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Abstract. We study the rank, trace-norm and max-norm as complexity
measures of matrices, focusing on the problem of fitting a matrix with
matrices having low complexity. We present generalization error bounds
for predicting unobserved entries that are based on these measures. We
also consider the possible relations between these measures. We show
gaps between them, and bounds on the extent of such gaps.

1 Introduction

Consider the problem of approximating a noisy (or partially observed) target
matrix Y with another matrix X. This problem arises often in practice, e.g.
when analyzing tabulated data such as gene expressions, word counts in a corpus
of documents, collections of images, or user preferences on a collection of items.

A common general scheme for solving such problems is to select a matrix X
that minimizes some combination of the complexity of X and the discrepancy
between X and Y . The heart of the matter is the choice of the measure of
complexity for X and the measure of discrepancy between X and Y .

The most common notion of complexity of a matrix in such tasks is its rank
(as in PCA, Latent Semantic Analysis, the Aspect Model and a variety of other
factor models and generalizations of these approaches). Recently, the trace-norm
and max-norm were suggested as alternative measures of complexity with strong
connections to maximum-margin linear classification [1]. Whereas bounding the
rank corresponds to constraining the dimensionality of each row of U and V in
a factorization X = UV ′, bounding the trace-norm and max-norm corresponds
to constraining the norms of rows of U and V (average row-norm for the trace-
norm, and maximal row-norm for the max-norm). Unlike low-rank factorizations,
such constraints lead to convex optimization problems.

In this paper we study the rank, trace-norm and max-norm as measures of
matrix complexity, concentrating on the implications to the problem mentioned
above.

We begin by considering the problem of predicting unknown entries in a
partially observed matrix Y (as in collaborative prediction). We assume the
prediction is made by choosing a matrix X for which some combination of the
discrepancy between X and Y on the one hand, and the complexity of X on the
other hand, is minimized. We present generalization error bounds for general
measures of discrepancy and for the cases where the complexity measure for



X is either rank (Section 3.1, repeating a previous analysis [2]), trace-norm or
max-norm (Sections 3.2 and 3.3, elaborating on and proving previously quoted
bounds [1]). We make no assumptions about the matrix Y , other than that
the observed entries are chosen at random. The bounds, and the complexity
measures used to obtain them (cardinality, pseudodimension and Rademacher
complexity), are insightful in comparing the three measures of matrix complexity
we are considering.

In addition to results about generic measures of discrepancy, we also specif-
ically consider binary target matrices: For Y ∈ ±1n×m, we study the mini-
mum rank, max-norm and (normalized) trace-norm of a matrix X such that
XijYij ≥ 1 for all i, j. We refer to these as the dimensional-complexity dc(Y ),
max-complexity mc(Y ) and trace-complexity tc(Y ) of a binary matrix Y .

We study relations between the three matrix complexity measures. Matri-
ces that can be approximated by a matrix of low max-norm can also be ap-
proximated by a matrix with low rank. In Section 4 we show this for general
measures of discrepancy, generalizing previous results [3, 4] for binary target
matrices. But this relationship is not reversible: We give examples of explicit bi-
nary matrices with low dimensional-complexity that have high max-complexity.
Previously, examples in which the max-complexity is a polynomial function of
the dimensional-complexity [5], or where the dimensional-complexity is constant
but the max-complexity is logarithmic in the matrix size [4] have been shown.
We present an explicit construction establishing that the max-complexity is not
bounded by any polynomial of the dimensional-complexity and the logarithm of
the matrix size.

Similarly we give examples of matrices with low trace-complexity but high
dimensional-complexity and max-complexity. This gap is related to a require-
ment for uniform sampling of observed entries, which we show to be necessary
for generalization error bounds based on the trace-norm but not on the max-
norm or rank. We also show that the gap we obtain is the largest possible gap,
establishing a first lower bound on the trace-complexity in terms of the max-
complexity or dimensional-complexity (Section 5).

Embedding Classifiers as Linear Separators The dimensional-complexity
and max-complexity have been studied in the context of embedding concept
classes as low-dimensional, or large-margin, linear separators. A concept class
H = {h : Φ → ±1} of binary valued functions can be represented as a |Φ| × |H|
matrix Y , with Yφ,h = h(φ). The dimensional-complexity of Y is the minimum
d such that each φ ∈ Φ can be embedded as a point uφ ∈ Rd and each classifier
h ∈ H can be embedded as a separating homogeneous hyperplane determined
by its normal vh ∈ Rd, such that h(φ) = sign v′huφ. The max-complexity is the
smallest M such that Φ can be embedded as points and H as linear separators in
an infinite dimensional unit ball, where all separators separate with a margin of
at least 1/M , i.e. |v

′
huφ|
|vh| ≥ 1/M . Studying linear separators (in particular using

kernel methods) as a generic approach to classification leads one to ask what
concept classes can or cannot be embedded as low-dimensional or large-margin



linear separators; that is, what matrices have high dimensional-complexity and
max-complexity [4, 6].

These questions are existential questions, aimed at understanding the limits
of kernel-based methods. Here, the concept class of interest is the class of matri-
ces themselves, and we apply much of the same techniques and results in order
to understand the performance of a concrete learning problem.

