions of Theorems 4.3 and 4.4 are
specified in the corresponding proofs (Section 6), and &re al
polynomial. In particular, ap..,s-universal consistent,,,,-
AERM is on-average-LOO stable with rate

6s‘cablo(7n) S 3€crm(m_1) + 3€cons((m_1)l/4) + \/%

The above results apply only to AERMSs, for which we
also see that universal consistency and generalization are
equivalent. Next we show that if in fact we seek universal
consistency and generalization, then we must consider only
AERMSs:

Theorem 4.5. If a rule A is universally consistent with rate
€cons(m) and generalizing with rateg.,(m), then it is uni-
versally an AERM with rate

4B
vm

Combining theorems 4.4 and 4.5, we get that the exis-
tence of a universally on-average-LOO stable AERM is a
necessary (and sufficient) condition for existence of some
universally consistent and generalizing rule. As we show
in Example 7.7, there might still be a universally consisten
learning rule (hence the problem is learnable by our defini-
tion) that isnot stable even by our weakest definition (and is
not an AERM nor generalizing). Nevertheless, any univer-
sally consistent learning rule can be transformed into a uni
versally consistent and generalizing learning rule (Lemma
6.11). Thus by Theorems 4.5 and 4.4 this rule must also be a
stable AERM, establishing:

€erm (M) < €gen (M) + 3€cons(m/*) +



Theorem 4.6. A learning problem is learnable if and only if
there exists a universally on-average-LOO stable AERM.

In particular, if there exists a,ns-universally consistent
rule, then there exists a rule thateig,;.-on-average-LOO
stable and.,;,,-AERM where:

6elrm(Tn) = 36C0ns(m1/4) + 7_73;1 )
(7)
€stable(M) = Becons((m — 1)1/4) + )

5 Comparison with Prior Work

5.1 Theorem 4.1 and Corollary 4.2

The consistency implication in Theorem 4.1 (specifically,
that all-LOO stability of an AERM implies consistency) was
established by Mukherjest al[7, Theorem 3.15].

As for the generalization guarantee, Rakhdinal [8]
prove that for ERM, average-LOO stability is equivalent
to generalization. For more general learning rules, [2] at-
tempted to show that all-i-LOO stability implies generaliz
tion. However, Mukherjeet al [7] (in remark 3, pg. 173)
provide a simple counterexample and note that the proof o
[2] is wrong, and in fact all-i-LOO stability alone is not
enough to ensure generalization. To correct this, Mukher-
jeeet al[7] introduced an additional condition, referred to as
Eloa. stability, which together with all-i-LOO stability en-

f

importantly, provide a converse to AERM consistency rather
than just generalization. This distinction between consis
tency and generalization is important, as there are Singti
with consistent but not stable AERM’s (Example 7.6), or
even universally consistent learning rules which are ret st
ble, generalizing nor AERM’s (Example 7.7).

Another converse result that does not use uniform con-
vergence arguments, but is specific only to thelizable
binary learning setting was given by Kutin and Niyogi [5].
They show that in this setting, for any distributi@n all-i-
LOO stability of the ERM undeD is necessary for ERM
consistency undeP. This is a much stronger form of con-
verse as it applies to any specific distribution separately,
rather then requiring universal consistency. However, not
only is it specific to supervised learning, but further regsi
the distribution be realizable (i.e. zero error is achiégpb
As we show in Example 7.6, a distribution-specific converse
is not possible in the general setting.

All the papers cited above focus on symmetric learning
rules where all-i-LOO stability is equivalent to LOO stabil
ity. We prefer not to limit our attention to symmetric rules,
and instead use LOO stability.

6 Detailed Results and Proofs

We first establish that for AERMs, on-average-LOO stabil-

sures generalization. For AERMs, they use arguments spe-ty and generalization are equivalent, and that for ERMs the

cific to supervised learning, arguing that universal consis
tency implies uniform convergence, and establish general-
ization only via this route. And so, Mukherje¢al obtain a
version of Corollary 4.2 that is specific to supervised learn
ing.

In summary, comparing Theorem 4.1 to previous work,

equivalence extends also to LOO stability. This extends the
work of Rakhlinet al [8] from ERMs to AERMSs, and with
somewhat better rate conversions.

6.1 Equivalence of Stability and Generalization

our results extend the generalization guarantee also tolt Will be convenient to work with a weaker version of gen-

AERMs in the general learning setting.

Rakhlinet al [8] also show that the replacement (rather
then deletion) version stability implies generalizationdiny
rule (even non-AERM), and hence consistency for AERMs.

Recall that the deletion and replacement version are not

equivalent. We are not aware of strong converses for the
replacement variant.

