Lecture 4: MDL and PAC-Bayes
Uniform vs Non-Uniform Bias

• No Free Lunch: we need some “inductive bias”

• Limiting attention to hypothesis class \mathcal{H}: “flat” bias
 • $p(h) = \frac{1}{|\mathcal{H}|}$ for $h \in \mathcal{H}$, and $p(h) = 0$ otherwise

• Non-uniform bias: $p(h)$ encodes bias
 • Can use any $p(h) \geq 0$, s.t. $\sum_h p(h) \leq 1$
 • E.g. choose prefix-disambiguious encoding $d(h)$ and use $p(h) = 2^{-|d(h)|}$
 • Or, choose $c: \mathcal{U} \rightarrow \mathcal{Y}^\mathcal{X}$ over prefix-disambiguious programs $\mathcal{U} \subset \{0,1\}^*$ and use $p(h) = 2^{-\min_{c(\sigma)=h}|\sigma|}$
 • Choice of $p(\cdot), d(\cdot)$ or $c(\cdot)$ encodes are expert knowledge/inductive bias
Minimum Description Length Learning

• Choose “prior” \(p(h) \) s.t. \(\sum_h p(h) \leq 1 \) (or description language \(d(\cdot) \) or \(c(\cdot) \))

• Minimum Description Length learning rule (based on above prior/description language):

\[
MDL_p(S) = \arg \max_{L_S(h)=0} p(h) = \arg \min_{L_S(h)=0} |d(h)|
\]

• For any \(\mathcal{D} \), w.p. \(\geq 1 - \delta \),

\[
L \left(MDL_p(S) \right) \leq \inf_{h \text{ s.t. } L_D(h)=0} \sqrt{-\log p(h) + \log 2/\delta} \frac{2m}{2m}
\]

Sample complexity: \(m = O \left(\frac{-\log p(h)}{\epsilon^2} \right) = O \left(\frac{|d(h)|}{\epsilon^2} \right) \)

(more careful analysis: \(O \left(\frac{|d(h^*)|}{\epsilon} \right) \))
MDL and Universal Learning

- **Theorem:** For any \mathcal{H} and $p: \mathcal{H} \to [0,1]$, s.t. $\sum h p(h) \leq 1$, and any source distribution \mathcal{D}, if there exists h with $L(h) = 0$ and $p(h) > 0$, then w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$:

 $$L\left(\text{MDL}_p(S)\right) \leq \sqrt{-\log p(h) + \log \frac{2}{\delta}} \frac{1}{2m}$$

- Can learn any countable class!
 - Class of all computable functions, with $p(h) = 2^{-\min_{c(\sigma) = h} |\sigma|}$.
 - Class enumerable with $n: \mathcal{H} \to \mathbb{N}$ with $p(h) = 2^{-n(h)}$.
 - But $\text{VCdim}(\text{all computable functions}) = \infty$!

- Why no contradiction to Fundamental Theorem?
 - PAC Learning: Sample complexity $m(\epsilon, \delta)$ is uniform for all $h \in \mathcal{H}$. Depends only on class \mathcal{H}, **not** on specific h^*
 - MDL: Sample complexity $m(\epsilon, \delta, h)$ depends on h.
Uniform and Non-Uniform Learnability

- **Definition:** A hypothesis class \mathcal{H} is **agnostically PAC-Learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0, \exists m(\epsilon, \delta), \forall \mathcal{D}, \forall h, \forall S \sim \mathcal{D} m(\epsilon, \delta),$
 \[L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon \]

- **Definition:** A hypothesis class \mathcal{H} is **non-uniformly learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0, \forall h, \exists m(\epsilon, \delta, h), \forall \mathcal{D}, \forall S \sim \mathcal{D} m(\epsilon, \delta, h),$
 \[L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon \]

- **Theorem:** $\forall \mathcal{D}$, if there exists h with $L(h) = 0$, then $\forall S \sim \mathcal{D} m$
 \[L\left(MDL_p(S)\right) \leq \sqrt{-\log p(h) + \log \frac{2}{\delta}} \]

 Compete also with h s.t. $L(h) > 0$?
Allowing Errors: From MDL to SRM

\[L(h) \leq L_S(h) + \sqrt{\frac{-\log p(h) + \log 2/\delta}{2m}} \]

