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Hypothesis Class
H={h:X - Y}

Loss Class
F ={fn(z) =¢(h,z) | h € H}
= {fn(x,y) = loss(h(x);y) | h € H}

| vedim (%) |

{ vCdim(F) |

Monotone or
unimodal loss

\

Sauer’s Lemma

[4(h,z)| < a
|loss| < a

Symetrization

—Ls(h)| <€ ‘

| VL(ERMy¢) < infL(R) + € |




Beyond the VC Dimension

 So far: complexity control only via (VC subgraph)
dimension = number of parameters

* What is the role of the margin?
* Or of norm regularization, as in SVMs, LASSO, etc?



Reminder: Support Vector Machines

Iwll =1




Reminder: Support Vector Machines

Margin:y = 1/||w||




Reminder: Support Vector Machines

min  |lwl|,  Ls(w)

. . . A
Possibly serliazed as: min~ Iwl|? + Lg(w)

Margin:y = 1/||w||

loss({w, x); y) = [[y(w,x) < 1]]
Oor: [1—y(w,x)],




Norm Constrained Linear Predictors
Hg ={x (wx) | weR%|w|, <B}

* What is the VC-subgraph dimension of H5?

* Can shatter the d standard basis vectors ey, e;, ..., e4 with
thresholds 6; = 6, = --- = 0 and arbitrarly small norm

B
* For labels yq,...,y4, sS€t W = 7a V1 Y2 - Ya)
 VCdim(Hg) = d (forany B > 0)

e VC-subgraph dimension, and Pollard’s notion of
shattering not relevant.

* Covering numbers still relevant and can depend on B

* How can we bound the covering number in this case?



Fat-Shattering Dimension

* Definition: F ¢ R? a-shatters S = {zy, ...,z,,}if 39, 9, 0 eRr St

Vyllyzl_"’ymeilafef' S.t. Vll
yi=+1=f(z;) >0; +«a
yi=—1=f(z)<60,—a

* Definition: The fat shattering dimension dim  (F) of F is the largest
m, s.t. there exists S € Z™ that it a-shattered by F

* Theorem: For F = {f:Z — [—a, a]} with dim,(F) < D(a):
D(a)

N, (F,a,m) < Noo(F,a,m) < z (7:) (g)k < (Deg;l) g)D(“)

k=1




Fat-Shattering of Linear Predictors
Hg = {x - (w,x) | weRY Iwll, < B)

* ForX = R%
(ile. g ={f:R* >R | f(x) = (w,x),w € R%, ||w|l, < B})
¢ dlma(}[B) = d

* ForX = {x € R? | ||x]| £ R}
* dim,(Hp) < d, but maybe smaller?



Fat-Shattering Linear Predictors

Xp=1{x € R? | llx|l < R} Hp={x—»>{(wx) | we R, lwll, < B}

. BR? .
Claim: dim, (Hp) < (7) (as a predictors over Xg)

Proof: Consider x4, .., X, that can be a-shattered with thresholds 64, ..., 8,,,. For every sign
patterny € +1™ Iw(y) s.t. V;y; (w(y), x;) — 6;) > «

And so:
ma < Y;y; (W), x;) — 0;) = (w), X yix;) — 2 vi0; < [Iwll|X; yixill — X; v:0;
Considering y; as independent random signs and taking an expectation over them:

ma < BBy (1%, yixilll - By %0, < B[E, (1% x|
= B\/E[Zi”%xillz + X Vixe %) = B\/ZiE[yl'z]”xillz + Ziijw(xi,xj) < BRym

-)ma<BR\/ﬁ-)m<(%)2




Norm-Regularized Linear Predictors

Xr={x €R* | |Ix]| < R}

Hg ={x- (w,x) | weR?|w|,<B}

2

dim,(Hp) < (?) (w,x) < BR

2
< | -
log Now (Hg, a, m) _( - ) log( 2R )

BR ema

=

e _

Ro(Hp) < a + BR\/

(@)21 (ema
a) °5\UBR

)

