Computational and Statistical Learning Theory

Problem set 1

Due: October 10th

Please send your solutions to learning-submissions@ttic.edu

1. $f 0,1 g$-valued random variables X_{1}, \ldots, X_{n} are drawn independently each from Bernoulli distribution with parameter $p=0.1$. Define $P_{n}:=\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad 0.2\right)$.
(a) For $\mathrm{n}=1$ to 30 calculate and plot the below in the same plot:
i. Exact value of P_{n} (binomial distribution).
ii. Normal approximation for P_{n}.
iii. Hoeffding inequality bound on P_{n}.
iv. Bernstein inequality bound on P_{n}.
(b) For $\mathrm{n}=30$ to 300 calculate and plot the below in the same plot:
i. Normal approximation for P_{n}.
ii. Hoeffding inequality bound on P_{n}.
iii. Bernstein inequality bound on P_{n}.
2. Consider i.i.d. random variables X_{1}, \ldots, X_{n} distributed according to each of the distributions specified below. For each distribution, write down the bound on $\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \mathbb{E}[X]\right|>\theta\right)$ implied by each of: (1) Markov inequality (2) Chebyshev inequality (3) Hoeffding inequality and (4) Bernstein inequality (some of the inequalities might not be applicable for some of the distributions)
(a) $f 1, \ldots, 4 g$-valued random variables X_{i} such that $\mathbb{P}\left(X_{i}=a\right) / a^{2}$.
(b) X_{i} is distributed uniformly on interval $[1,1]$.
(c) X_{i} drawn from normal distribution $\mathrm{N}(1,4)$.
(d) X_{i} drawn from exponential distribution with parameter 2.
3. (a) X_{1}, \ldots, X_{n} are i.i.d. random variables in $[0,1]$ with mean $\mathbb{E}\left[X_{i}\right] \mu$. Show that:

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}=0\right) \quad e^{n}
$$

(Hint : for $\left.t>1,\left(\begin{array}{lll}1 & 1 / t\end{array}\right)^{t} \quad 1 / e\right)$.
(b) X_{1}, \ldots, X_{n} are $[0,1]$-valued random variables drawn i.i.d. from some arbitrary distribution. Using each of the inequalities below, write down the implied bound ($\mathrm{n}, \hat{\mu}, \delta$) such that, for any $\delta>0$:

$$
\mathbb{P}(\mathbb{E}[X] \quad \hat{\mu}+(n, \hat{\mu}, \delta)) \quad 1 \quad \delta
$$

where $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(1) Hoeffding inequality
(2) Markov inequality
(3) Bernstein Inequality
(4) The inequality from part (a). Note that in this case we only get a bound when $\hat{\mu}=0$ and so ($\mathrm{n}, \hat{\mathrm{N}, \delta}$) will be of the form:

$$
(\mathrm{n}, \hat{\mathrm{\mu}}, \delta)= \begin{cases}1 & \text { if } \hat{\mathrm{N}}>0 \\ \text { something } & \text { if } \hat{\mathrm{\mu}}=0\end{cases}
$$

(5)(Optional) Chebychev Inequality

Observe the differences in the dependence on δ when using Markov (or Chebychev) as opposed to the exponential inequalities. Also observe how Bernstein's inequality interpolates nicely between the case $\hat{\mu}=0$ and the simpler Hoeffding inequality.
4. (Optional) One possible way of approximating binomial distribution $B(n, p)$ is by finding an estimation for the binomial coefficient $\binom{n}{k}$. In this problem, we investigate an approximation approach and compare it to the normal approximation for the binomial distribution.
(a) Consider the following approximation for the binomial coefficient:

$$
\binom{n}{k}, \frac{2^{n H}(k=n)}{p}
$$

where $H(x)=x \log _{2} x \quad(1 \quad x) \log _{2}(1 \quad x)$ is the binary entropy of x. Use this estimation to approximate the binomial distribution at $B(k, n, p)$ as an exponential function(Find the function $f(k, n, p)$ such that $B(k, n, p)=\exp (f(k, n, p))$. In this problem, we refer to this estimation as entropy approximation.
(b) i. For $\mathrm{n}=20, \mathrm{p}=0.5$ and $\mathrm{k}=0$ to 20 plot the binomial distribution, Normal approximation and entropy approximation in the same plot.
ii. For $\mathrm{n}=200, \mathrm{p}=0.5$ and $\mathrm{k}=0$ to 200 plot the binomial distribution, Normal approximation and entropy approximation in the same plot.
iii. Describe your results.
(c) i. For $\mathrm{n}=100, \mathrm{p}=0.3$ and $\mathrm{k}=0$ to 100 plot the binomial distribution, Normal approximation and entropy approximation in the same plot.
ii. For $\mathrm{n}=100, \mathrm{p}=0.2$ and $\mathrm{k}=0$ to 100 plot the binomial distribution, Normal approximation and entropy approximation in the same plot.
iii. For $\mathrm{n}=100, \mathrm{p}=0.1$ and $\mathrm{k}=0$ to 100 plot the binomial distribution, Normal approximation and entropy approximation in the same plot.
iv. Explain your results.
(d) Let $g_{e}(k, n, p)$ be a function such that $g_{e}(k, n, p)=p$ if and only if the error of entropy approximation at for $B(k, n, p)$ is less than the error of the Normal approximation $\operatorname{andg}_{e}(k, n, p)=0$ otherwise.
i. For $n=100$ and $k=0$ to 100 plot four functions $g_{e}(k, n, 0.1)$, $g_{e}(k, n, 0.2)$, $g_{e}(k, n, 0.3)$ and $g_{e}(k, n, 0.5)$.
ii. Under what conditions do you prefer to use entropy approximation instead of Normal approximation?

