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VCdim(ℋ) VCdim(ℱ)

𝒩∞(ℱ, 𝛼,𝑚)

𝒩1(ℱ, 𝛼,𝑚) 𝒩2(ℱ, 𝛼,𝑚)

∀𝑆
𝛿∀ℎ 𝐿𝒟 ℎ − 𝐿𝑆 ℎ ≤ 𝜖

∀𝑆
𝛿𝐿 𝐸𝑅𝑀ℋ ≤ inf 𝐿 ℎ + 𝜖

Loss Class
ℱ = 𝑓ℎ 𝑧 = ℓ ℎ, 𝑧 | ℎ ∈ ℋ

= 𝑓ℎ 𝑥, 𝑦 = 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦 | ℎ ∈ ℋ

Hypothesis Class
ℋ = ℎ:𝒳 → 𝒴

ℛ𝑚(ℱ)

ℓ ℎ, 𝑧 ≤ 𝑎
𝑙𝑜𝑠𝑠 ≤ 𝑎

Monotone or
unimodal loss

Sauer’s Lemma

Symetrization



Beyond the VC Dimension

• So far: complexity control only via (VC subgraph) 
dimension ≈ number of parameters

• What is the role of the margin?

• Or of norm regularization, as in SVMs, LASSO, etc? 



Reminder: Support Vector Machines

𝑤 = 1



Reminder: Support Vector Machines

Margin:𝛾 = 1/‖𝑤‖



Reminder: Support Vector Machines

Margin:𝛾 = 1/‖𝑤‖

Or:   1 − 𝑦 𝑤, 𝑥 +

Possibly serliazed as: min
𝜆

2
𝑤 2 + 𝐿𝑆(𝑤)

loss 𝑤, 𝑥 ; 𝑦 = 𝑦 𝑤, 𝑥 < 1

min 𝑤 , 𝐿𝑆 𝑤



Norm Constrained Linear Predictors

ℋ𝐵 = {𝑥 ↦ 𝑤, 𝑥 | 𝑤 ∈ ℝ𝑑 , 𝑤 2 ≤ 𝐵 }

• What is the VC-subgraph dimension of ℋ𝐵?
• Can shatter the 𝑑 standard basis vectors 𝑒1, 𝑒2, … , 𝑒𝑑 with 

thresholds 𝜃1 = 𝜃2 = ⋯ = 0 and arbitrarly small norm
• For labels 𝑦1, … , 𝑦𝑑, set 𝑤 =

𝐵

𝑑
(𝑦1, 𝑦2, … , 𝑦𝑑)

• VCdim ℋ𝐵 = 𝑑 (for any 𝐵 > 0)

• VC-subgraph dimension, and Pollard’s notion of 
shattering not relevant.

• Covering numbers still relevant and can depend on 𝐵

• How can we bound the covering number in this case?



Fat-Shattering Dimension
• Definition: ℱ ⊂ ℝ𝒵 𝜶-shatters 𝑆 = {𝑧1, … , 𝑧𝑚} if ∃𝜃1,𝜃2,…,𝜃𝑚∈ℝ s.t.
∀𝑦1,𝑦2,…,𝑦𝑚∈±1∃𝑓∈ℱ s.t. ∀𝑖:

𝑦𝑖 = +1 ⇒ 𝑓 𝑧𝑖 > 𝜃𝑖 + 𝛼
𝑦𝑖 = −1 ⇒ 𝑓 𝑧𝑖 < 𝜃𝑖 − 𝛼

• Definition: The fat shattering dimension dim𝛼 ℱ of ℱ is the largest 
𝑚, s.t. there exists 𝑆 ∈ 𝒵𝑚 that it 𝛼-shattered by ℱ

• Theorem: For ℱ = 𝑓:𝒵 → −𝑎, 𝑎 with dim𝛼 ℱ ≤ 𝐷(𝛼):