5.2 Converse Results

Mukherjeeet al[7] argue that all-i-LOO stability of the ERM
(in fact, of any AERM) is also necessary for ERM univer-
sal consistency and thus learnability. However, their argu

eralization as an intermediate step: We say a Al®n-
average generalizesvith ratee,,. (m) under distributiorD
if for all m,

[Es~pm [F(A(S)) = Fs(A(9))]] < €oag(m).  (8)
It is straightforward to see that generalization implies on
average generalization with the same rate. We show that for
AERMSs, the converse is also true, and also that on-average
generalization is equivalent to on-average stabilityglalith-
ing the equivalence between generalization and on-average
stability (for AERMs).

ments are specific to supervised learning, and establish sta| eqyma 6.1 (For AERMs: on-average generalizations

bility only via uniform convergence ofs(h) to F(h), as
discussed in the introduction. As we now know, in the gen-
eral learning setting, ERM consistency is not equivalent to
this uniform convergence, and furthermore, there might be a
non-ERM universally consistent rule even though the ERM
is not universally consistent. Therefore, our results lagre

ply to the general learning setting and do not use uniform
convergence arguments.

For an ERM, Rakhlinet al [8] show that generaliza-
tion is equivalent to on-average-LOO stability, for any-dis
tribution and without resorting to uniform convergence ar-
guments. This provides a partial converse to Theorem 4.1.
However, our results extend to AERM's as well and more

on-average stability). Let A be AERM with ratesq,, (m)
underD. If A is on-average generalizing with ratg,, (m)
then it is on-average LOO stable with ratg,,(m — 1) +
2¢erm(m —1) + 2B/m. If A is on-average LOO stable with
rate esaple(m) then it is on-average generalizing with rate
estable(M + 1) + 2eqrm(m) + 2B/m.

Proof. For the ERMs of S and S\ we have
‘Fs\i(fls\i) — FS(BS)’ < 2B and so sincel is AERM:

E[|Fs(A(S) = Fyus(A(SY)|] < 2ecam(m—1)+ 2 (9)



generalization=- stability ~Applying (8) to.S\? and com-
bining with (9) we havdIE [F(A(S\i)) — FS(A(S))]] <
€oag(Mm — 1) + 2€erm(m — 1) + 2B/m, which does not ac-
tually depend on, hence:

€oag(Mm — 1) 4+ 2€erm(m — 1) + 2B/m
> |E[F(A(SV) - Fs(A(S))]| (10)
— [E: [E [F(A(SY)) - Fs(A(9))]]|

= |Esve. [Bi [£(A(SV),2)]] - Es [F(A(S), )]

= [E[E: [r(A(sV),2) - F(A(S),2)]]| (12)
which establishes on-average stability.
stabilty =  generalization Bounding (11) by
estable(m) and working back we get that (10)

is also bounded byestabl_e(m)- Combined with
9) we get [E[F(A(SV)) - Fsu(A(SY))]| <
Estable(M) + 2€0ag(m — 1) + 2B/m which establishes
on-average generalization. O

Lemma 6.2(AERM + on-average generalization= gen-
eralization). If A is an AERM with rat&,,.,(m) and on-
average generalizes with ratg.. (m) underD, thenA gen-

eralizes with rate g (m) + 2€crm(m) + 3—% underD.

Proof. Using respective optimalities dfs andh* we can
bound:

Fs(A(S)) — F(A(S9))
= F5(A(S)) — Fs(hs) + Fs(hg) — Fs(h*)
+ Fs(h*) — F(h*) + F(h*) — F(A(S))
< F5(A(S)) — Fs(hg) + Fs(h*) — F(h*) =Y (12)

Where the final equality defines a new random variable
By Lemma 6.3 and the AERM guarantee we h&\f¢y'|] <

€erm (M) + B/+/m). From Lemma 6.4 we can conclude that

E[[Fs(A(S)) - F(A(S)]]
< [E[Fs(A(S)) — F(A(9)]] + 2E[[Y]]

< €oag (M) + 2€erm(m) + 2—\/%. O

Utility Lemma 6.3. For i.id. X;, |X;| < Band X =
L3, X; we haveR [| X — E[X][] < B//m.

—_

Proof. E[|X — E[X][] < /Var[X] = /Var[Xj]/m <
B//m. O
<

Utility Lemma 6.4. Let X, Y be random variables s.fX
Y almost surely. TheRt [| X|] < |E[X]| + 2E[|Y]].