2 Preliminaries

Notation For vectors, |v|p is the lp norm and |v| = |v|2. For matrices, ‖X‖Fro =√∑
ij X2

ij is the Frobenius norm; ‖X‖2 = max|u|=|v|=1 u′Xv is the spectral norm

and is equal to the maximum singular value of X; ‖X‖2→∞ = max|u|2=1 |Xu|∞ =
maxi |Xi·| is the maximum row norm of X; |X|∞ = maxij |Xij |.

Discrepancy We focus on element-wise notions of discrepancy between two
n×m matrices Y and X: D(X;Y ) = 1

nm

∑
ij g(Xij ;Yij), where g(x; y) is some

loss function. The empirical discrepancy for a subset S ⊂ [n]×[m] of the observed
entries of Y is DS(X;Y ) = 1

|S|
∑

ij∈S g(Xij ;Yij). The discrepancy relative to a
distribution P over entries in the matrix (i.e. over [n] × [m]) is DP(X;Y ) =
Eij∼P [g(Xij ;Yij)].

Since the norms are scale-sensitive measures of complexity, the scale in which
the loss function changes is important. This is captured by Lipschitz continuity:
A loss function g : R × Y → R is L-Lipschitz if for every y, x1, x2, |g(x1; y) −
g(x2; y)| ≤ L|x1 − x2|.

For the special case of binary target matrices Y ∈ {±1}n×m, the discrepancy
with respect to the sign-agreement zero-one error is the (normalized) Hamming
distance between signX and signY . It will be useful to consider the set of ma-
trices whose sign patterns agree with the target matrix: SP(Y ) = {X| signX =
signY }. For scale-dependent (e.g. norm-based) complexity measures of X, con-
sidering the signs of entries in X is no longer enough, and their magnitudes must
also be bounded. We consider SP1(Y ) = {X|∀ijXijYij ≥ 1}, corresponding to a
margin sign-agreement error.

Complexity The rank of a matrix X is the minimum k such that X = UV ′,
U ∈ Rn×k, V ∈ Rm×k. The dimensional-complexity of a sign matrix is:

dc(Y ) .= min{rank X|X ∈ SP(Y )} = min{rank X|X ∈ SP1(Y )} (1)

The max-norm (also known as the γ2-norm [7]) of a matrix X is given by:

‖X‖max
.= min

X=UV ′
‖U‖2→∞ ‖V ‖2→∞ (2)

While the rank constrains the dimensionality of rows in U and V , the max-norm
constrains the norms of all rows in U and V . The max-complexity for a sign
matrix Y is mc(Y ) .= min{‖X‖max |X ∈ SP1(Y )}



The trace-norm3 ‖X‖Σ is the sum of the singular values of X (i.e. the roots
of the eigenvalues of XXt).

Lemma 1. ‖X‖Σ = minX=UV ′ ‖U‖Fro ‖V ‖Fro = minX=UV ′
1
2 (‖U‖2Fro+‖V ‖

2
Fro)

While the max-norm constrains the maximal norm of the rows in U and V ,
the trace-norm constrains the sum of the norms of the rows in U and V . That
is, the max-norm constrains the norms uniformly, while the trace-norm con-
strains them on average. The trace-complexity of a sign matrix Y is tc(Y ) .=
min{‖X‖Σ/

√
nm|X ∈ SP1(Y )}.

Since the maximum is greater than the average, the trace-norm is bounded
by the max-norm: ‖X‖Σ /

√
nm ≤ ‖X‖max and tc(Y ) ≤ mc(Y ). In Section 5 we

see that there can be a large gap between ‖X‖Σ /
√

nm and ‖X‖max.

Extreme Values For any sign matrix Y , 1 ≤ tc(Y ) ≤ mc(Y ) ≤ ‖Y ‖max ≤
√

n.
Rank-one sign matrices Y have dc(Y ) = mc(Y ) = tc(Y ) = 1 and are the only
sign matrices for which any of the three quantities is equal to one. To obtain
examples of matrices with high trace-complexity, note that:

Lemma 2. For any Y ∈ {±1}n×m, tc(Y ) ≥
√

nm/ ‖Y ‖2.
Proof. Let X ∈ SP(Y ) s.t. ‖X‖Σ =

√
nmtc(Y ), then by the duality of the

spectral norm and the trace-norm, ‖X‖Σ ‖Y ‖2 ≥
∑

ij XijYij ≥ nm. ut

An example of a sign matrix with low spectral norm is the Hadamard matrix
Hp ∈ {±1}2p×2p

, where Hij is the inner product of i and j as elements in
GF (2p). Using ‖Hp‖2 = 2p/2 we get mc(Hlog n) = tc(Hlog n) =

√
n [5]. Although

counting arguments prove that for any n, there exist n×n sign matrices for which
dc(Y ) > n/11 (Lemma 3 below, following Alon et al [8] who give a slightly weaker
bound), the Hadamard matrix, for which it is known that

√
n ≤ dc(Hlog n) ≤ n0.8

[6], is the most extreme known concrete example.

3 Generalization Error Bounds

Consider a setting in which a random subset S of the entries of Y is observed.
Based on the observed entries YS we would like to predict unobserved entries in
Y . This can be done by fitting a low-complexity matrix X to YS and using X to
predict unobserved entries. We present generalization error bounds on the overall
discrepancy in terms of the observed discrepancy. The bounds do not assume any
structure or probabilistic assumption on Y , and hold for any (adversarial) target
matrix Y . What is assumed is that the sample S is chosen at random.