𝒩𝑝 ℱ, 𝛼,𝑚 ≤ 𝒩∞ ℱ, 𝛼,𝑚 ≤  

𝑘=1

𝐷(𝛼)
𝑚

𝑘

𝑎

𝛼

𝑘

≤
𝑒𝑚

𝐷 𝛼

𝑎

𝛼

𝐷 𝛼



Fat-Shattering of Linear Predictors

ℋ𝐵 = {𝑥 ↦ 𝑤, 𝑥 | 𝑤 ∈ ℝ𝑑 , 𝑤 2 ≤ 𝐵 }

• For 𝒳 = ℝ𝑑

(i.e. ℋ𝐵 = 𝑓:ℝ𝑑 → ℝ | 𝑓 𝑥 = 𝑤, 𝑥 , 𝑤 ∈ ℝ𝑑 , 𝑤 2 ≤ 𝐵 )

• dim𝛼 ℋ𝐵 = 𝑑

• For 𝒳 = 𝑥 ∈ ℝ𝑑 | 𝑥 ≤ 𝑅

• dim0 ℋ𝐵 = 𝑉𝐶𝑑𝑖𝑚 ℋ𝐵 = 𝑑

• dim𝛼 ℋ𝐵 ≤ 𝑑, but maybe smaller?



Fat-Shattering Linear Predictors

𝒳𝑅 = 𝑥 ∈ ℝ𝑑 | 𝑥 ≤ 𝑅 ℋ𝐵 = {𝑥 ↦ 𝑤, 𝑥 | 𝑤 ∈ ℝ𝑑 , 𝑤 2 ≤ 𝐵 }

Claim: dim𝛼(ℋ𝐵) <
𝐵𝑅

𝛼

2
(as a predictors over 𝒳𝑅)

Proof: Consider 𝑥1, . . , 𝑥𝑚 that can be 𝛼-shattered with thresholds 𝜃1, … , 𝜃𝑚.  For every sign 
pattern 𝑦 ∈ ±1𝑚 ∃𝑤(𝑦) s.t. ∀𝑖𝑦𝑖 𝑤 𝑦 , 𝑥𝑖 − 𝜃𝑖 > 𝛼

And so:

𝑚𝛼 <  𝑖 𝑦𝑖 𝑤 𝑦 , 𝑥𝑖 − 𝜃𝑖 = 𝑤 𝑦 , 𝑖 𝑦𝑖𝑥𝑖 −  𝑖 𝑦𝑖𝜃𝑖 ≤ 𝑤  𝑖 𝑦𝑖𝑥𝑖 −  𝑖 𝑦𝑖𝜃𝑖

Considering 𝑦𝑖 as independent random signs and taking an expectation over them:

𝑚𝛼 < 𝐵 ⋅ 𝔼𝑦  𝑖 𝑦𝑖𝑥𝑖 − 𝔼𝑦  𝑖 𝑦𝑖𝜃𝑖 ≤ 𝐵 𝔼𝑦  𝑖 𝑦𝑖𝑥𝑖
2

= 𝐵 𝔼  𝑖 𝑦𝑖𝑥𝑖
2 +  𝑖≠𝑗〈𝑦𝑖𝑥𝑖 , 𝑦𝑗𝑥𝑗〉 = 𝐵  𝑖𝔼[ 𝑦𝑖

2] 𝑥𝑖
2 +  𝑖≠𝑗𝔼[ 𝑦𝑖𝑦𝑗]〈𝑥𝑖 , 𝑥𝑗〉 ≤ 𝐵𝑅 𝑚

𝑚𝛼 < 𝐵𝑅 𝑚𝑚 <
𝐵𝑅

𝛼

2



Norm-Regularized Linear Predictors
𝒳𝑅 = 𝑥 ∈ ℝ𝑑 | 𝑥 ≤ 𝑅 ℋ𝐵 = {𝑥 ↦ 𝑤, 𝑥 | 𝑤 ∈ ℝ𝑑 , 𝑤 2 ≤ 𝐵 }