Proof. Denotea; = max(0,a) and observe thak < Y

implies X < Y, (this holds when both have the same sign,

and whenX < 0 <Y, whileY < 0 < X is not possible).
We therefor havéE [X ] < E[Y;] < EJ|Y|]. Also note
that| X| = 2X; — X. We can now calculateE [| X|] =
E[2X; - X] = 2E[X,] ~E[X] < 2E[[Y |+ [E[X]. O

For exact ERM, we get a stronger equivalence:

Lemma 6.5(ERM+on-average-LOO=-LOO stable). Ifan
exact ERMA is on-average-LOO stable with ratg i1 (m)
underD, then it is also LOO stable undé&? with the same
rate.

Proof. By optimality ofhg = A(S):

f(hs,z) = Fs(hg\:) — Fs(hs)
+ FS\i(]?lS) — FS\*L(]?].S\i,) >0. (13)

f(ﬁS\ia Z’L) -
Then using on-average-LOO stability:
1

= LS B [(fher,z) ~ flhs,2))] < cuielm) T

m

i=1

Lemma 6.5 can be extended also to AERMs with rate

o(L). However, for AERMs with a slower rate, or at least

with rateQ(\/iﬁ), Example 7.4 establishes that this stronger

converse is not possible.

We have novestablished the stability—generalization
parts of Theorems 4.1, 4.3 and 4.4in fact, even a slightly
stronger converse than in Theorems 4.3 and 4.4, as it does
not require universality).

6.2 A Sufficient Condition for Consistency

It is also fairly straightforward to see that generalizatio
(or even on-average generalization) of an AERM implies its
consistency:

Lemma 6.6 (AERM+generalization=-consistency). If A

is AERM with ratee.,., (m) and it on-average generalizes
with rate e,as(m) under D then it is consistent with rate
€oag (M) + €erm (M) UnderD.

Proof.

[F(A(S)) = F(b")] = E[F(A(S)) - Fs(h")]
=E[F(A(S)) = Fs(A(5))] + E[Fs(A(S5)) — Fs(h")]
<E[F(A(S)) - Fs(A(S))] + E | Fs(A(S)) - F(hs)
< €gen(m) + €erm(m) O

Combined with the results of Section 6.1, this completes
the proof of Theorem 4.1 and thestability —consistency
and generalization—consistency parts of Theorems 4.3
and 4.4

6.3 Converse Direction

Lemma 6.1 already provides a converse result, establishing
that stability is necessary for generalization. Howeveaqri

der to establish that stability is also necessary for usaler
consistency we must prove that universal consistency of an
AERM implies universal generalization. Note that consis-
tency under a specific distribution for an AERM daomsst
imply generalization nor stability (Example 7.6). We must
instead rely on universal consistency. The main tool we use
is the following lemma:



Lemma 6.7 (Main Converse Lemma). If a problem is
learnable, i.e. there exists a universally consistent rale
with ratee.ons(mm), then under any distribution,

E { Fs(hs) — F(h*) } < eemp(m)  where

2Bm’2

€emp (m) - 2€Cons(m/) + \/— +
for any sequencen’ is such thatm’ — oo and m’
o(v/m).
Proof. Let I = {I4,...,I, } be a random sample of’
indexes in the rangeé..m where each/; is independently
uniformly distributed, and is independent of. Let S’ =
{z1,},, i.e. a sample of size’ drawn from the uniform
distribution over samples ifi (with replacements). We first
bound the probability that has no repeated indexes (“dupli-
cates”):

2
m/

2 (i—1)
m 2m

Conditioned on not having duplicates Inthe sample5’ is
actually distributed according tB, i.e. can be viewed as
a sample from the original distribution. We therefor have by
universal consistency:

E[|F(A(S) = F(h*)| | no dup$ < econs(m’) (15
But viewed as a sample drawn from the uniform distribution
over instances it¥, we also have:

Eg HFS(A ) — Fs(ﬁS)H < €cons(m’)

Conditioned on having no duplicationsinS\ S’ (i.e. those
samples inS not chosen byl) is independent ofS’, and
IS\ S| =m —m/, and so by Lemma 6.3:
B
<

(8") — Fs\s/(A(S))]] < N

Finally, if there are no duplicates, then for any hypothesis
and in particular forA (S’) we have:
2Bm/

|Fs(A(S")) = Fs\s/(A(S))| < — (18)

Combining (15),(16),(17) and (18), accounting for a maxi-
mal discrepancy of3 when we do have duplicates, and as-
suming2 < m’ < m/2, we get the desired bound. O

Pr (I has duplicates< < (14)

(16)

Es [|F(A (17)

Lemma 6.8(learnable+AERM+consistents-generalizing).
If Lemma 6.7 holds with rate.,,(m), and A is an €eym-
AERM ande.,s-consistent undeD, then it is generalizing
underD with rate €emp (M) + €erm (M) + €cons(Mm).

Proof.