We are interested in predicting unobserved entries not only as an application
of matrix learning (e.g. when predicting a user’s preferences based on preferences
of the user and other users, or completing missing experimental data), but also
as a conceptual learning task where the different measures of complexity can
be compared and related. Even when learning is done for some other purpose
3 Also known as the nuclear norm and the Ky-Fan n-norm.



arbitrary source distribution ⇔ target matrix Y
random training set ⇔ random set S of observed entries

hypothesis ⇔ concept matrix X
training error ⇔ observed discrepancy DS(X; Y )

generalization error ⇔ true discrepancy D(X; Y )

Fig. 1. Correspondence with post-hoc bounds on the generalization error for standard
feature-based prediction tasks

(e.g. understanding structure or reconstructing a latent signal), the ability of
the model to predict held-out entries is frequently used as an ad-hoc indicator
of its fit to the true underlying structure. Bounds on the generalization ability
for unobserved entries can be used as a theoretical substitute to such measures
(with the usual caveats of using generalization error bounds).

The Pseudodimension and the Rademacher Complexity To obtain gen-
eralization error bounds, we consider matrices as functions from index pairs to
entry values, and calculate the pseudodimension of the class of low-rank ma-
trices and the Rademacher complexity of the classes of low max-norm and low
trace-norm matrices. Recall that:

Definition 1. A class F of real-valued functions pseudo-shatters the points
x1, . . . , xn with thresholds t1, . . . , tn if for every binary labeling of the points
(s1, . . . , sn) ∈ {+,−}n there exists f ∈ F s.t. f(xi) ≤ ti iff si = −. The pseu-
dodimension of a class F is the supremum over n for which there exist n points
and thresholds that can be shattered.

Definition 2. The empirical Rademacher complexity of a class F over a specific
sample S = (x1, x2, . . .) is given by: R̂S(F) = 2

|S|Eσ

[
supf∈F |

∑
i σif(xi)|

]
, where

the expectation is over the uniformly distributed random signs σi.
The Rademacher complexity with respect to a distribution D is the expecta-

tion, over a sample of |S| points drawn i.i.d. from D: RD
|S|(F) = E

S

[
R̂S(F)

]
.

It is well known how to obtain Generalization error bounds in terms of the
pseudodimension and Rademacher complexity. Our emphasis is on calculating
the pseudodimension and the Rademacher complexity. We do not present the
tightest possible bounds in terms of these measures.

3.1 Low-Rank Matrices

Generalization error bounds for prediction with low-rank matrices can be ob-
tained by considering the number of sign configurations of low-rank matrices [2]
(following techniques introduced in [8]):

Lemma 3 ([9]). |{Y ∈ {±1}n×m|dc(Y ) ≤ k}| ≤ (8em/k)k(n+m)



This bound is tight up to a multiplicative factor in the exponent: for m > k2,
|{Y ∈ {±1}n×m|dc(Y ) ≤ k}| ≥ m

1
2 (k−1)n.

Using the bound of Lemma 3, a union bound of Chernoff bounds yields a
generalization error bound for the zero-one sign agreement error (since only
signs of entries in X are relevant). Generalization error bounds for other loss
functions can be obtained by using a similar counting argument to bound the
pseudodimension of the class X k = {X| rank X ≤ k}. To do so, we need to bound
not only the number of sign configurations of such matrices, but the number of
sign configurations relative to any threshold matrix T :

Lemma 4 ([2]). ∀T∈Rn×m |{sign(X − T )| rank X ≤ k}| ≤
(

8em
k

)k(n+m)

Corollary 1. pseudodimension(X k) ≤ k(n + m) log 8em
k

Theorem 1 ([2]). For any monotone loss function bounded by M , any n ×m
matrix Y , any distribution P of index pairs (i, j), n, m > 2, δ > 0 and integer k,
with probability at least 1− δ over choosing a set S of |S| index pairs according
to P, for all matrices X with rank X ≤ k:

DP(X;Y ) < DS(X;Y ) + 6

√√√√k(n + m) log 8em
k log M |S|

k(n+m) − log δ

|S|

3.2 Low Trace-Norm Matrices

In order to calculate the Rademacher complexity of the class X [M ] = {X| ‖X‖Σ ≤
M}, we observe that this class is convex and that any unit-trace-norm matrix
is a convex combination of unit-norm rank-one matrices X =

∑
Daa(U·aV ′

·a),
where X = UDV ′ is the SVD and U·a, V·a are columns of U, V . Therefore,
X [1] = convX1[1], where X1[1] .= {uv′ | u ∈ Rn, v ∈ Rm, |u| = |v| = 1} is
the class of unit-norm rank-one matrices. We use the fact that the Rademacher
complexity does not change when taking convex combinations, and calculate the
Rademacher complexity of X1[1]. We first analyze the empirical Rademacher
complexity for any fixed sample S, possibly with repeating index pairs. We then
bound the average Rademacher complexity for a sample of |S| index pairs drawn
uniformly at random from [n]× [m] (with repetitions).