2m

a = BR/3im

R (Hp) <

3BR,/logm

ym

Rm(}[B) < 4‘a0 + 10 da

m

FBR 3
](Bf) o8 (412)

g

ao == BR/\/E

B?R?log3(m)
m

R (Hp) < 14 J




Directly Bounding the Rademacher Complexity
Rs(7) = B [sup - Y%, £ih(x) |
* Rs(Hp) = E¢ [SUPHWHSB—Zifi(W; xi)] = —Eg [“SUP (W,Zifixi)]

w||<B
=—[Eg[B||Z Eixill] < \/ [”Z flxl“ ]

CEHESHEALY
V m

-2 JZi E[7]l1x:112 + ;. BL &:€1(x0, %)) =

* Simpler and tighter (avoids log-factors) than going via fat-shattering

« Ro(Hp) only depends on average ||x;]|? inside S.
* Fat-shattering dimension depends on maximum norm in Xz

B2E[|lx|I?] | 4o o o o
> Rpym(Hg) < - (distribution-dependent bound)

* Actually, dependence on R enough: log?
VeVrer|Epf — Esf| < 2Rs(F) + 461\/—



From Hypothesis to Loss Class

» Definition: loss: R X Y —= R (i.e. with Y = R) is G-Lipschitz (with respect

to 9) if Vy, 91,92, lloss(J1;y) — loss(§; )| < G - |91 — F-|
(if differentiable, equivalent to |loss'(¥; y)| < G)

loss(®;y) = |[sign(®) # y]] No!

* loss(y;y) = [1 =yl G=1
e loss(y;y) = log(l + e‘yy) G=1
* loss(J;y) = |9 -yl G=1
* loss(P;y) = (§ — y)? Not over R. G = 4aif |y|,|P]| < a

* Lipschitz Contraction Lemma: For F = {(x,y) ~ loss(h(x);y) | h € H},

if the loss is G-Lipschitz, then
Rs(F) <G -Rs(H)



Hypothesis Class Loss function Loss Class
H ={h:X - Y} loss(9,y) F={fn(2) =2(h,z) | h €I}

Monotone or

I unimodal loss
| vedim(#0) | VCdim(F) |

| dim,, (7) | | dim;(T) |
[ 1hol < a |\l \/ lﬁl(fgszl) lfaa
| Neo (H, a,m) | | No (F,a,m) |

! | Lipschitz F\ ,
| R (70) | ~| R

[ VoV, ILy () — Ls(W)| < € |

| V3L(ERMy¢) < infL(R) + € |




Hypothesis Class
H={hX->TY}

Loss function
loss(¥,y)

Loss Class
F ={fn(z) =4(h,z) | he H}

Monotone or
unimodal loss

| vCdim (%) |

| dim,, (%) |

\—| vCdim(F) |

| 1h(0)| Sal\l

'JI dim, (F) |
[¢(h,z)| < a
|loss| < a
R

|]\foo(7-[,a,m)l

1
| Lipschitz

| R (30) |

[ VoV, ILy () — Ls(W)| < € |

| V3L(ERMy¢) < infL(R) + € |




Parametric vs Scale Sensitive

e Parametric Complexity Control
* Finite VC (subgraph) dimension
* Only depend on structure of loss (monotone, unimodal), not
on continuity

* log N, (F, @, m) only depends logarithmically on «
=>» no need for Dudley (up to log factors)

* Scale-Sensitive Control
e VC subgraph dimension might be infinite

» Scale-sensitive hypothesis class: fat shattering dim decreases
with a (typical scaling is 1/a?)
* Scale-sensitive loss: loss must be Lipschitz continuous
* log N, (F, a,m) depends on « (typically as 1/a?)
=>» Need Dudley in order to get correct dependence



Regularized Linear Prediction

* For a G-Lipschitz loss function:

B?E[||x||*]log2/6
\ m

vg~1)mv||w||s3 |ILs(w) — Lp(w)| < 2G

BZIE[nqu])

€2

=>» sample complexity m = O (

* No dependence on the dimensionality!

* Valid even for linear prediction in very high, even infinite,
dimensions—as long as data is bounded (or at least E[||x||?] is
bounded) and there is a good low-norm predictor, we can learn
with sample complexity « [[w*||?.



Margin-Based Learning

Back to the geometrical margin:
e Can we learn in high (infinite) dimensions is if we have a margin?
* How does the sample complexity depend on the margin?