E[IFs(A(S)) — F(A(S))]| < E [|Fs(A(S)) - Fs(hs)|

}

O

+E(F(b) - F(A(S))]] +E [|Fs(hs) - F(h")

< €erm (m) ~+ €cons (m) + €emp (m)

Lemma 6.9(learnable+consistent+generalizing-AERM).
If Lemma 6.7 holds with ratécm,,(m), and A iS egons-
consistent andge,-generalizing unde, then it is AERM
underD with rate €epmp (M) + €gen (M) + €cons(M).

Proof.

E[|Fs(A($)) - Fs(hs)|| < EIFs(A(S)) - F(A(S))]
FE[|F(A(S)) — F(h*)[ + E HF (h*) — Fs(hs ‘

S Egen( ) + Econs( ) + 6emp(Tn) D
Lemma 6.8 establishes that universal consistency of an
AERM implies universal generalization, and trasmpletes
the proof of Theorems 4.3 and 4.4Lemma 6.%stablishes
Theorem 4.5 To get the rates in 4, we use’ = m'/* in
Lemma 6.7.
Lemmas 6.6, 6.8 and 6.9 together establish an interesting
relationship:

Corollary 6.10. For a (universally) learnable problem, for
any distributionD and learning ruleA, any two of the fol-
lowing imply the third :

e A is an AERM undeD.

e A is consistent undep.

e A generalizes undep.

Note, however, that any one property by itself is possible,
even universally:
- The ERM in Example 7.2 is neither consistent nor general-

In the supervised learning setting, Lemma 6.7 is just an izing, despite the problem being learnable.
immediate consequence of learnability being equivalent to - Example 7.7 demonstrates a universally consistent legrni
consistency and generalization of the ERM. However, the rule which is neither generalizing nor an AERM.
Lemma applies also in the General Setting, where univer- - A rule returning a fixed hypothesis always generalizes, but
sal consistency might be achieved only by a non-ERM. The of course need not be consistent nor an AERM.

Lemma states that if a problem is learnable, even though the

In contrast, for learnable supervised classification and re

ERM might not be consistent (as in, e.g. Example 7.2), the gression problems, it is not possible for a learning rule to
empirical error achieved by the ERM is in fact an asymptot- be just universally consistent, without being an AERM and

ically unbiased estimator df (h*).

without generalization. Nor is it possible for a learnindggeru

Equipped with Lemma 6.7, we are now ready to show to be a universal AERM for a learnable problem, without
that universal consistency of an AERM implies generaliza- being generalizing and consistent.

tion and that any universally consistent and generalizihg r

must be an AERM. What we show is actually a bit stronger:

Corollary 6.10 can also provide a certificate of non-
learnability. E.g. for the problem in Example 7.6 we show

that if a problem is learnable, and so Lemma 6.7 holds, thena specific distribution for which there is a consistent AERM

for any distributionD separately, consistency of an AERM
underD implies generalization undé? and also any consis-
tent and generalizing rule undBrmust be an AERM.

that does not generalize. We can conclude that thene is
universally consistent learning rule for the problem, othe
wise the corollary is violated.



6.4 Existence of a Stable Rule

Theorems 4.5 and 4.4, which we just completed proving,
already establish that for AERMs, universal consistency is
equivalent to universal on-average-LOO stability. Existe
of a universally on-average-LOO stable AERM is thus suffi-
cient for learnability. In order to prove that it is also nece
sary, it is enough to show that existence of a universally con
sistent learning rule implies existence of a universallg-co
sistent AERM. This AERM must then be on-average-LOO
stable by Theorem 4.4.

We actually show how to transform a consistent rule to
a consistent and generalizing rule. If this rule is univilysa

7 Examples

Our first example (taken from [9]) shows that uniform con-
vergence is1ot necessary for ERM consistency. l.e. univer-
sal ERM consistency holds without uniform convergence. Of
course, this can also happen in “trivial” settings wheredhe
is one hypothesit, which dominates all other hypothesis
(i.e. f(ho,2) < f(h,2) for all z and allh # hy) [10].
However, the example below demonstrates a non-trivial sit-
uation with ERM universal consistency but no uniform con-
vergence: there is no dominating hypothesis, and finding the
optimal hypothesis does require learning. In particular, u
like “trivial” problems with a dominating hypothesis, ineh

consistent, then by Lemma 6.9 we can then conclude it musteyample below there is not even local uniform convergence.

an AERM, and by 6.1 that it must be on-average-LOO stable.

Lemma 6.11. For any rule A there exists a ruleA’, such
that:
e A’ universally generalizes with raté\/%.

e For anyD, if A is e.ons-coOnsistent undeb thenA’ is
€cons(|v/m]) consistent undeb.