The Empirical Rademacher Complexity For an empirical sample S =
{(i1, j1), (i2, j2), . . .} of |S| index pairs, the empirical Rademacher complexity of
rank-one unit-norm matrices is the expectation:

R̂S(X1[1]) = Eσ

 sup
|u|=|v|=1

∣∣∣∣∣∣ 2
|S|

|S|∑
α=1

σαuiα
vjα

∣∣∣∣∣∣
 (3)

where σα are uniform ±1 random variables. For each index pair (i, j) we will
denote by sij the number of times it appears in the empirical sample S, and
consider the random variables σij =

∑
α s.t. (iα,jα)=(i,j) σα.



Since the variables σα are independent, E
[
σ2

ij

]
= sij , and we can calculate:

R̂S(X1[1]) = Eσ

 sup
|u|,|v|=1

∣∣∣∣∣∣ 2
|S|

∑
i,j

σijuivj

∣∣∣∣∣∣
 = 2

|S|Eσ

[
sup

|u|,|v|=1

|u′σv|

]
=

2Eσ[‖σ‖2]
|S|

where σ is an n×m matrix of σij .
The Rademacher complexity is equal to the expectation of the spectral norm

of the random matrix σ (with a factor of 2
|S| ). Using the Frobenius norm to

bound the spectral norm, we have:

R̂S(X1[1]) ≤ 2
|S|

Eσ[‖σ‖Fro] ≤
2
|S|
√
|S| = 2√

|S|
(4)

As a supremum over all sample sets S, this bound is tight: consider a sam-
ple of |S| index pairs, all in the same column. The rank-one unit-norm matrix
attaining the supremum would match the signs of the matrix with ±1/

√
|S|

yielding an empirical Rademacher complexity of 2/
√
|S|. The form of (4) is very

disappointing, and does not lead to meaningful generalization error bounds.
Even though the empirical Rademacher complexity for a specific sample

might be very high, in what follows we show that the expected Rademacher
complexity, for a uniformly chosen sample, is low. Using the Frobenius norm to
bound the Spectral norm of σ will no longer be enough, and in order to get a
meaningful bound we must analyze the expected spectral norm more carefully.

Bounding Eσ[‖σ‖2] In order to bound the expected spectral norm of σ, we
apply Theorem 3.1 of [10], which bounds the expected spectral norm of matrices
with entries of fixed magnitudes but random signs in terms of the maximum
row and column magnitude norms. If S contains no repeated index pairs (sij =
0 or 1), we are already in this situation, as the magnitudes of σ are equal to
s. When some index pairs are repeated, we consider a different random matrix,
σ̃ij = εijsij , where εij are i.i.d. unbiased signs. Using σ̃ instead of σ gives us
an upper bound on the empirical Rademacher complexity (Lemma 12 from the
Appendix). Applying Theorem 3.1 of [10] to σ̃ij , we obtain:

R̂S(X1[1]) ≤ 2
|S|

Eε[‖σ̃‖2]
2
|S|

≤ K(lnm)
1
4

(
max

i
|si·|+ max

j
|s·j |

)
(5)

where |si·| and |s·j | are norms of row and column vectors of the matrix s, and
K is the absolute constant guaranteed by Theorem 3.1 of [10].

Bounding the Row and Column Norms For the worst samples, the norm
of a single row or column vector of s might be as high as |S|, but for random
uniformly drawn samples, we would expect the row and column norms to be
roughly

√
|S|/n and

√
|S|/m. To make this estimate precise we proceed in two

steps4. We first use Bernstein’s inequality to bound the maximum value of sij ,

4 We assume here nm > |S| > n ≥ m > 3. See [9] for more details.



uniformly over all index pairs: PrS(maxij sij > 9 ln n) ≤ 1
|S| . When the maxi-

mum entry in s is bounded, the norm of a row can be bounded by the square
root of the number of observations in the row. In the second step we use Bern-
stein’s inequality again to bound the expected maximum number of observations
in a row (similarly column) by 6( |S|n + ln |S|). Combining these results we can
bound the Rademacher complexity, for a random sample set where each index
pair is chosen uniformly and independently at random:

Runiform
|S| (X1[1]) = ES

[
R̂S(X1[1])

]
≤ Pr

(
max

ij
sij > 9 ln n

)
sup

S
R̂S(X1[1]) + ES

[
R̂S(X1[1])

∣∣∣∣max
ij

sij ≤ 9 ln n

]
≤ 1
|S|

· 2√
|S|

+
2
|S|

K(lnm)
1
4 ES

[
max

i
|si·|+ max

j
|s·j |

∣∣∣∣max
ij

sij ≤ 9 ln n

]

≤ 2
|S|3/2

+
2K(lnm)

1
4

|S|
√

9 ln n

(√
6(
|S|
n

+ ln |S|) +

√
6(
|S|
m

+ ln |S|)

)
(6)

Taking the convex hull, scaling by M and rearranging terms:

Theorem 2. For some universal constant K, the expected Rademacher com-
plexity of matrices of trace-norm at most M , over uniform samplings of index

pairs is at most (for |S|/ lnn ≥ n ≥ m): Runiform
|S| (X [M ]) ≤ K M√

nm

√
(n+m) ln3/2 n

|S|

Applying Theorem 2 of [11]5:

Theorem 3. For any L-Lipschitz loss function, target matrix Y , δ > 0, M > 0
and sample sizes |S| > n log n, and for a uniformly selected sample S of |S|
entries in Y , with probability at least 1−δ over the sample selection, the following
holds for all matrices X ∈ Rn×m with ‖X‖Σ√

nm
≤ M :

D(X;Y ) < DS(X;Y ) + KL

√
M2(n + m) ln3/2n− log δ

|S|

Where K is a universal constant that does not depend on Y ,n,m, the loss func-
tion, or any other quantity.

