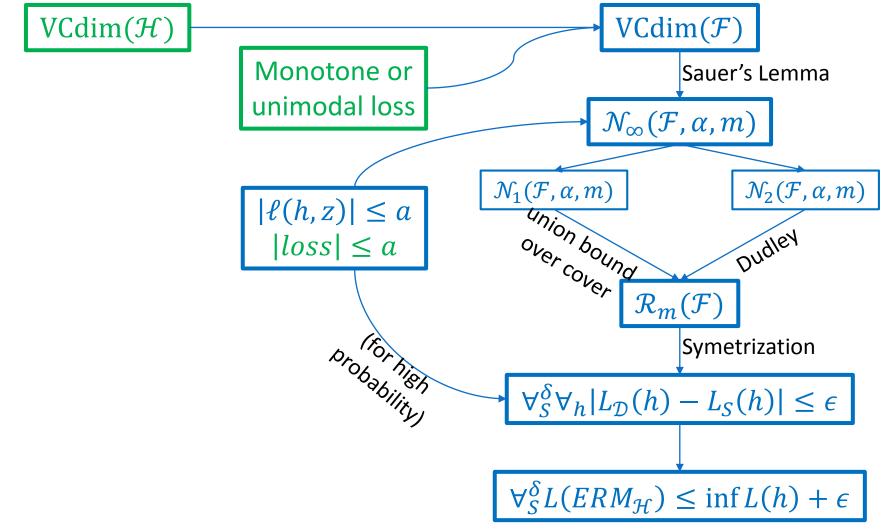
Computational and Statistical Learning Theory TTIC 31120

Prof. Nati Srebro

Lecture 10: Scale-Sensitive Classes

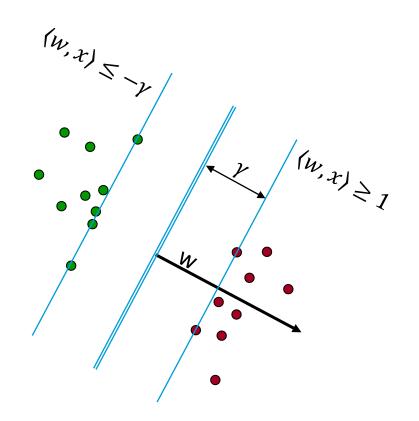
Hypothesis Class $\mathcal{F} = \{f_h(z) = \ell(h, z) \mid h \in \mathcal{H}\}$ $\mathcal{H} = \{h: \mathcal{X} \to \mathcal{Y}\}$ $= \{f_h(x, y) = loss(h(x); y) \mid h \in \mathcal{H}\}$



Beyond the VC Dimension

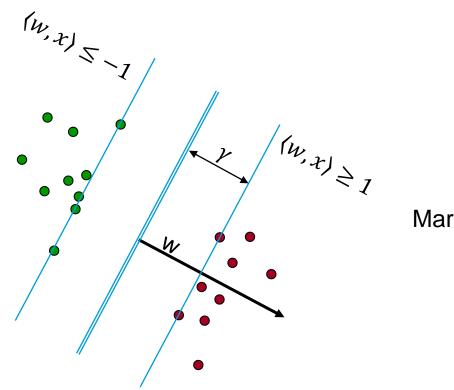
- So far: complexity control only via (VC subgraph) dimension ≈ number of parameters
- What is the role of the margin?
- Or of norm regularization, as in SVMs, LASSO, etc?

