
Computational and Statistical Learning Theory

Problem set 2

Due: October 17th

Please send your solutions to learning-submissions@ttic.edu

Notation :
Input space : X Label space : Y = {±1} Sample : (x1, y1), . . . , (xm, ym) ∈ X ×Y

Hypothesis Class : H Risk : L(h) = E
[
1h(x)6=y

]
Empirical Risk : L̂(h) = 1

m

∑m
i=1 1h(xi)6=yi

1. Shatter Lemma :
Given a set S = {x1, . . . , xm} let Hx1,...,xm = {(h(x1), . . . , h(xm)) ∈ {±1}m : h ∈ H}.
Recall that we say that such a set is shattered by H if |Hx1,...,xm | = 2m, and that the VC
dimension of H is the size of he largest sample that can be shattered. Also recall that the
growth function of the hypothesis classH is given by:

ΠH(m) = sup
x1,...,xm

|Hx1,...,xm | .

That is, we can also define the VC dimension as the largest m for which ΠH(m) = 2m.

The aim of this exercise is to prove the “Shatter Lemma”: if H has VC dimension d, then
for any m,

ΠH(m) ≤
d∑

i=0

(
m

i

)
. (1)

In order to prove (1), we will actually prove the following statement: for any set S =
{x1, . . . , xm}:

|HS| ≤ |{B ⊂ S : B is shattered byH}| (2)

That is, the number of possible labeling of a S is bounded by the number of different subsets
of S that can be shattered.

We (i.e. you) will prove (2) by induction.

(a) Establish that (2) holds for S = ∅ (the empty set).
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(b) For any set S and any point x′ 6∈ S, assume (2) holds for S and for any hypothesis
class, and prove that (2) holds for S ′ = S ∪ {x′} and any hypothesis class. To this end,
for any hypothesis classH, writeH = H− ∪H+ where:

H+ = {h ∈ H : h(x′) = +1}
H− = {h ∈ H : h(x′) = −1}

i. Prove that |HS′| =
∣∣H+

S

∣∣+
∣∣H−S ∣∣.

ii. Prove that (2) holds for S and H by applying (2) to each of the two terms on the
right-hand-side above.

We can now conclude that (2) holds for any (finite) S and anyH.
(c) Use (2) to establish (1).
(d) For d ≤ n, prove that

∑d
i=0

(
m
i

)
≤ md. Optional: Prove the tighter bound:

∑d
i=0

(
m
i

)
≤(

em
d

)d
2. VC Dimension :

(a) Consider the hypothesis class H• of positve circles in R2. That is set of all hypothesis
that are positive inside some circle and negative outside. Calculate the VC dimension
of this class, and show that this is the exact value of the VC dimension.

(b) Consider the hypothesis class H◦ of both positive and negative circles in R2. That is
set of all hypothesis that are positive inside some circle and negative outside and all
hypothesis that are negative inside that circle and positive outside. Show how to shatter
4 points using this class and establish a lower bound of 4 on the VC dimension of the
class.

We now consider the VC dimension of the classHd of linear separators in Rd :

Hd =
{
x 7→ sign(w>x+ b)

∣∣w ∈ Rd, b ∈ R
}

(c) Consider the set of d + 1 points that include origin and the d bases ei (ie. 1 on ith
co-ordinate and 0 elsewhere). Show that the points can be shattered byHd.

(d) Prove that no set of d+ 2 points can be shattered byHd.
(Hint : Use Radon’s theorem which states that any set of d + 2 points in Rd can be
partitioned into two disjoint sets whose convex hulls intersect.)

From this we conclude that the VC dimension ofHd is exactly d+ 1.
(e) Prove that for anyH1 ⊆ H2, the VC dimension ofH1 is not larger than that ofH2.
(f) Use the above to prove that if for some hypothesis class H, there exists a feature map

φ : X 7→ Rd such that any hypothesis h ∈ H can be written as

h(x) = sign

(
d∑

i=1

wiφi(x) + b

)
for some w ∈ Rd and some b ∈ R, then VC dimension ofH is at most d+ 1.

2



(g) Use this to obtain a tight upper bound on the VC-dimension of H◦ and conclude that
the VC-dimension of this class is indeed four. Note that the bound you can get on H•
is not tight.

3. Hoeffding Bounds :

We will now see how to use systematization to obtain a learning guarantee that depends on
the growth function, and hence on the VC dimension.