dim𝛼(ℋ𝐵) ≤
𝐵𝑅

𝛼

2

log𝒩∞ ℋ𝐵, 𝛼,𝑚 ≤
𝐵𝑅

𝛼

2

log
𝑒𝑚𝛼

𝐵𝑅

𝑤, 𝑥 ≤ 𝐵𝑅

ℛ𝑚 ℋ𝐵 ≤ 𝛼 + 𝐵𝑅

𝐵𝑅
𝛼

2

log
𝑒𝑚𝛼
𝐵𝑅

2𝑚

ℛ𝑚 ℋ𝐵 ≤
3𝐵𝑅 log𝑚

4 𝑚

ℛ𝑚 ℋ𝐵 ≤ 4𝛼0 + 10

𝛼0

𝐵𝑅

𝐵𝑅
𝛼

2

log
𝑒𝑚𝛼
𝐵𝑅

𝑚
𝑑𝛼

ℛ𝑚 ℋ𝐵 ≤ 14
𝐵2𝑅2 log3 𝑚

𝑚

𝛼 = 𝐵𝑅/4 𝑚 𝛼0 = 𝐵𝑅/ 𝑚



Directly Bounding the Rademacher Complexity

ℛ𝑆 ℋ = 𝔼𝜉 sup
ℎ∈ℋ

1

𝑚
 𝑖=1
𝑚 𝜉𝑖ℎ 𝑥𝑖

• ℛ𝑆 ℋ𝐵 = 𝔼𝜉 sup 𝑤 ≤𝐵
1

𝑚
 𝑖 𝜉𝑖 𝑤, 𝑥𝑖 =

1

𝑚
𝔼𝜉 sup

𝑤 ≤𝐵
𝑤, 𝑖 𝜉𝑖𝑥𝑖

=
1

𝑚
𝔼𝜉 𝐵  𝑖 𝜉𝑖𝑥𝑖 ≤

𝐵

𝑚
𝔼  𝑖 𝜉𝑖𝑥𝑖

2

=
𝐵

𝑚
 𝑖𝔼 𝜉𝑖

2 𝑥𝑖
2 +  𝑖≠𝑗 𝔼[ 𝜉𝑖𝜉𝑗]〈𝑥𝑖 , 𝑥𝑗〉 =

𝐵2
1

𝑚
 𝑖 𝑥𝑖

2

𝑚

• Simpler and tighter (avoids log-factors) than going via fat-shattering

• ℛ𝑆 ℋ𝐵 only depends on average 𝑥𝑖
2 inside 𝑆.

• Fat-shattering dimension depends on maximum norm in 𝒳𝐵

 ℛ𝒟𝑚 ℋ𝐵 ≤
𝐵2𝔼 𝑥 2

𝑚
(distribution-dependent bound)

• Actually, dependence on ℛ𝑆 enough:
∀𝑆
𝛿∀𝑓∈ℱ 𝔼𝒟𝑓 − 𝔼𝑆𝑓 ≤ 2ℛ𝑆 ℱ + 4𝑎

log
2

𝛿

𝑚



From Hypothesis to Loss Class

• Definition: 𝑙𝑜𝑠𝑠: ℝ × 𝒴 → ℝ (i.e. with  𝒴 = ℝ) is 𝑮-Lipschitz (with respect 
to  𝑦) if ∀𝑦,  𝑦1,  𝑦2, 𝑙𝑜𝑠𝑠  𝑦1; 𝑦 − 𝑙𝑜𝑠𝑠  𝑦2; 𝑦 ≤ 𝐺 ⋅  𝑦1 −  𝑦2
(if differentiable, equivalent to 𝑙𝑜𝑠𝑠′  𝑦; 𝑦 ≤ 𝐺)

• 𝑙𝑜𝑠𝑠  𝑦; 𝑦 = 𝑠𝑖𝑔𝑛  𝑦 ≠ 𝑦 No!

• 𝑙𝑜𝑠𝑠  𝑦; 𝑦 = 1 −  𝑦𝑦 + G=1

• 𝑙𝑜𝑠𝑠  𝑦; 𝑦 = log 1 + 𝑒−  𝑦𝑦 G=1

• 𝑙𝑜𝑠𝑠  𝑦; 𝑦 =  𝑦 − 𝑦 G=1

• 𝑙𝑜𝑠𝑠  𝑦; 𝑦 =  𝑦 − 𝑦 2 Not over ℝ. 𝐺 = 4a if 𝑦 ,  𝑦 ≤ 𝑎

• Lipschitz Contraction Lemma: For ℱ = 𝑥, 𝑦 ↦ 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦 ℎ ∈ ℋ},
if the loss is 𝐺-Lipschitz, then