Reminder: Support Vector Machines



||w|| = 1

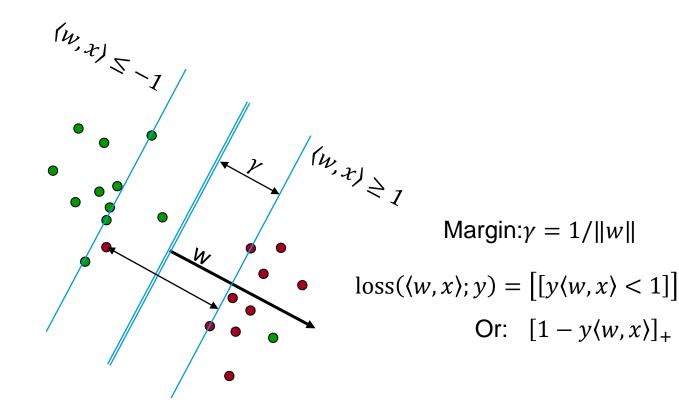
Reminder: Support Vector Machines



Margin: $\gamma = 1/||w||$

Reminder: Support Vector Machines

 $\min \|\|w\|, \quad L_S(w)$ Possibly serliazed as: $\min \frac{\lambda}{2} \|w\|^2 + L_S(w)$



Norm Constrained Linear Predictors

$$\mathcal{H}_B = \{ x \mapsto \langle w, x \rangle \mid w \in \mathbb{R}^d, \|w\|_2 \le B \}$$

- What is the VC-subgraph dimension of \mathcal{H}_B ?
 - Can shatter the *d* standard basis vectors e_1, e_2, \dots, e_d with thresholds $\theta_1 = \theta_2 = \dots = 0$ and arbitrarly small norm
 - For labels $y_1, ..., y_d$, set $w = \frac{B}{\sqrt{d}}(y_1, y_2, ..., y_d)$
 - $\operatorname{VCdim}(\mathcal{H}_B) = d$ (for any B > 0)
- VC-subgraph dimension, and Pollard's notion of shattering not relevant.
- Covering numbers still relevant and can depend on *B*
- How can we bound the covering number in this case?

Fat-Shattering Dimension

- **Definition**: $\mathcal{F} \subset \mathbb{R}^{\mathbb{Z}} \alpha$ -shatters $S = \{z_1, \dots, z_m\}$ if $\exists_{\theta_1, \theta_2, \dots, \theta_m \in \mathbb{R}}$ s.t. $\forall_{y_1, y_2, \dots, y_m \in \pm 1} \exists_{f \in \mathcal{F}}$ s.t. \forall_i : $y_i = +1 \Rightarrow f(z_i) > \theta_i + \alpha$ $y_i = -1 \Rightarrow f(z_i) < \theta_i - \alpha$
- **Definition**: The **fat shattering dimension** $\dim_{\alpha}(\mathcal{F})$ of \mathcal{F} is the largest m, s.t. there exists $S \in \mathbb{Z}^m$ that it α -shattered by \mathcal{F}
- Theorem: For $\mathcal{F} = \{f: \mathbb{Z} \to [-a, a]\}$ with $\dim_{\alpha}(\mathcal{F}) \leq D(\alpha)$: $\mathcal{N}_{p}(\mathcal{F}, \alpha, m) \leq \mathcal{N}_{\infty}(\mathcal{F}, \alpha, m) \leq \sum_{k=1}^{D(\alpha)} {m \choose k} \left(\frac{a}{\alpha}\right)^{k} \leq \left(\frac{em}{D(\alpha)} \frac{a}{\alpha}\right)^{D(\alpha)}$

Fat-Shattering of Linear Predictors

$$\mathcal{H}_B = \{ x \mapsto \langle w, x \rangle \mid w \in \mathbb{R}^d, \|w\|_2 \le B \}$$

- For $\mathcal{X} = \mathbb{R}^d$ (i.e. $\mathcal{H}_B = \{f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = \langle w, x \rangle, w \in \mathbb{R}^d, \|w\|_2 \leq B\}$) • $\dim_{\alpha}(\mathcal{H}_B) = d$
- For $\mathcal{X} = \{x \in \mathbb{R}^d \mid ||x|| \le R\}$
 - $\dim_0(\mathcal{H}_B) = VCdim(\mathcal{H}_B) = d$
 - $\dim_{\alpha}(\mathcal{H}_B) \leq d$, but maybe smaller?