3.3 Low Max-Norm Matrices

Since the max-norm gives us a bound on the trace-norm, we can apply Theorems
2 and 3 also to matrices of bounded max-norm. However, when the max-norm is
5 By bounding the zero-one sign-agreement error with the 1-Lipschitz function

g(x, y) = max(0, min(yx − 1, 1)), which in turn is bounded by the margin sign-
agreement error, generalization error bounds in terms of the margin can be obtained
from bounds in terms of the Lipschitz constant.



bounded it is possible to obtain better bounds, avoiding the logarithmic terms,
and more importantly, bounds that hold for any sampling distribution.

As we did for low trace-norm matrices, we bound the Rademacher complex-
ity of low max-norm matrices by characterizing the unit ball of the max-norm
Bmax = {X| ‖X‖max ≤ 1} as a convex hull. Unlike the trace-norm unit ball, we
cannot exactly characterize the max-norm unit ball as a convex hull. However,
using Grothendiek’s Inequality we can bound the unit ball with the convex hull
of rank-one sign matrices X± = {X ∈ {±1}n×m| rank X = 1}.

Theorem 4 (Grothendieck’s Inequality [12, page 64]). There is an ab-
solute constant 1.67 < KG < 1.79 such that the following holds: Let Aij be a
real matrix, and suppose that |

∑
i,j Aijsitj | ≤ 1 for every choice of reals with

|si|, |tj | ≤ 1 for all i, j. Then
∣∣∣∑i,j aij 〈xi, yj〉

∣∣∣ ≤ KG, for every choice of unit
vectors xi, yj in a real Hilbert space.

Corollary 2. convX± ⊂ Bmax ⊂ KGconvX±
Proof. Noting that the dual norm to the max-norm is:

‖A‖∗max = max
‖B‖max≤1

〈A,B〉 = max
xi,yj∈Rk:|xi|,|yj |≤1

∑
i,j

aijx
′
iyj . (7)

where the maximum is over any k, we can restate Grothendieck’s inequality as
‖A‖∗max ≤ KG‖A‖∞→1 where ‖A‖∞→1 = maxsi,tj∈R:|si|,|tj |≤1

∑
i,j aijsitj . We

also have ‖A‖∞→1 ≤ ‖A‖∗max, and taking the duals:

‖A‖∗∞→1 ≥ ‖A‖max ≥ KG‖A‖∗∞→1 (8)

We now note that ‖A‖∞→1 = maxB∈X± 〈A,B〉 and so X± is the unit ball of
‖A‖∗∞→1 and (8) establishes the Corollary. ut

The class of rank-one sign matrices is a finite class of size |X±| = 2n+m−1,
and so its empirical Rademacher complexity (for any sample) can be bounded by

R̂S(X±) <
√

7 2(n+m)+log |S|
|S| [9]. Taking the convex hull of this class and scaling

by 2M we have (for 2 < |S| < nm):

Theorem 5. The Rademacher complexity of matrices of max-norm at most M ,
for any index-pair distribution, is bounded by6: R|S|(Xmax[M ]) ≤ 12M

√
n+m
|S|

Theorem 6. For any L-Lipschitz loss function, any matrix Y , any distribution
P of index pairs (i, j), n, m > 2, δ > 0 and M > 0, with probability at least 1−δ
over choosing a set S of |S| index pairs according to P, for all matrices X with
‖X‖max ≤ M :

DP(X;Y ) < DS(X;Y ) + 17

√
M2(n + m)− log δ

|S|

6 For large enough n, m, the constant 12 can be reduced to KG

√
8 ln 2 < 4.197.



4 Between the Max-Norm and the Rank

We have already seen that the max-norm bounds the trace-norm, and so any
low max-norm approximation is also a low trace-norm approximation. Although
the max-norm does not bound the rank (e.g. the identity matrix has max-norm
one but rank n), using random projections, a low max-norm matrix can be
approximated by a low rank matrix [3]. Ben David et al [4] used this to show
that dc(Y ) = O(mc2(Y ) log n). Here, we present a slightly more general analysis,
for any Lipschitz continuous loss function.

Lemma 5. For any X ∈ Rn×m and any ‖X‖max > ε > 0, there exists X ′ such
that |X −X ′|∞ < ε and rank X ≤ 9(‖X‖max /ε)2 log(3nm).