ℛ𝑆 ℱ ≤ 𝐺 ⋅ ℛ𝑆 ℋ



VCdim(ℋ) VCdim(ℱ)

𝒩∞(ℱ, 𝛼,𝑚)

∀𝑆
𝛿∀ℎ 𝐿𝒟 ℎ − 𝐿𝑆 ℎ ≤ 𝜖

∀𝑆
𝛿𝐿 𝐸𝑅𝑀ℋ ≤ inf 𝐿 ℎ + 𝜖

Loss Class
ℱ = 𝑓ℎ 𝑧 = ℓ ℎ, 𝑧 | ℎ ∈ ℋ

Hypothesis Class
ℋ = ℎ:𝒳 → 𝒴

ℛ𝑚(ℱ)

ℓ ℎ, 𝑧 ≤ 𝑎
𝑙𝑜𝑠𝑠 ≤ 𝑎

Monotone or
unimodal loss

𝒩∞(ℋ, 𝛼,𝑚)

ℛ𝑚(ℋ)

Loss function
𝑙𝑜𝑠𝑠(  𝑦, 𝑦)

Lipschitz

ℎ(𝑥) ≤ 𝑎

dim𝛼(ℋ) dim𝛼(ℱ)



VCdim(ℋ) VCdim(ℱ)

𝒩∞(ℱ, 𝛼,𝑚)

∀𝑆
𝛿∀ℎ 𝐿𝒟 ℎ − 𝐿𝑆 ℎ ≤ 𝜖

∀𝑆
𝛿𝐿 𝐸𝑅𝑀ℋ ≤ inf 𝐿 ℎ + 𝜖

Loss Class
ℱ = 𝑓ℎ 𝑧 = ℓ ℎ, 𝑧 | ℎ ∈ ℋ

Hypothesis Class
ℋ = ℎ:𝒳 → 𝒴

ℛ𝑚(ℱ)

ℓ ℎ, 𝑧 ≤ 𝑎
𝑙𝑜𝑠𝑠 ≤ 𝑎

Monotone or
unimodal loss

𝒩∞(ℋ, 𝛼,𝑚)

ℛ𝑚(ℋ)

Loss function
𝑙𝑜𝑠𝑠(  𝑦, 𝑦)

Lipschitz

ℎ(𝑥) ≤ 𝑎

dim𝛼(ℋ) dim𝛼(ℱ)



Parametric vs Scale Sensitive

• Parametric Complexity Control

• Finite VC (subgraph) dimension

• Only depend on structure of loss (monotone, unimodal), not 
on continuity

• log𝒩∞ ℱ, 𝛼,𝑚 only depends logarithmically on 𝛼

 no need for Dudley (up to log factors)

• Scale-Sensitive Control

• VC subgraph dimension might be infinite

• Scale-sensitive hypothesis class: fat shattering dim decreases 
with 𝛼 (typical scaling is 1/𝛼2)

• Scale-sensitive loss: loss must be Lipschitz continuous

• log𝒩∞ ℱ, 𝛼,𝑚 depends on 𝛼 (typically as 1/𝛼2)

 Need Dudley in order to get correct dependence



Regularized Linear Prediction

• For a 𝐺-Lipschitz loss function:

∀𝑆∼𝒟𝑚
𝛿 ∀ 𝑤 ≤𝐵 𝐿𝑆 𝑤 − 𝐿𝒟 𝑤 ≤ 2𝐺

𝐵2𝔼 𝑥 2 log 2/𝛿

𝑚

 sample complexity 𝑚 = 𝑂
𝐵2𝔼 𝑥 2

𝜖2

• No dependence on the dimensionality!

• Valid even for linear prediction in very high, even infinite, 
dimensions—as long as data is bounded (or at least 𝔼 𝑥 2 is 
bounded) and there is a good low-norm predictor, we can learn 
with sample complexity  ∝ 𝑤∗ 2.



Margin-Based Learning
• Back to the geometrical margin:

• Can we learn in high (infinite) dimensions is if we have a margin?