Minimized by ERM

Minimized by MDL

• Structural Risk Minimization:

\[SRM_p(S) = \arg \min_h L_S(h) + \sqrt{\frac{-\log p(h)}{2m}} \]

fit the data

match the prior / simple / short description

• Theorem: For any prior \(p(h), \sum_h p(h) \leq 1 \), and any source distribution \(\mathcal{D} \), w.p. \(\geq 1 - \delta \) over \(S \sim \mathcal{D}^m \):

\[L \left(SRM_p(S) \right) \leq \inf_h \left(L(h) + 2 \sqrt{\frac{-\log p(h) + \log 2/\delta}{m}} \right) \]
Non-Uniform Learning: Beyond Cardinality

- MDL still essentially based on cardinality ("how many hypothesis are simpler than me") and ignores relationship between predictors.

- Generalizes the cardinality bound: Using \(p(h) = \frac{1}{|\mathcal{H}|} \) we get

\[
m(\epsilon, \delta, h) = m(\epsilon, \delta) = \frac{\log |\mathcal{H}| + \log 2/\delta}{\epsilon^2}
\]

- Can we treat continuous classes (e.g. linear predictors)? Move from cardinality to "growth function"?

- E.g.:
 - \(\mathcal{H} = \{ \text{sign} \left(f(\phi(x)) \right) \mid f: \mathbb{R}^d \to \mathbb{R} \text{ is a polynomial} \} \), \(\phi: \mathcal{X} \to \mathbb{R}^d \)
 - \(\text{VCdim}(\mathcal{H}) = \infty \)
 - \(\mathcal{H} \) is uncountable, and there is no distribution with \(\forall h \in \mathcal{H} \ p(h) > 0 \)
 - But what if we bias toward lower order polynomials?

- **Answer 1**: prior over hypothesis classes
 - Write \(\mathcal{H} = \bigcup \mathcal{H}_r \) (e.g. \(\mathcal{H}_r = \text{degree-}r \) polynomials)
 - Use prior \(p(H_r) \) over hypothesis classes
Prior Over Hypothesis Classes

- VC bound: \(\forall r \mathbb{P} \left[\forall h \in \mathcal{H}_r L(h) \leq L_S(h) + O \left(\sqrt{\frac{\text{VCdim}(\mathcal{H}_r) + \log \frac{1}{\delta}}{m}} \right) \right] \geq 1 - \delta_r \)

- Setting \(\delta_r = p(\mathcal{H}_r) \cdot \delta \) and taking a union bound,

\[
\forall \delta_{S\sim D}^{m} \forall \mathcal{H}_r \forall h \in \mathcal{H}_r \; L(h) \leq L_S(h) + O \left(\sqrt{\frac{\text{VCdim}(\mathcal{H}_r) - \log p(\mathcal{H}_r) + \log \frac{1}{\delta}}{m}} \right)
\]

- Structural Risk Minimization over hypothesis classes:

\[
\text{SRM}_p(S) = \arg \min_{h \in \mathcal{H}_r} L_S(h) + C \sqrt{\frac{- \log p(\mathcal{H}_r) + \text{VCdim}(\mathcal{H}_r)}{m}}
\]

- Theorem: w.p. \(\geq 1 - \delta \),

\[
L_D \left(\text{SRM}_p(S) \right) \leq \min_{\mathcal{H}_r, h \in \mathcal{H}_r} L_D(h) + O \left(\sqrt{\frac{- \log p(\mathcal{H}_r) + \text{VCdim}(\mathcal{H}_r) + \log \frac{1}{\delta}}{m}} \right)
\]
Structural Risk Minimization

• Theorem: For a prior \(p(\mathcal{H}_r) \) with \(\sum_{\mathcal{H}_r} p(\mathcal{H}_r) \leq 1 \) and any \(\mathcal{D} \), \(\forall S \sim D^m \),

\[
L_D \left(\text{SRM}_p(S) \right) \leq \min_{\mathcal{H}_r, h \in \mathcal{H}_r} L_D(h) + O \left(\sqrt{\frac{-\log p(\mathcal{H}_r) + \text{VCdim}(\mathcal{H}_r) + \log \frac{1}{\delta}}{m}} \right)
\]