Fat-Shattering Linear Predictors

 $\mathcal{X}_R = \{ x \in \mathbb{R}^d \mid \|x\| \le R \} \qquad \mathcal{H}_B = \{ x \mapsto \langle w, x \rangle \mid w \in \mathbb{R}^d, \|w\|_2 \le B \}$

Claim: dim_{α}(\mathcal{H}_B) < $\left(\frac{BR}{\alpha}\right)^2$ (as a predictors over \mathcal{X}_R)

Proof: Consider $x_1, ..., x_m$ that can be α -shattered with thresholds $\theta_1, ..., \theta_m$. For every sign pattern $y \in \pm 1^m \exists w(y)$ s.t. $\forall_i y_i(\langle w(y), x_i \rangle - \theta_i) > \alpha$ And so:

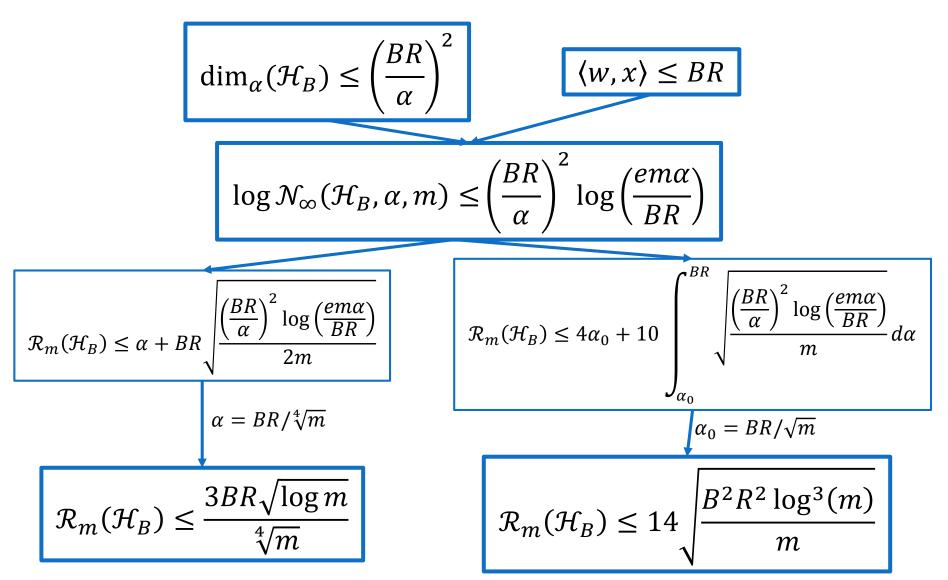
$$m\alpha < \sum_{i} y_{i} \left(\langle w(y), x_{i} \rangle - \theta_{i} \right) = \langle w(y), \sum_{i} y_{i} x_{i} \rangle - \sum_{i} y_{i} \theta_{i} \le \|w\| \|\sum_{i} y_{i} x_{i}\| - \sum_{i} y_{i} \theta_{i}$$

Considering y_i as independent random signs and taking an expectation over them:

$$\begin{split} m\alpha &< B \cdot \mathbb{E}_{y}[\|\sum_{i} y_{i} x_{i}\|] - \mathbb{E}_{y}[\sum_{i} y_{i} \theta_{i}] \leq B \sqrt{\mathbb{E}_{y}\left[\left\|\sum_{i} y_{i} x_{i}\right\|^{2}\right]} \\ &= B \sqrt{\mathbb{E}\left[\sum_{i} \|y_{i} x_{i}\|^{2} + \sum_{i \neq j} \langle y_{i} x_{i}, y_{j} x_{j} \rangle\right]} = B \sqrt{\sum_{i} \mathbb{E}\left[y_{i}^{2}\right] \|x_{i}\|^{2} + \sum_{i \neq j} \mathbb{E}\left[y_{i} y_{j}\right] \langle x_{i}, x_{j} \rangle} \leq BR\sqrt{m} \\ \Rightarrow m\alpha < BR\sqrt{m} \Rightarrow m < \left(\frac{BR}{\alpha}\right)^{2} \end{split}$$

Norm-Regularized Linear Predictors

 $\mathcal{X}_R = \{ x \in \mathbb{R}^d \mid \|x\| \le R \} \qquad \mathcal{H}_B = \{ x \mapsto \langle w, x \rangle \mid w \in \mathbb{R}^d, \|w\|_2 \le B \}$