Proof. Set M = ‖X‖max and let X = UV ′ with ‖U‖22→∞ = ‖V ‖22→∞ = M . Let
A ∈ Rk×d be a random matrix with independent normally distributed entries,
then for any u, v with u′ = Auandv′ = Av we have [3]:

Pr (1− ε) |u− v|2 ≤ |u′ − v′|2 ≤ (1 + ε) |u− v|2 ≥ 1− 2e−k(ε2−ε3)/4 (9)

Set ε = 2ε
3M and k = 4 ln(3nm)/ε2 = 9(M/ε)2 ln(3nm). Taking a union bound

over all pairs (Ui, Vj) of rows of U and V , as well as all pairs (Ui, 0) and (Vj , 0),
we get that with positive probability, for all i, j,

∣∣U ′
i − V ′

j

∣∣2, |U ′
i |

2 and
∣∣V ′

j

∣∣2 are
all within (1±ε) of |Ui − Vj |2, |Ui|2 ≤ M and |Vj |2 ≤ M , respectively. Expressing
U ′

iV
′
j in terms of these norms yields UiVj − 3Mε/2 ≤ U ′

iV
′
j ≤ UiVj + 3Mε/2,

and so |UV ′ −X|∞ ≤ 3Mε/2 = ε and rankUV ≤ k = 9(M/ε)2 ln(3nm). ut

Corollary 3. For any L-Lipschitz continuous loss function, any matrices X, Y ,
and any ‖X‖max > ε > 0, there exists X ′ such that D(X ′;Y ) ≤ D(X;Y )+ ε and
rank X ′ ≤ 9 ‖X‖2max (L/ε)2 log(3nm).

Corollary 4. For any sign matrix Y , dc(Y ) ≤ 10mc2(Y ) log(3nm).

Proof. For X ∈ SP1(Y ), setting ε =
√

0.9 ensures signX ′ = signX = Y . ut

Using Lemma 5 and Theorem 1 it is possible to obtain a generalization
error bound similar to that of Theorem 6, but with additional log-factors. More
interestingly, Corollary 4 allows us to bound the number of matrices with low
max-complexity7:

Lemma 6. log |{Y ∈{±1}n×m|mc(Y ) ≤ M}| < 10M2(n+m) log(3nm) log( m
M2 )

Noting that Y ∈ {±1}n×m with at most M “1”s in each row has mc(Y ) ≤ M
establishes that this bound is tight up to logarithmic factors:

Lemma 7. For M2 < n/2, log |{Y ∈ {±1}n×n|mc(Y ) ≤ M}| ≥ M2n log(n/M2)

7 A tighter analysis, allowing the random projection to switch a few signs, can reduce
the bound to 40M2(n + m) log2(m/M2).



A Gap Between dc(Y ) and mc(Y ) We have seen that dc(Y ) can be bounded
in terms of mc2(Y ) and that both yield similar generalization error bounds. We
now consider the inverse relationship: can mc2(Y ) be bounded in terms of dc(Y )?

The Hadamard matrix Hp ∈ Rn×n (n = 2p) is an example of a matrix with a
polynomial gap between mc2(Hp) = n and

√
n ≤ rank(Hp) < n0.8. This gap still

leaves open the possibility of a weaker polynomial bound. The triangular matrix
Tn ∈ {±1}n×n with +1 on and above the diagonal and −1 below it, exhibits
a non-polynomial gap: dc(Tn) = 2 while mc(Tn) = θ(log n) [5, Theorem 6.1].
But we may ask if there is a polynomial relation with logarithmic factors in n.
In order to show that mc(Y ) is not polynomially bounded by dc(Y ), even with
poly log n factors, we examine tensor exponents8 of triangular matrices (note
that H1 = T2, and so Hp = T⊗p

2 , up to row and column permutations).

Theorem 7. For any r > 0, there exists an n × n sign matrix Y such that
mc(Y ) > (dc(Y )log(n))r.

To prove the Theorem, we will use the following known results:

Lemma 8. For any four matrices A,B,C, D: (A⊗B)(C⊗D) = (AC)⊗ (BD).

Theorem 8 ([5, Theorem 4.1]). Let Y be a sign matrix, and let Y = UDV

be its SVD. If the matrix UV has the same signs as Y then ‖Y ‖Σ√
nm

≤ mc(Y ). If

in addition all the rows of the matrix U
√

D, and all the columns of the matrix√
DV have equal length, then ‖Y ‖Σ√

nm
= mc(Y ).

Theorem 9 ([5]). Denote by Tn the triangular n × n matrix and Tn = UDV
its SVD decomposition, then UV is signed as Tn and all the rows of the matrix
U
√

D, and all the columns of the matrix
√

DV have equal length.

Proof of Theorem 7 To prove the theorem we first show that if two matrices A
and B satisfy the properties that are guarantied by Theorem 9 for triangular
matrices, then the tensor product A⊗B also satisfies this properties. And thus
tensor products of triangular matrices have these properties. This follows from
the following applications of Lemma 8:

1. Let UADAVA = A and UBDBVB = B be the SVD of A and B respectively,
then (UA ⊗ UB)(DA ⊗DB)(VA ⊗ VB) is the SVD of A⊗ B, since if vA is a
eigenvector of AAt with eigenvalue µA and vB is an eigenvector of BBt with
eigenvalue µB then

(A⊗B)(A⊗B)t(vA ⊗ vB) = (AAt)⊗ (BBt)(vA ⊗ vB)

= (AAtvA)⊗ (BBtvB) = µAvA ⊗ µBvB = µAµB(vA ⊗ vB).

Thus vA ⊗ vB is an eigenvector of (A⊗B)(A⊗B)t with eigenvalue µAµB .