Geometric margin: y(w, x) = y for ||w]|| = 1
* How can we learn if 3,,=1 Prly{w,x) = y] = 1 (or close to 1),
with large y?
We’'ll re-normalize to: y(w, x) = 1 with ||w]|| = 1/y
* loss™9(9;y) = [[yy < 1]]
* How can we learn if L7} (w) is small for some low-norm w?

What can we say about:
ERM"™®(S) = arg min_ L5 (w)
Wil



Margin and Ramp Loss

* We want to rely on: loss™9(y;y) = [[yy < 1]]

0 yy =1
 Use the 1-Lipschitz ramp loss: loss™P(y;y) =<1 -9y 0<yy <1
1 yy <0

loss?! < loss™@MP < [pss™"9

* Forany ||w]|| < B, with probability > 1 — §:

B2R?+log*/s

L9 (ERMZTI(S)) < L™ (ERM;’"Q (8)) < L™ (ERM;”’”Q (5)) +2 \/

B2%R2+log* B2R?+log*
< [ (ERM;nrg(S)) + 2\/ = s < [779 (w) + 2\/ " /s

B2RZ%+log*
SL%"’TQ(W)+2\/ % /s

\

Single Hoefding bound (no need for union bound)



Margin-Based Learning Guarantee

W 01 mrg rg 32E||x||2+1og§
p.21-6, 1% (ERMZT(S)) < Jnf Ly (w) + —

Is this a PAC-learning guarantee?

In terms of margin: if the data is separable by margin y except for L*
fraction of the points, we can find a predictor with 0/1 error L* + €

using O ( R”

v 62) samples.

Also for hinge loss:

4
. B?R?log <
v8 o mL9 (ERM{;‘"QQ(S)) inf LMnge () + 3 \/ — 0



Surrogate Losses

Minimizing 0/1 error is problematic
* Computationally intractable
* Not scale-sensitive—can’t learn in high dim even with norm
regularization
Instead, minimize upper bound on 0/1 error

Minimizing margin loss or ramp loss
* Upper bound on 0/1 error
* Scale sensitive—can generalize even in infinite dim
* But still not tractable

Minimize hinge loss
* Upper bound on 0/1 error
 Scale sensitive (Lipschitz continuous) =2 generalization

* Convex = tractability

hinge

* But: to ensure success, need low L “~ (w), not enough low

Ly (w) or L 9 (w)



Other Regularized Classes

“Geometric (Euclidean) Margin” corresponds to the Euclidean norm ||w|],

Separating to a scale-sensitive loss (e.g. hinge loss, logistic loss, exp-loss,
the intractable margin loss) and a scale-sensitive class, allows us to
consider other “margins”

E.g. £1 margin, corresponding to y(w, x) > 1 with low ||w/||;
> Hg={x(wx) | |lw|]l{ £B}

More generally, can define such a class hierarchy for any regularizer on w

To ensure tractability, we will focus on linear prediction, with a convex
regularizer r(w), and a convex loss function:

Hpg = {x = (w,¢(x)) | r(w) < B}
This ensures that the ERM/SRM problem is convex:

min, )< Ls (W) or min Ls(w) + Ar(w)



Convex Learning =» Linear Learning

 Consider supervised learning with a “non-degenerate” loss(y;y)

* Claim: ?(h,,, (x,y)) will be convex in a parametrization
w only if h,,(x) is affinein w. l.e.:

hy, (x) = (w, p(x)) + Po(x)

* Proof sketch: if the loss is non-degenerate, it must sometimes (for some
value of y) be increasing in  and sometimes decreasing. If its
increasing, for loss(h,, (x); y) to be convex in w, we must have h,, (x)
convex in w. But if its decreasing, it must be concave in w.

* Conclusion: the only form of tractable supervised learning is linear
learning with a convex loss and convex regularizer or constraint on w.



Generalized Linear Learning

e Different loss functions
* Hinge, logistic, exp-loss, multi-class, structured, etc

* Different regularizers
e £,, ¥1 (LASSO), group-regularizers, matrix-regularizers, etc

* Different feature spaces and different computationally
efficient ways of representing them

* Kernels
* Boosting (implicit through weak learning oracle)
* Indirectly

e Statistical Complexity of such classes?
* Computational efficiency?
* Relationships and interpertations