Directly Bounding the Rademacher Complexity

$$\mathcal{R}_{S}(\mathcal{H}) = \mathbb{E}_{\xi} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \xi_{i} h(x_{i}) \right]$$
• $\mathcal{R}_{S}(\mathcal{H}_{B}) = \mathbb{E}_{\xi} \left[\sup_{\|w\| \leq B} \frac{1}{m} \sum_{i} \xi_{i} \langle w, x_{i} \rangle \right] = \frac{1}{m} \mathbb{E}_{\xi} \left[\sup_{\|w\| \leq B} \langle w, \sum_{i} \xi_{i} x_{i} \rangle \right]$

$$= \frac{1}{m} \mathbb{E}_{\xi} [B \| \sum_{i} \xi_{i} x_{i} \|] \leq \frac{B}{m} \sqrt{\mathbb{E} \left[\left\| \sum_{i} \xi_{i} x_{i} \right\|^{2} \right]}$$

$$= \frac{B}{m} \sqrt{\sum_{i} \mathbb{E} [\xi_{i}^{2}]} \|x_{i}\|^{2} + \sum_{i \neq j} \mathbb{E} [\xi_{i} \xi_{j}] \langle x_{i}, x_{j} \rangle = \sqrt{\frac{B^{2} \left(\frac{1}{m} \sum_{i} \|x_{i}\|^{2} \right)}{m}}$$

- Simpler and tighter (avoids log-factors) than going via fat-shattering
- $\mathcal{R}_{S}(\mathcal{H}_{B})$ only depends on average $||x_{i}||^{2}$ inside S.
 - Fat-shattering dimension depends on maximum norm in \mathcal{X}_B

$$\Rightarrow \mathcal{R}_{\mathcal{D}^m}(\mathcal{H}_B) \leq \sqrt{\frac{B^2 \mathbb{E}[\|x\|^2]}{m}} \text{ (distribution-dependent bound)}$$

• Actually, dependence on \mathcal{R}_S enough: $\forall_S^{\delta} \forall_{f \in \mathcal{F}} |\mathbb{E}_{\mathcal{D}} f - \mathbb{E}_S f| \leq 2\mathcal{R}_S(\mathcal{F}) + 4a \sqrt{\frac{\log_{\delta}^2}{m}}$