8 A⊗B and A⊗p denotes tensor products and exponentiation.



2. If the matrix UAVA has the same signs as A, and the matrix UBVB as the
same signs as B then the matrix (UA⊗UB)(VA⊗VB) = (UAVA)⊗(VAVB) has
the same signs as A⊗B, since the sings of the tensor product is determined
only by the signs of the matrices in the product.

3. If the rows of UA

√
DA have equal length and so does the rows of UB

√
DB ,

and equivalently the columns of
√

DAVA and
√

DBVB , then the rows of the
matrix (UA⊗UB)

√
DA ⊗DB , and the columns of the matrix

√
DA ⊗DB(VA⊗

VB) have equal length, since rows (equiv. columns) of P ⊗Q are tensor prod-
ucts of rows (equiv. columns) in P and Q.

For any t > 0 and integer p > 0, let k = 22t

and n = 2p2t

and consider
T⊗p

k ∈ {±1}n×n. By the above considerations and Theorems 8 and 9, mc(T⊗p
k ) =

mc(Tk)p ≥ (c2t)p for some c > 0, while dc(T⊗p
k ) = dc(Tk)p ≤ 2p. For any r > 0

we can choose t = p > max(6r,−2 log c) and so:

(dc(T⊗p
k )log(n))r ≤ 2r(p+t+log p) < 22tp < 2p(t+log c) ≤ mc(T⊗p

k ) ut

Matrices with Bounded Entries We note that a large gap between the
max-complexity and the dimensional-complexity is possible only when the low-
rank matrix realizing the dimensional-complexity has entries of vastly varying
magnitudes: For a rank-k matrix X with entries bounded by R, Awerbuch and
Kleinberg’s Barycentric spanner [13] construction can be used to obtain a fac-
torization X = UV ′, U ∈ Rn×k, V ∈ Rm×k, such that the entries of U and
V are bounded by

√
R. This establishes that ‖X‖max ≤ |X|∞ rank X. Now, if

X ∈ SP(Y ) with rankX = k and maxij |Xij |
minij |Xij | ≤ R, we can scale X to obtain

X ′ ∈ SP1(Y ) with ‖X ′‖max ≤ |X ′|∞ rank X ′ ≤ Rk.

5 Between the Trace-Norm and the Max-Norm or Rank

The generalization error bounds highlight an important distinction between the
trace-norm and the other two measures: the trace-norm is an on average measure
of complexity, and leads to generalization error bounds only with respect to a
uniform sampling distribution. This is not an artifact of the proof techniques.
To establish this, consider:

Lemma 9. For any k < n and Y ∈ {±1}n×n such that Yij = 1 for i > k or j >
k (i.e. except on the leading k × k submatrix): tc(Y ) ≤ ‖Y ‖Σ /n ≤ k3/2/n +

√
2

Proof. Write Y = X1 + X2 where X1 is 0 on the leading k× k submatrix and 1
elsewhere: ‖Y ‖Σ ≤ ‖X1‖Σ +‖X2‖Σ ≤

√
rank X1 ‖X1‖Fro +

√
rank X2 ‖X2‖Fro ≤√

kk +
√

2n. ut

Corollary 5. |{Y ∈ {±1}n×n|tc(Y ) ≤ M}| ≥ 2((M−
√

2)n)4/3



Consider fitting an n×n binary target matrix, where entries are sampled only
in the leading n2/3×n2/3 submatrix. A matrix X with ‖X‖Σ /n < 3 is sufficient
to get all possible values in the submatrix, and so even with |S| = Θ(n4/3) we
cannot expect to generalize even when ‖X‖Σ /n is constant.

Using Lemma 9 we can also describe matrices Y with large gaps between
tc(Y ) and both mc(Y ) and dc(Y ). An n × n sign matrix with a Hadamard
matrix in the leading k × k subspace and ones elsewhere provides an example
where mc(Y ) = Θ((tc(Y )n)1/3), e.g. tc(Y ) < 3 and tc(Y ) = n1/3. Counting
arguments ensure a similar gap with

√
dc(Y ). We show that this gap is tight:

Theorem 10. For every n× n sign matrix Y , mc(Y ) ≤ 3(tc(Y )n)1/3.

Recall that 1 ≤ tc(Y ) ≤ mc(Y ) ≤
√

n. The bound in meaningful even for
matrices with large tc(Y ), up to

√
n/27. To prove the Theorem, we first show:

Lemma 10. Let X ∈ Rn×n with ‖X‖Σ = M , then X can be expressed as
X = B + R + C, where ‖B‖max ≤ (M1/3, R has at most M2/3 rows that are
non-zero and C has at most M2/3 columns that are non-zero. Furthermore, for
every i, j, at most one of Bij, Rij and Cij is non-zero.