Proof. For a sampleS of sizem, let S’ be a sub-sample con-
sisting of the first ,/m| observation inS. DefineA’(S)
A(S’). Thatis,A’ appliesA to only | /m | of the observa-
tionin S.

A’ generalizes: We can decompose:

Fs(A(S')~F(A(S") = = (Fs (A(S)) ~ F(A(S)))

(1 - ) (Fiysr (A(S)) — F(A(S)

The first term can be bounded B&B/|\/m]. As for the
second term$' \ S’ is statistically independent & and so

I.e. there is no uniform convergence even among hypotheses
that are close to being population optimal.

Example 7.1. There exists a learning problem for which any
ERM is universally consistent, but the empirical risks db no
converge uniformly to their expectations.

Proof. Consider a convex stochastic optimization problem
given by:

2
= [lecs (W =x)[| + [ w]]

f(w; (x,a))
— \/Z o2[i)(wli] — x[i])2 + [|w]®,

wherew is the hypothesisw, x are elements in a unit ball
around the origin of a Hilbert space with a countably infi-
nite orthonormal basis,, e», . . ., anda is an infinite binary
sequenceqli] is the i-th coordinate ofy, w[i] := (w,e;),
andx[i] is defined similarly. In our other submission [9],

we can use Lemma 6.3 to bound its expected magnitude towe show that the ERM is stable, hence consistent. How-

obtain:
E[|Fs(A(S") — F(A(S)]]

2B 1 B 3B
vt S e 19
A’ is consistent: If A is consistent, then:
E|F(A’ — inf F(h)| <
Fa(s) - jnf F(w)| <
E [F(A(S’)) —}}n%F(h)] < €cons([vVm]) O
S

Proof of Converse in Theorem 4.6 If there exists a uni-
versally consistent rule with rate,,s(m), by Lemma 6.11
there existsA’ which is universally consistent and general-
izing. Choosingn’ = m!/* in Lemma 6.7 and applying
Lemmas 6.9 and 6.1 we get the rates specified in (7).00

Remark We can strengthen the above theorem to show
existence of an on-average-LOO stable, always AERM (ie.
a rule which for every sample approximately minimizes

Fs(h)). The new learning rule for this purpose chooses the
hypothesis returned by the original rule whenever emgirica
risk is small and chooses an ERM otherwise. The proof is
completed via Markov inequality to bound the probability

ever, whernz = 0 a.s. andua is i.i.d. uniform, there is no
uniform convergence, not even locally. To see why, note
that for a random sampl§ of any finite size, with prob-
ability one there exists an “excluded” basis veatgrsuch
thate;[j] = 0 for all (x;,a;) € S. For anyt > 0, we have
F(te;) — Fs(te;) > 2, regardless of the sample size. Set-
ting ¢t = 1 establishesup,, |F(w) — Fs(w)| > 1 even as

m — oo, and so there is no uniform convergence. Choos-
ing ¢ arbitrarily small, we see that even whéifte;) is close

to optimal, the deviationg'(w) — Fs(w)| still do not con-
verge to zero asr — oo. O

Perhaps more surprisingly, the next example (also taken
from [9]) shows that in the general setting, learnabilitghti
require using a non-ERM.

Example 7.2. There exists a learning problem with a uni-
versally consistent learning rule, but for which no ERM is
universally consistent.

Proof. Consider the same hypothesis space and sample
space as before, with:

fw,2) = ”C“LQ_X)” 5> 2w - 1),
i=1

that we don’t choose the hypothesis returned by the original wheree = 0.01. Whenx = 0 a.s. andx is i.i.d. uniform,

learning rule.

then the ERM must havgw|| = 1. To see why, note that



for an excludedk; (which exists a.s.) increasing/[j] to-
wards one decreases the objective. But sipgd = 1, we
haveF(w) > 1/2, while infy, F(w) < F(0) = ¢, and so
F(w) 4 infy F(w).

On the other handA.(S) = argmin Fis(w) + 2—\/% [|wl?
is a uniformly-LOO stable AERM and hence by Theorem
4.1 universally consistent. O

In the next three examples, we show that in a certain

sense, Theorem 4.3 and Theorem 4.4 cannot be improved

with stronger stability notions. Viewed differently, thajso
constitute separation results between our various stabor
tions, and show which are strictly stronger than the other.

1(1
Example 7.4 also demonstrates the gap between supervised > 5 <§

learning and a general learning setting, by presentingalea
ing problem and an AERM that is universally consistent, but
not LOO stable.

Example 7.3. There exists a learning problem with a uni-
versally consistent and all-i-LOO stable learning rule,tbu
there is no universally consistent and uniform LOO stable
learning rule.

Proof. This example is taken from [5]. Consider the hypoth-
esis spac€0, 1}, the instance spad@, 1}, and the objective
function f(h,z) = |h — z|.