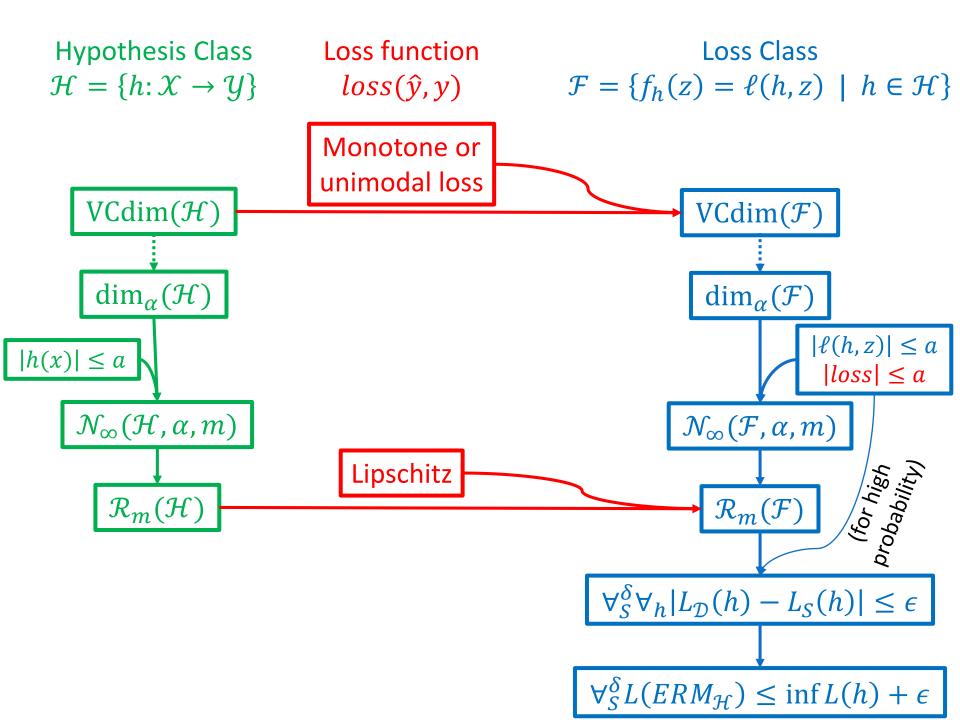
From Hypothesis to Loss Class

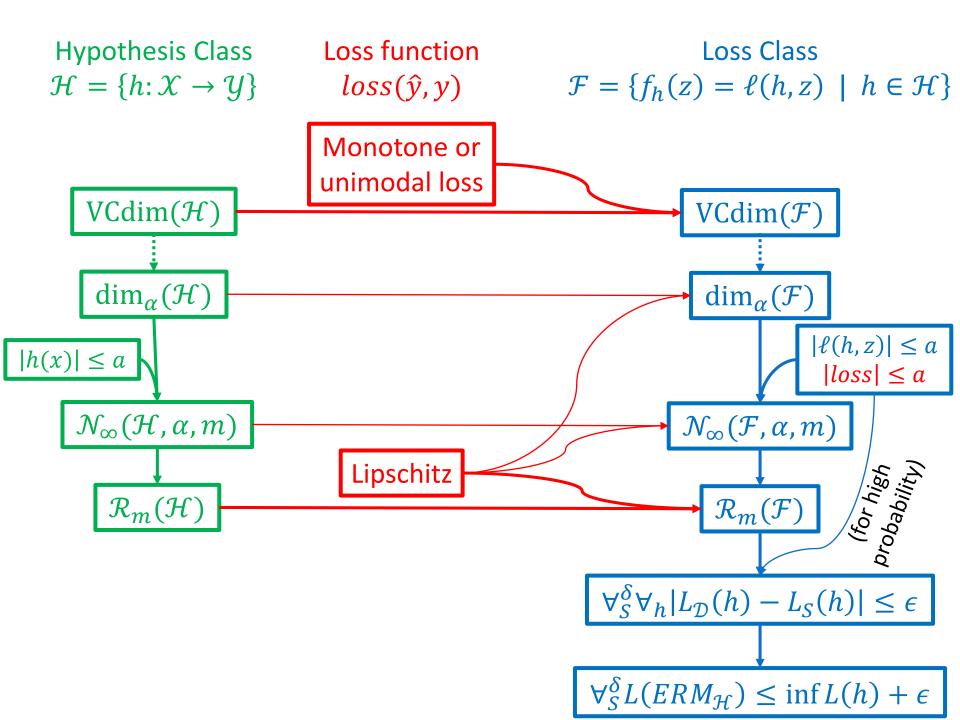
- **Definition**: $loss: \mathbb{R} \times \mathcal{Y} \to \mathbb{R}$ (i.e. with $\hat{\mathcal{Y}} = \mathbb{R}$) is *G***-Lipschitz** (with respect to \hat{y}) if $\forall y, \hat{y}_1, \hat{y}_2, |loss(\hat{y}_1; y) loss(\hat{y}_2; y)| \le G \cdot |\hat{y}_1 \hat{y}_2|$ (if differentiable, equivalent to $|loss'(\hat{y}; y)| \le G$)
 - $loss(\hat{y}; y) = \left[[sign(\hat{y}) \neq y] \right]$ No!
 - $loss(\hat{y}; y) = [1 \hat{y}y]_+$ G=1
 - $loss(\hat{y}; y) = log(1 + e^{-\hat{y}y})$ G=1
 - $loss(\hat{y}; y) = |\hat{y} y|$
 - $loss(\hat{y}; y) = (\hat{y} y)^2$

- Not over \mathbb{R} . G = 4a if $|y|, |\hat{y}| \le a$
- Lipschitz Contraction Lemma: For $\mathcal{F} = \{(x, y) \mapsto loss(h(x); y) \mid h \in \mathcal{H}\}$, if the loss is *G*-Lipschitz, then