• For \(\mathcal{H}_i = \{h_i\} \):
 • \(\text{VCdim}(\mathcal{H}_r) = 0 \)
 • Reduces to "standard" SRM with a prior over hypothesis

• For \(p(\mathcal{H}_r) = 1 \)
 • Reduces to ERM over a finite-VC class

• More general. Eg for polynomials over \(\phi(x) \in \mathbb{R}^d \) with \(p(\text{degree } r) = 2^{-r} \),

\[
m(\epsilon, \delta, h) = O \left(\frac{\text{degree}(h) + (d + 1)^{\text{degree}(h)} + \log \frac{1}{\delta}}{\epsilon^2} \right)
\]

• Allows non-uniform learning of a countable union of finite-VC classes
Uniform and Non-Uniform Learnability

• **Definition:** A hypothesis class \mathcal{H} is **agnostically PAC-Learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\exists m(\epsilon, \delta)$, $\forall \mathcal{D}$, $\forall h$, $\forall S \sim \mathcal{D} m(\epsilon, \delta)$,
\[L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon \]

• **Definition:** A hypothesis class \mathcal{H} is **non-uniformly learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\forall h$, $\exists m(\epsilon, \delta, h)$, $\forall \mathcal{D}$, $\forall S \sim \mathcal{D} m(\epsilon, \delta, h)$,
\[L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon \]

• **Theorem:** A hypothesis class \mathcal{H} is non-uniformly learnable it is a countable union of finite VC class ($\mathcal{H} = \bigcup_{i \in \mathbb{N}} \mathcal{H}_i$, $\text{VCdim}(\mathcal{H}_i) < \infty$)

• **Definition:** A hypothesis class \mathcal{H} is **“consistently learnable”** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\forall h \forall \mathcal{D}$, $\exists m(\epsilon, \delta, h, \mathcal{D})$, $\forall S \sim \mathcal{D} m(\epsilon, \delta, h, \mathcal{D})$,
\[L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon \]
Consistency

• \mathcal{X} countable (e.g. $\mathcal{X} = \{0,1\}^*$), $\mathcal{H} = \{\pm 1\}^\mathcal{X}$ (all possible functions)

• \mathcal{H} is uncountable, it is not a countable union of finite VC classes, and is thus not non-uniformly learnable

• Claim: \mathcal{H} is “consistently learnable” using
 \[ERM_\mathcal{H}(S)(x) = \text{MAJORITY}(y_i \text{ s.t. } (x_i, y_i) \in S) \]

• Proof sketch: for any \mathcal{D},
 • Sort \mathcal{X} by decreasing probability. The tail has diminishing probability and thus for any ϵ, there exists some prefix \mathcal{X}' of the sort s.t. the tail $\mathcal{X} \setminus \mathcal{X}'$ has probability mass $\leq \epsilon / 2$.
 • We’ll give up on the tail. \mathcal{X}' is finite, and so $\{\pm 1\}^\mathcal{H}$ is also finite.

• Why only “consistently learnable”?
 • Size of \mathcal{X}' required to capture $1 - \epsilon / 2$ of mass depends on \mathcal{D}.
Uniform and Non-Uniform Learnability

• **Definition**: A hypothesis class \mathcal{H} is **agnostically PAC-Learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\exists m(\epsilon, \delta)$, $\forall \mathcal{D}$, $\forall h$, $\forall S \sim \mathcal{D} m(\epsilon, \delta)$,
 $$L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon$$

• (Agnostically) PAC-Learnable iff $\text{VCdim}(\mathcal{H}) < \infty$

• **Definition**: A hypothesis class \mathcal{H} is **non-uniformly learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\forall h$, $\exists m(\epsilon, \delta, h)$, $\forall \mathcal{D}$, $\forall S \sim \mathcal{D} m(\epsilon, \delta, h)$,
 $$L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon$$

• Non-uniformly learnable iff \mathcal{H} is a countable union of finite VC classes