It is straightforward to verify that an ERM is a univer-
sally consistent learning rule. It is also universallyidl©O

m > 3). When this happens, it is not hard to see that for
anyi,

FIA(S), 2) — FIA(SN), 25) = Tps,_yy (—1)P2S)
This implies that

E (20)

. i |(FA(SY):20) - F(A(S):2)) ”

11 & [log(4) CAN PO 1‘
>_E|— _ > i it S
- QE m ; L=y 2m ‘ ; m 2

[log(4) 1
_ _, =
2m 4"’
which does not converge to zero with the sample size
Therefore, the learning rule is not LOO stable. O

Note that the proof implies that average-LOO stability
cannot be replaced even by weaker stability notions than
LOO stability. For instance, a natural stability notioneirt
mediate between average-LOO stability and LOO stability
is

1

=3 (PGS 2) - F(AS):20)) || @D
where the absolute value is now over the entire sum, but in-

i=1

stable, because removing an instance can change the hypothsjge the expectation. In the example used in the proof, (21)

esis only if the original sample had an equal numbeb’sf
and1’s (plus or minus one), which happens with probability
at mostO(1/+/m) wherem is the sample size. However, it
is not hard to see that the only uniform LOO stable learning
rule, at least for large enough sample sizes, is a constint ru
which always returns the same hypothéesisegardless of
the sample. Such a learning rule is obviously not univeysall
consistent. O

Example 7.4. There exists a learning problem with a uni-
versally consistent (and average-LOO stable) AERM, which
is not LOO stable.

is still lower bounded by (20), which does not converge to
zero with the sample size.

Example 7.5. There exists a learning problem with a univer-
sally consistent and LOO-stable AERM, which is not sym-
metric and is not all-i-LOO stable.

Proof. Let the instance space I 1], the hypothesis space
[0, 1]U2, and the objective functiofi(h, z) = 1j;—.;. Con-
sider the following learning rulé\: given a sampl}e, check
if the valuez; appears more than once in the sample. If no,
returnz;, otherwise return2.

SinceFs(2) = 0, andz; returns only if this value con-

Proof. Let the instance space, hypothesis space and Objecstitutesl/m of the sample, the rule above is an AERM

tive function be as in Example 7.3. Consider the follow-
ing learning rule, based on a sam@le= (z1,...,2m):

if > L,—13/m > 1/2 + /log(4)/2m, return1. If
> L, —1y/m < 1/2 — /log(4) /2m, return0. Otherwise,
return ParityS) = (21 + ... z,») Mod2.

This learning rule is an AERM, witheq,m(m)
v/2log(4)/m. Since we have only two hypotheses, we have
uniform convergence ofs(-) to F'(-) for any hypothesis.
Therefore, our learning rule universally generalizes twit
rateegen(m) = /log(4/6)/2m), and by Theorem 4.4, this
implies that the learning rule is also universally consiste
and average-LOO stable.

However, the learning rule is not LOO stable. Consider
the uniform distribution on the instance space. By Hoeffd-
ing’s inequality, | Y, I.,—1y/m — 1/2] < y/log(4)/2m
with probability at least /2 for any sample sizen. In that

with rate eqrm(m) 1/m. To see universal consis-
tency, letPr(z;) = p. With probability (1 — p)™~2,

z1 ¢ {z2,...,2m}, and the returned hypothesiszs, with
F(z1) = p. Otherwise, the returned hypothesiiswith
F(2) = 0. HenceEgs [F(A(S))] < p(1 — p)™~2, which
can be easily verified to be at mdst(m — 1), so the learn-
ing rule is consistent with rate.,,s(m) < 1/(m — 1). To
see LOO-stability, notice that our learning hypothesis can
change by deleting;, 7 > 1, only if z; is the only instance in
29, ..., Zm €qual t0z1. SO€gapie(m) < 2/m (in fact, LOO-
stability holds even without the expectation). Howeveis th
learning rule is not all-i-LOO-stable. For instance, foyan
continuous distribution,f (A(S\'), z1) — f(A(S), z1)| = 1
with probability1, so it obviously cannot be all-i-LOO-stable
with respectta = 1. O

Next we show that fospecificdistributions, even ERM

case, the returned hypothesis is the parity function (evenconsistency does not imply even our weakest notion of sta-
when we remove an instance from the sample, assumingpbility.
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Figure 1: Implications of various properties of learninglglems.
to univeral on-average-LOO stability.

Example 7.6. There exists a learning problem and a dis-
tribution on the instance space, such that the ERM (or any
AERM) is consistent but is not average-LOO stable.