G=1

$$\mathcal{R}_{S}(\mathcal{F}) \leq G \cdot \mathcal{R}_{S}(\mathcal{H})$$





Parametric vs Scale Sensitive

- Parametric Complexity Control
 - Finite VC (subgraph) dimension
 - Only depend on structure of loss (monotone, unimodal), not on continuity
 - log N_∞(F, α, m) only depends logarithmically on α
 → no need for Dudley (up to log factors)
- Scale-Sensitive Control
 - VC subgraph dimension might be infinite
 - Scale-sensitive hypothesis class: fat shattering dim decreases with α (typical scaling is $1/\alpha^2$)
 - Scale-sensitive loss: loss must be Lipschitz continuous
 - log N_∞(F, α, m) depends on α (typically as 1/α²)
 → Need Dudley in order to get correct dependence

Regularized Linear Prediction

• For a *G*-Lipschitz loss function:

$$\forall_{S\sim\mathcal{D}^{m}}^{\delta}\forall_{\|w\|\leq B} |L_{S}(w) - L_{\mathcal{D}}(w)| \leq 2G \sqrt{\frac{B^{2}\mathbb{E}[\|x\|^{2}]\log 2/\delta}{m}}$$

$$\Rightarrow \text{ sample complexity } m = O\left(\frac{B^{2}\mathbb{E}[\|x\|^{2}]}{\epsilon^{2}}\right)$$

- No dependence on the dimensionality!
- Valid even for linear prediction in very high, even infinite, dimensions—as long as data is bounded (or at least E[||x||²] is bounded) and there is a good low-norm predictor, we can learn with sample complexity ∝ ||w^{*}||².

Margin-Based Learning

- Back to the geometrical margin:
 - Can we learn in high (infinite) dimensions is if we have a margin?
 - How does the sample complexity depend on the margin?
- Geometric margin: $y\langle w, x \rangle \ge \gamma$ for ||w|| = 1
 - How can we learn if $\exists_{\|w\|=1} \Pr[y\langle w, x \rangle \ge \gamma] = 1$ (or close to 1), with large γ ?
- We'll re-normalize to: $y\langle w, x \rangle \ge 1$ with $||w|| = 1/\gamma$
 - $loss^{mrg}(\hat{y}; y) = \left[[\hat{y}y < 1] \right]$
 - How can we learn if $L_{\mathcal{D}}^{m}(w)$ is small for some low-norm w?
- What can we say about:

$$ERM_B^{mrg}(S) = \arg\min_{\|w\| \le B} L_S^{mrg}(w)$$

Margin and Ramp Loss

- We want to rely on: $loss^{mrg}(\hat{y}; y) = [[\hat{y}y < 1]]$
- Use the 1-Lipschitz ramp loss: $loss^{ramp}(\hat{y}; y) = \begin{cases} 0 & \hat{y}y \ge 1\\ 1 \hat{y}y & 0 < \hat{y}y < 1\\ 1 & \hat{y}y < 0 \end{cases}$

 $loss^{01} \leq loss^{ramp} \leq loss^{mrg}$

• For any $||w|| \leq B$, with probability $\geq 1 - \delta$:

$$L_{\mathcal{D}}^{01}\left(ERM_{B}^{mrg}(S)\right) \leq L_{\mathcal{D}}^{ramp}\left(ERM_{B}^{mrg}(S)\right) \leq L_{S}^{ramp}\left(ERM_{B}^{mrg}(S)\right) + 2\sqrt{\frac{B^{2}R^{2} + \log^{4}/\delta}{m}}$$
$$\leq L_{S}^{mrg}\left(ERM_{B}^{mrg}(S)\right) + 2\sqrt{\frac{B^{2}R^{2} + \log^{4}/\delta}{m}} \leq L_{S}^{mrg}(w) + 2\sqrt{\frac{B^{2}R^{2} + \log^{4}/\delta}{m}}$$
$$\leq L_{\mathcal{D}}^{mrg}(w) + 2\sqrt{\frac{B^{2}R^{2} + \log^{4}/\delta}{m}}$$
Single Hoefding bound (no need for union bound)