• **Definition**: A hypothesis class \mathcal{H} is **“consistently learnable”** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\forall h \forall \mathcal{D}$, $\exists m(\epsilon, \delta, h, \mathcal{D})$, $\forall S \sim \mathcal{D} m(\epsilon, \delta, h, \mathcal{D})$,
 $$L_{\mathcal{D}}(A(S)) \leq L_{\mathcal{D}}(h) + \epsilon$$
SRM In Practice

\[
SRM_p(S) = \arg \min_{h \in \mathcal{H}_r} L_S(h) + C \sqrt{-\log p(\mathcal{H}_r) + \text{VCdim}(\mathcal{H}_r) / m}
\]

- Bound is loose anyway. Better to view as bi-criteria optimization:
 \[
 \arg \min L_S(h) \text{ and } (-\log p(\mathcal{H}_r) + \text{VCdim}(\mathcal{H}_r))
 \]
 E.g. serialize as
 \[
 \arg \min L_S(h) + \lambda (-\log p(\mathcal{H}_r) + \text{VCdim}(\mathcal{H}_r))
 \]

- Typically \(-\log p(\mathcal{H}_r), \text{VCdim}(\mathcal{H}_r)\) monotone in “complexity” \(r\)
 \[
 \arg \min L_S(h) \text{ and } r(h)
 \]
 where
 \[
 r(h) = \min r \text{ s.t. } h \in \mathcal{H}_r
 \]
SRM as a Bi-Criteria Problem

\[
\arg\min L_s(h) \quad \text{and} \quad r(h)
\]

Regularization Path = \{\arg \min_h L_s(h) + \lambda \cdot r(h) \mid 0 \leq \lambda \leq \infty\}

Select \(\lambda\) using a validation set—exact bound not needed
Non-Uniform Learning: Beyond Cardinality

• MDL still essentially based on cardinality ("how many hypothesis are simpler then me") and ignores relationship between predictors.

• Can we treat continuous classes (e.g. linear predictors)? Move from cardinality? Take into account that many predictors are similar?

• **Answer 1:** prior $p(\mathcal{H})$ over hypothesis class

• **Answer 2:** PAC-Bayes Theory
 • Prior distribution P (not necessarily discrete) over $\mathcal{H}
PAC-Bayes

- Until now (MDL, SRM) we used a discrete “prior” (discrete “distribution” $p(h)$ over hypothesis, or discrete “distribution” $p(\mathcal{H}_r)$ over hypothesis classes)
- Instead: encode inductive bias as distribution P over hypothesis

- Use randomized (averaged) predictor h_Q, where for each prediction chooses $h \sim Q$ and predicts $h(x)$
 - $h_Q(x) = y$ w. p. $P_{h \sim Q}(h(x) = y)$
 - $L_D(h_Q) = \mathbb{E}_{h \sim Q}[L_D(h)]$

- **Theorem**: for any distribution P over hypothesis and any $\mathcal{D}, \forall_{S \sim \mathcal{D}^m}$
 $$|L_D(h_Q) - L_S(h_Q)| \leq \sqrt{\frac{KL(Q||P) + \log 2^m/\delta}{2(m-1)}}$$
KL-Divergence

\[
KL(Q||P) = \mathbb{E}_{h \sim Q} \left[\log \frac{dQ}{dP} \right]
\]

\[
= \sum_h q(h) \log \frac{q(h)}{p(h)} \quad \text{for discrete dist with pmf } p, q
\]

\[
= \int f_Q(h) \log \frac{f_Q(h)}{f_P(h)} \, dh \quad \text{for continuous distributions}
\]

• Measures how much Q deviates from Q
• \(KL(Q||P) \geq 0 \), and \(KL(Q||P) = 0 \) if and only if \(Q = P \)
• If \(Q(A) > 0 \) while \(P(A) = 0 \), \(KL(Q||P) = \infty \) (other direction is allowed)
• \(KL(H_1||H_0) \) = information per sample for rejecting \(H_0 \) when \(H_1 \) is true
• \(KL(Q||\text{Unif}(n)) = \log n - H(Q) \)
• \(I(X,Y) = KL(P(X,Y)||P(X)P(Y)) \)
PAC-Bayes

• For any distribution \mathcal{P} over hypothesis and any \mathcal{D}, $\forall_{S \sim \mathcal{D}}^{m}$

\[
|L_{\mathcal{D}}(h_{Q}) - L_{S}(h_{Q})| \leq \sqrt{\frac{KL(Q||P) + \log 2m/\delta}{2(m - 1)}}
\]