Proof. Let the instance space & 1], the hypothesis space
consist of all finite subsets df), 1], and define the objec-
tive function asf(h,z) = I.¢py). Consider any contin-

Consistency refers to univeral consistency atisyaefers

uniformly for any discrete distribution. If this event ocsu

then eitherM; < 1, or My > 1 — O(log(m/d)//m). But

in the first event, we get duplicate instances in the sample,
so the returned hypothesis is the optirfialnd in the sec-
ond case, the returned hypothesis is the sample, which has
a total probability mass of at least— O(log(m/d)/v/m),

and thereford’(A(S)) < O(log(m/d)/+/m). As a result,

uous distribution on the instance space. Since the under-regardless of the underlying distribution, with probaitif

lying distributionD is continuous, we havé'(h) = 1 for
any hypothesis.. Therefore, any learning rule (including
any AERM) will be consistent witF'(A(S)) = 1. On the

other hand, the ERM here always achie@ﬁs) =0, so

any AERM cannot generalize, or even on-average-generalize>NCc€ the r.h.s. convergesavith m for anyJ, itis easy to
(by Lemma 6.2), hence cannot be average-LOO stable (byS€€ that the learning rule is universally consistent.

Lemma6.1).

Finally, the following example shows that while learn-
ability is equivalent to the existence of stable and coanist
AERM’s (Theorem 4.4 and Theorem 4.6), there might still
exist other learning rules, which are neither of the above.

Example 7.7. There exists a learning problem with a uni-
versally consistent learning rule, which is not average@ O
stable, generalizing nor an AERM.

Proof. Let the instance space B@ 1]. Let the hypothesis
space consist of all finite subsets[6f1], and the objective
function be the indicator functiofi(h, z) = 1.cpy. Con-
sider the following learning rule: given a samgleC [0, 1],

the learning rule checks if there are any two identical in-

stances in the sample. If so, the learning rule returns the

empty set). Otherwise, it returns the sample.

This learning rule is not an AERM, nor does it neces-
sarily generalize or is average-LOO stable. Consider any
continuous distribution off0, 1]. The learning rule always
returns a countable seX(S), with Fs(A(S)) = 1, while
Fs(®) = 0 (so it is not an AERM) andF'(A(S)) = 0
(so it does not generalize). Alsg(A(S),z;) = 0 while
F(A(SV0,z;) = 1 with probability 1, so it is not average-
LOO stable either.

However, the learning rule is universally consistent. If
the underlying distribution is continuous di 1], then the
returned hypothesis i, which is countable hence;(S) =
0 = infy, F'(h). For discrete distributions, Iét/; denote the
proportion of instances in the sample which appear exactly
once, and lef\fy be the probability mass of instances which
did not appear in the sample. Using [6, Theorem 3], we have
that for anyy, it holds with probability at least — § over a
sample of sizen that

log(m/9)
Jm

|M0—M1|§O(

at leastl — § over the sample,

F(A(S)) <O (%)

O

8 Discussion

In the familiar setting of supervised classification or esgr
sion, the question of learnability is reduced to that of uni-
form convergence of empirical risks to their expectatiord a
in turn to finiteness of the fat-shattering dimension [1]r-Fu
thermore, due to the equivalence of learnability and unifor
convergence, there is no need to look beyond the ERM.

We recently showed [9] that the situation in the Gen-
eral Learning Setting is substantially more complex. Uni-
versal ERM consistency migiot be equivalent to uniform
convergence, and furthermore, learnability might be fidesi
only with a non-ERM. We are therefore in need of a new un-
derstanding of the question of learnability that applieseno
broadly then just to supervised classification and regoassi

In studying learnability in the General Setting, Vapnik
[10] focuses solely on empirical risk minimization, which
we now know is not sufficient for understanding learnability
(e.g. Example 7.2). Furthermore, for empirical risk mini-
mization, Vapnik establishes uniform convergence as a nec-
essary and sufficient condition not for ERM consistency, but
rather forstrict consistency of the ERM. We now know that
even in rather non-trivial problems (e.g. Example 7.1 taken
from [9]), where the ERM is consistent and generalizes,
strict consistency does not hold. Furthermore, Example 7.1
also demonstrates that ERM stability guarantees ERM con-
sistency, butot strict consistency, perhaps giving another
indication that strict consistency might be too strictgtAnd
other relationships are depicted in Figure 1).

In Examples 7.1 and 7.2 we see that stability is a strictly
more general sufficient condition for learnability. This
makes stability an appealing candidate for understanding
learnability in the more general setting.