Margin-Based Learning Guarantee

• W.p.
$$\geq 1 - \delta$$
, $L_{\mathcal{D}}^{01}\left(ERM_{B}^{mrg}(S)\right) \leq \inf_{\|w\| \leq B} L_{\mathcal{D}}^{mrg}(w) + 3\sqrt{\frac{B^{2}\mathbb{E}\|x\|^{2} + \log\frac{4}{\delta}}{m}}$

- Is this a PAC-learning guarantee?
- In terms of margin: if the data is separable by margin γ except for L^* fraction of the points, we can find a predictor with 0/1 error $L^* + \epsilon$ using $O\left(\frac{R^2}{\gamma^2\epsilon^2}\right)$ samples.
- Also for hinge loss:

$$\forall_{S \sim \mathcal{D}^m}^{\delta} L_{\mathcal{D}}^{01} \left(ERM_B^{hinge}(S) \right) \leq \inf_{\|w\| \leq B} L_{\mathcal{D}}^{hinge}(w) + 3\sqrt{\frac{B^2 R^2 \log \frac{4}{\delta}}{m}}$$

Surrogate Losses

- Minimizing 0/1 error is problematic
 - Computationally intractable
 - Not scale-sensitive—can't learn in high dim even with norm regularization
- Instead, minimize upper bound on 0/1 error
- Minimizing margin loss or ramp loss
 - Upper bound on 0/1 error
 - Scale sensitive—can generalize even in infinite dim
 - But still not tractable
- Minimize hinge loss
 - Upper bound on 0/1 error
 - Scale sensitive (Lipschitz continuous) → generalization
 - Convex → tractability
 - But: to ensure success, need low $L_{D}^{hinge}(w)$, not enough low $L_{D}^{01}(w)$ or $L_{D}^{mrg}(w)$

Other Regularized Classes

- "Geometric (Euclidean) Margin" corresponds to the Euclidean norm $||w||_2$
- Separating to a scale-sensitive loss (e.g. hinge loss, logistic loss, exp-loss, the intractable margin loss) and a scale-sensitive class, allows us to consider other "margins"
- E.g. ℓ_1 margin, corresponding to $y\langle w, x \rangle > 1$ with low $||w||_1$

 $\Rightarrow \mathcal{H}_B = \{ x \mapsto \langle w, x \rangle \mid \|w\|_1 \le B \}$

- More generally, can define such a class hierarchy for any regularizer on w
- To ensure tractability, we will focus on linear prediction, with a convex regularizer r(w), and a convex loss function:

$$\mathcal{H}_B = \{ x \mapsto \langle w, \phi(x) \rangle \mid r(w) \le B \}$$

This ensures that the ERM/SRM problem is convex:

$$\min_{r(w) \le B} L_S(w)$$
 or $\min L_S(w) + \lambda r(w)$

Convex Learning → Linear Learning

- Consider supervised learning with a "non-degenerate" $loss(\hat{y}; y)$
- Claim: $\ell(h_w, (x, y))$ will be convex in a parametrization w only if $h_w(x)$ is affine in w. I.e.: $h_w(x) = \langle w, \phi(x) \rangle + \phi_0(x)$
- Proof sketch: if the loss is non-degenerate, it must sometimes (for some value of y) be increasing in ŷ and sometimes decreasing. If its increasing, for loss(h_w(x); y) to be convex in w, we must have h_w(x) convex in w. But if its decreasing, it must be concave in w.
- Conclusion: the only form of tractable *supervised* learning is linear learning with a convex loss and convex regularizer or constraint on w.

Generalized Linear Learning

- Different loss functions
 - Hinge, logistic, exp-loss, multi-class, structured, etc
- Different regularizers
 - ℓ_2, ℓ_1 (LASSO), group-regularizers, matrix-regularizers, etc
- Different feature spaces and different computationally efficient ways of representing them
 - Kernels
 - Boosting (implicit through weak learning oracle)
 - Indirectly
- Statistical Complexity of such classes?
- Computational efficiency?
- Relationships and interpertations