(a) For any sequence of 2m points S = (z1, ...zm, z
′
1, ..., z

′
m), consider m i.i.d. uniform

random signs s1,. . . ,sm which define the samples S1, S2 in the following way: for each
i = 1..m, if si = 1 then zi ∈ S1 and z′i ∈ S2, otherwise (if si = −1) then zi ∈ S2

and z′i ∈ S1; i.e. the variables s1,. . . ,sm specify how to ”deal” the 2m points into the
two sets S1 and S2. Now, for any sequence S of 2m points, and any hypothesis h, with
l(h, z) ∈ {0, 1}, prove that with probability ≥ 1− δ over the separation to S1,S2:

|LS1(h)− LS2(h)| ≤
√
f(δ)/m (3)

(Hint: write LS1(h)− LS2(h) = 1
m

∑m
i=1(−1)si(l(h, z′i)− l(h, zi)))

(b) For any sequence S of 2m points as above, prove that with probability ≥ 1 − δ over
the separation to S1,S2, for every h ∈ H:

|LS1(h)− LS2(h)| ≤
√
f(δ,ΠH)/m) (4)

and conclude that the same inequality holds with probability ≥ 1 − δ over S1, S2 ∼
i.i.d.Dm, and every h ∈ H.

(c) Recall the symmetrization lemma:

PS∼Dm

(
∃h∈H|L(h)− LS(h)| > 2ε

)
≤ 2PS,S′∼Dm

(
∃h∈H|LS(h)− LS′(h)| > ε

)
(5)

Use this, and part (c) above, to prove that, with probability ≥ 1− δ over S ∼ Dm, for
all h ∈ H:

|LS(h)− L(h)| <
√
f(δ,ΠH)/m (6)

and conclude that if VC-dim(H) ≤ D then:

L(ĥ) ≤ L(h∗) +
√
f(δ,D log(2em/D))/m (7)

(d) Conclude thatm = O(D log(1/ε)/ε2) samples are enough to ensure that with probabil-
ity ≥ 1− δ, L(ĥ) < L(h∗) + ε. Write down an explicit bound (without big-O notation,
though the constants need not be the tightest possible).
(Hint: start with the expression for m, plug it into the r.h.s. of part (c) above, and verify
that the r.h.s is less than ε.)
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4. Bernstein Bounds :

(a) Use Bernstein inequality to prove that for any 0 ≤ δ ≤ 1 and any h ∈ H with proba-
bility greater than 1− δ, the following bound holds where m is the number of samples.
Specify functions f(δ) and g(δ).

|L̂(h)− L(h)| ≤ f(δ)

m
+

√
g(δ)L(h)

m
(8)

(b) i. Use the union bound to prove that with probability greater than 1−δ, the following
bound holds for all h ∈ H. Find f(δ, |H|) and g(δ, |H)|.

|L̂(h)− L(h)| ≤ f(δ, |H|)
m

+

√
g(δ, |H|)L(h)

m
(9)

ii. Use the bound on the previous part to prove that for any 0 ≤ δ ≤ 1 with probability
greater than 1− δ. Specify functions f(δ, |H|), g1(δ, |H)| and g2(δ, |H)|.

L(ĥ) ≤ L(h∗) +
f(δ, |H|)

m
+

√
g1(δ, |H|)L(ĥ)

m
+

√
g2(δ, |H|)L(h∗)

m
(10)

iii. Solve the above inequality for L(ĥ) to find the following bound. Find f(δ, |H|)
and g(δ, |H)|.

L(ĥ) ≤ L(h∗) +
f(δ, |H|)

m
+

√
g(δ, |H|)L(h∗)

m
(11)

(c) Find a lower bound on the number of samples for the inequality 11 to be hold with
probability greater than 1− δ.

(d) Prove that with probability greater than 1− δ the following bound holds for any a > 0
and all h ∈ H.

L(h) ≤ (1 + a)L(h∗) + (1 + 1/a)f(δ,H)/m (12)

This means that as long as we want a constant factor approximation of L(h∗), e.g.
we want error that is 1.1L(h∗), we get a ”rate” of 1/m. (Hint: write this as L(h) ≤
infa(1 + a)L(h∗) + (1 + 1/a)f(δ,H)/m and optimize over a.)

Challenge Problems

• VC bounds :

1. Combine ideas from Problems 3 and 4 to show that for any classH with VC-dim(H) ≤
D, with probability ≥ 1− δ over S ∼ Dm:

L(ĥ) < L(h∗) +O

(
Dlog(m/D) + log(1/δ)

m
+

√
(D log(m/D) + log(1/δ))L(h∗)

m

)
(13)
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2. Show that this means that to get L(ĥ) < L(h∗) + ε, we need

m = O

(
d log(1/εδ)

ε
.
L∗ + ε

ε

)
(14)

• VC dimension of decision trees :

1. Prove a learning guarantee for decision trees of size k (i.e. having at most k leaves)
over an input space of n binary variables, where each decision is over a single binary
variable.

2. For the input space X = Rd, provide an upper bound (that is as tight as possible) on
the VC dimension of the class of stumps

H = {x 7→ sign (axi − b) : i ∈ [d], b ∈ R, a ∈ ±1}

3. For the input space X = Rd, provide an upper bound (that is as tight as possible) on
the VC dimension of the class of decision trees of size k where each decision is based
on a stump fromH.

Research Problem :

• Show that any hypothesis class with VC-dimension d has a compression scheme of size d.
There is a 600 dollar prize on this problem.
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