Indeed, we show that stability is not only sufficient, but
is also necessary for learning, even in the General Learning
Setting. A previous such characterization was based on uni-
form convergence and thus applied only to supervised clas-



sification and regression [7]. Extending the charactaomat
beyond these settings is particularly interesting, siocs-
pervised classification and regression the question ofi{ear
ability is already essentially solved. Extending the chara
terization, without relying on uniform convergence, al$o a
lows us to frame stability as the core condition guarantgein
learnability, with uniform convergence only a sufficientitb
not necessary, condition for stability (see Figure 1).

In studying the question of learnability and its relation to
stability, we encounter several differences between tloiem
general setting, and settings such as supervised classifica
and regression where learnability is equivalent to uniform
convergence. We summarize some of these distinctions:

e Perhaps the most important distinction is that in the
General Setting learnability might be possible only with
a non-ERM. In this paper we establish that if a problem
is learnable, although it might not be learnable with an
ERM, it must be learnable with some AERM. And so,
in the General Setting we must look beyond empirical
risk minimization, but not beyond asymptotic empirical
risk minimization.

In supervised classification and regression, if one
AERM is universally consistent then all AERMs are
universally consistent. In the General Setting we must
choose the AERM carefully.

In supervised classification and regression, a uni-
versally consistent rule must also generalize and be
AERM. In the General Setting, a universally consistent
rule need not generalize nor be an AERM, as example

Throughout the paper we ignored the issue of getting
high-confidence concentration guarantees. We choose to use
convergence in expectation, and defined the rates as rates on
the expectation. Since the objectiyds bounded, conver-
gence in expectation is equivalent to convergence in prob-
ability and using Markov’s inequality we can translate a
rate of the formE|[|---]] < e(m) to a “low confidence”
guaranteePr(|---| > ¢(m)/d) < 4. Can we also obtain
exponential concentration results of the foirn(|---| >
e(m)polylog(1/5)) < § ? It is possible to construct exam-
ples in the General Setting in which convergence in expecta-
tion of the stability doegsotimply exponential concentration
of consistency and generalization. Is it possible to shat th
exponential concentration of stability is equivalent tpex
nential concentration of consistency and generalization?

We showed that existence of an average-LOO stable
AERM is necessary and sufficient for learnability (Theo-
rem 4.6). Although specific AERMs might be universally
consistent and generalizing without being LOO stable (Ex-
ample 7.4), it might still be possible to show that for a learn
able problem, there always exists some LOO stable AERM.
This would tighten our converse result and establish exis-
tence of a LOO stable AERM as equivalent to learnability.

Even existence of a LOO stable AERM is not as elegant
and simple as having finite VC dimension, or fat-shattering
dimension. It would be very interesting to derive equivalen
but more 'combinatorial’ conditions for learnability.
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A Replacement Stability

We used the Leave-One-Out version of stabilities throughou
the paper, however many of the results hold when we use
the replacement versions instead. Here we briefly survey the
differences in the main results as they apply to replacement
based stabilities.

Let S denote the samplé with z; replaced by some
otherz, drawn from the same unknown distributién

Definition 5. A rule A is uniform-RO stable with
rate esaple(m) if for all samples S of m points and
V2! 2 2, €L

=3[ HAO)) - FAS) )] < el
i=1

Definition 6. A rule A is on-average-RO stablewith rate
estable(m) under distributionsD if

S B mn [FAGSD): 1) — FA(S);20)] ‘
i=1

S Establc("n)-

With the above definitions replacing uniform-LOO sta-
bility and on-average-LOO stability respectively, all the
rems in Section 4 other than Theorem 4.3 hold (i.e. Theorem
4.1, Corollary 4.2, Theorem 4.4 and Theorem 4.6).

We do not know how to obtain a replacement-variant of
Theorem 4.3—even for a consistent ERM, we can only guar-
antee on-average-RO stability (as in Theorem 4.4), but we do
not know if this is enough to ensure RO stability.

However, although for ERMs we can only obtain a
weaker converse, we can guarantee the existence of an
AERM that is not only on-average-RO stable but actually
uniform-RO stable. That is, we get a much stronger variant
of Theorem 4.6:

Theorem A.1. A learning problem is learnable if and only
if there exists an uniform-RO stable AERM.

Proof. Clearly if there exists any ruld that is uniform-RO
stable and AERM then the problem is learnable, since the
learning ruleA is in fact universally consistent by theorem
4.1. On the other hand if there exists a rdlethat is uni-
versally consistent, then consider the rdléas in the con-
struction of Lemma 6.11. As shown in the lemma this rule is
consistent. Now note th&’ only uses the firs{/m samples
of S. Hence fori > \/m we haveA’(S(*)) = A’(S) and so:

=5 |FA D)) - F(A(S):2)
i=1

2B
— A (’L) . _ A / < ~
> (A ) ~ F(AWS) )] < T
We thus showed that this rule is consistent, generalizes, an
is 2E _uniformly RO stable. O
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