• Can only use hypothesis in the support of P (otherwise $KL(Q||P) = \infty$)

• For a finite \mathcal{H} with $P = \text{Unif}(\mathcal{H})$
 • Consider $Q = \text{point mass on } h$
 • $KL(Q||P) = \log |\mathcal{H}|$
 • Generalizes cardinality bound (up to $\log m$)

• More generally, for a discrete P and $Q = \text{point mass on } h$
 • $KL(Q||P) = \sum q(h) \log \frac{q(h)}{p(h)} = \frac{1}{p(h)}$
 • Generalizes MDL/SRM (up to $\log m$)

• For continuous P (eg over linear predictors or polynomials)
 • For $Q=\text{point-mass (or any discrete)}, \ KL(Q||P) = \infty$
 • Take h_{Q} as average over similar hypothesis (eg with same behavior on S)
PAC-Bayes

\[L_D(h_Q) \leq L_S(h_Q) + \sqrt{KL(Q||P) + \log \frac{2m}{\delta}} \]

• What learning rule does the PAC-Bayes bound suggest?

\[Q_\lambda = \arg \min_Q L_S(h_Q) + \lambda \cdot KL(Q||P) \]

• **Theorem:**

\[q_\lambda(h) \propto p(h) e^{-\beta L_S(h)} \]

for some “inverse temperature” \(\beta \)

• As \(\lambda \to \infty \) we ignore the data, corresponding to infinite temperature, \(\beta \to 0 \)

• As \(\lambda \to 0 \) we insist on minimizing \(L_S(h_Q) \), corresponding to zero temperature, \(\beta \to \infty \), and the prediction becomes ERM (or rather, a distribution over the ERM hypothesis in the support of \(P \))
PAC-Bayes vs Bayes

Bayesian approach:

• Assume $h \sim \mathcal{P}$,

• y_1, \ldots, y_m iid conditioned on h, with $y_i | x_i, h = \begin{cases} h(x_i), & \text{w. p. } 1 - \nu \\ -h(x_i), & \text{w. p. } \nu \end{cases}$

Use posterior:

$$p(h|S) \propto p(h)p(S|h)$$

$$= p(h) \prod_i p(x_i)p(y_i|x_i)$$

$$\propto p(h) \prod_i \left(\frac{\nu}{1-\nu} \right)^{[h(x_i) \neq y_i]}$$

$$= p(h)e^{-\beta L_s(h)}$$

where $\beta = m \log \frac{1-\nu}{\nu}$
PAC-Bayes vs Bayes

PAC-Bayes

- P encodes inductive bias, not assumption about reality

- SRM-type bound minimized by Gibbs distribution
 \[q_\lambda(h) \propto p(h)e^{-\beta L_S(h)} \]

- Post-hoc guarantee always valid (\forall_δ), with no assumption about reality
 \[L_D(h_Q) \leq L_S(h_Q) + \sqrt{\frac{KL(Q||P) + \log 2m/\delta}{2(m-1)}} \]

- Bound valid for any Q

- If inductive bias very different from reality, bound will be high

Bayesian Approach

- P is prior over reality

- Posterior given by Gibbs distribution
 \[q_\lambda(h) \propto p(h)e^{-\beta L_S(h)} \]

- Risk analysis assuming prior
PAC-Bayes: Tighter Version

- For any distribution P over hypothesis and any source distribution \mathcal{D}, $\forall \delta$
 \[KL \left(L_S(h_Q) \| L_D(h_Q) \right) \leq \frac{KL(Q\|P) + \log \frac{2m}{\delta}}{m - 1} \]

 where $KL(\alpha\|\beta) = \alpha \log \frac{\alpha}{\beta} + (1 - \alpha) \log \frac{1-\alpha}{1-\beta}$ for $\alpha, \beta \in [0,1]$

- This generalizes the realizable case ($L_S(h_Q) = 0$, and so only the $\frac{1}{m}$ term appears) and the agnostic case (where the $\sqrt{\frac{1}{m}}$ term is dominant)

- Numerically much much tighter

- Can also be used as a tail bound instead of Hoeffding or Bernstein also with cardinality or VC-based guarantees. Arises naturally in PAC-Bayes.