Proof. Let X = UV ′ be a decomposition of X s.t. ‖U‖2Fro = ‖V ‖2Fro = M . At
most M2/3 of the rows of U and M2/3 of the rows of V have squared norms
greater than M1/3. Let Rij = Xij when |Ui|2 > M1/3 and zero otherwise. Let
Cij =Xij−Rij when |Vj |2 > M1/3, zero otherwise. Let B=X−R−C. Zeroing the
rows of U and V with squared norms greater than M1/3 leads to a factorization
of B with maximal squared row-norm M1/6, establishing ‖B‖max ≤ M1/3. ut

To prove the Theorem, let X ∈ SP1(Y ) with tc(Y ) = ‖X‖Σ /n and let X =
B + R + C as in Lemma 10, and note that B + sign R + sign C ∈ SP1(Y )
(signR, signC are zero where R,C are zero). Writing (signR) = I(signR) es-

tablishes ‖signR‖max ≤ ‖I‖2→∞ ‖signR‖2→∞ = 1
√
‖X‖2/3

Σ = ‖X‖1/3
Σ and sim-

ilarly ‖signC‖max ≤ ‖X‖1/3
Σ . Using the convexity of the max-norm:

mc(Y ) ≤ ‖B + signR + signC‖Σ ≤ 3 ‖X‖1/3
Σ = 3(ntc(Y ))1/3 ut

Since dc(Y ) = O(mc2(Y )log(n)), Theorem 10 also provides a tight (up to log
factors) bounds on the possible gap between dc and tc.

Using Lemma 6, Theorem 10 provides a non-trivial upper bound on the
number of sign matrices with low trace-complexity, but a gap of 3

√
M2/n still

remains between this upper bound and the lower bound of Corollary 5:

Corollary 6. log |{Y |tc(Y ) ≤ M}| < 7M2/3n5/3 log(3nm) log(n/M2)

6 Discussion

The initial motivation for the study reported here was to obtain a better un-
derstanding and a theoretical foundation for “Maximum Margin Matrix Fac-
torization” (MMMF) [1], i.e. learning with low trace-norm and low max-norm



matrices. We see as the main product of this study not the generalization er-
ror bounds as numerical bounds, but rather the relationships between the three
measures, and the way in which they control the “complexity”, as measured
in terms of their generalization ability. The generalization error bounds display
the similar roles of rankX, ‖X‖2max and ‖X‖2Σ /nm in controlling complexity
and highlight the main difference between the trace-norm and the other two
measures. We note the interesting structure of the two hierarchies of classes of
low dimensional-complexity and max-complexity matrices: Any class of matrices
with bounded max-complexity is a subset of a class of matrices with bounded
dimensional-complexity of “roughly” the same size (logarithm of size differs only
by logarithmic factors). But this class of bounded dimensional-complexity ma-
trices includes matrices with very high max-complexity.

Open Issues Although we show that the dimensional-complexity can not bound
the max-complexity, it might still be the case that changing a few entries of a
low-dimensional-complexity matrix is enough to get to to a low-max-complexity
matrix. Beyond sign matrices, we can ask whether for any X and ε there exists
X ′ with ‖X ′‖2max ≤ O(rankX(1/ε)2poly log n) and δ(X, X ′) ≤ ε for some error
measure δ. Theorem 7 precludes this possibility for δ(X, X ′) = |X −X ′|∞, but it
is possible that such a relationship holds for, e.g., δ(X, X ′) = 1

nm

∑
ij |Xij−X ′

ij |.
Such results might tell us that when enough discrepancy is allowed, approximat-
ing with the rank is not very different then approximating with the max-norm.
On the other hand, it would be interesting to understand if, for example, the
matrices T⊗p

t do not have any low max-norm matrix in their vicinity.
Throughout the paper we have largely ignored log-factors, but these can

be very significant. For example, tighter bounds on the number of low max-
complexity matrices can help us understand questions like the median max-
complexity over all matrices.
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A Consolidating Signs of Repeated Points

We show that for any function class and distribution, the Rademacher complexity can
be bounded from above by consolidating all random signs corresponding to the same
point into a single sign. We first show that consolidating a single sign can only increase
the Rademacher complexity:

Lemma 11. For any function class F and sample S = (x1, . . . , xn) with x1 = x2:

Eσ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]
≤ Eσ

[
sup
f∈F

∣∣∣∣∣σ22f(x2) +

n∑
i=3

σif(xi)

∣∣∣∣∣
]

where σi are i.i.d. unbiased signs.
Proof. We first note that removing x1, x2 can only decrease the expectation:

E
σ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

= E
σ3:n

[
E

σ1,2

[
sup
f∈F

∣∣∣∣∣σ1f(x1) + σ2f(x2) +

n∑
i=3

σif(xi)

∣∣∣∣∣
]]

≥ E
σ3:n

[
sup
f∈F

∣∣∣∣∣ E
σ1,2

[σ1f(x1) + σ2f(x2)] +

n∑
i=3

σif(xi)

∣∣∣∣∣
]

= E
σ3:n

[
sup
f∈F

∣∣∣∣∣
n∑

i=3

σif(xi)

∣∣∣∣∣
]

Using this inequality we can now calculate:

E
σ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]
≤ 1

2
E
σ

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]
+

1

2
Eσ

[
sup
f∈F

∣∣∣∣∣σ22f(x2) +

n∑
i=3

σif(xi)

∣∣∣∣∣
]

Subtracting the first term on the right-hand side from the original left-hand side gives
us the desired inequality. ut
By iteratively consolidating identical sample points, we get:

Lemma 12 (Sign Consolidation). For any function class F and sample S = (x1, . . . , xn),
denote by sx the number of times a sample appears in the class, and let σx be i.i.d. un-
biased random signs. Then:

RS(F) ≤ Eσ

[
sup
f∈F

∣∣∣∣∣ 2

|S|
∑
x∈S

σxsxf(x)

∣∣∣∣∣
]