• How does the sample complexity depend on the margin?

• Geometric margin: 𝑦 𝑤, 𝑥 ≥ 𝛾 for ‖𝑤‖ = 1

• How can we learn if ∃ 𝑤 =1 Pr 𝑦 𝑤, 𝑥 ≥ 𝛾 = 1 (or close to 1), 
with large 𝛾?

• We’ll re-normalize to: 𝑦 𝑤, 𝑥 ≥ 1 with 𝑤 = 1/𝛾

• 𝑙𝑜𝑠𝑠𝑚𝑟𝑔  𝑦; 𝑦 =  𝑦𝑦 < 1

• How can we learn if 𝐿𝒟
𝑚(𝑤) is small for some low-norm 𝑤?

• What can we say about:
𝐸𝑅𝑀𝐵

𝑚𝑟𝑔
𝑆 = arg min

𝑤 ≤𝐵
𝐿𝑆
𝑚𝑟𝑔

(𝑤)



Margin and Ramp Loss

• We want to rely on: 𝑙𝑜𝑠𝑠𝑚𝑟𝑔  𝑦; 𝑦 =  𝑦𝑦 < 1

• Use the 1-Lipschitz ramp loss: 𝑙𝑜𝑠𝑠𝑟𝑎𝑚𝑝  𝑦; 𝑦 =  

0  𝑦𝑦 ≥ 1
1 −  𝑦𝑦 0 <  𝑦𝑦 < 1
1  𝑦𝑦 < 0

𝑙𝑜𝑠𝑠01 ≤ 𝑙𝑜𝑠𝑠𝑟𝑎𝑚𝑝 ≤ 𝑙𝑜𝑠𝑠𝑚𝑟𝑔

• For any 𝑤 ≤ 𝐵, with probability ≥ 1 − 𝛿:

𝐿𝒟
01 𝐸𝑅𝑀𝐵

𝑚𝑟𝑔
𝑆 ≤ 𝐿𝒟

𝑟𝑎𝑚𝑝
𝐸𝑅𝑀𝐵

𝑚𝑟𝑔
𝑆 ≤ 𝐿𝑺

𝑟𝑎𝑚𝑝
𝐸𝑅𝑀𝐵

𝑚𝑟𝑔
𝑆 + 2

𝐵2𝑅2+log  4 𝛿

𝑚

≤ 𝐿𝑺
𝑚𝑟𝑔

𝐸𝑅𝑀𝐵
𝑚𝑟𝑔

𝑆 + 2
𝐵2𝑅2+log  4 𝛿

𝑚
≤ 𝐿𝑺

𝑚𝑟𝑔
𝑤 + 2

𝐵2𝑅2+log  4 𝛿

𝑚

≤ 𝐿𝒟
𝑚𝑟𝑔

(𝑤) + 2
𝐵2𝑅2+log  4 𝛿

𝑚

Single Hoefding bound (no need for union bound)



Margin-Based Learning Guarantee

• W.p. ≥ 1 − 𝛿, 𝐿𝒟
01 𝐸𝑅𝑀𝐵

𝑚𝑟𝑔
𝑆 ≤ inf

𝑤 ≤𝐵
𝐿𝒟
𝑚𝑟𝑔

𝑤 + 3
𝐵2𝔼 𝑥 2+log

4

𝛿

𝑚

• Is this a PAC-learning guarantee?

• In terms of margin: if the data is separable by margin 𝛾 except for 𝐿∗

fraction of the points, we can find a predictor with 0/1 error 𝐿∗ + 𝜖

using 𝑂
𝑅2

𝛾2𝜖2
samples.

• Also for hinge loss:

∀𝑆∼𝒟𝑚
𝛿 𝐿𝒟

01 𝐸𝑅𝑀𝐵
ℎ𝑖𝑛𝑔𝑒

𝑆 ≤ inf
𝑤 ≤𝐵

𝐿𝒟
ℎ𝑖𝑛𝑔𝑒

𝑤 + 3
𝐵2𝑅2 log

4
𝛿

𝑚



Surrogate Losses

• Minimizing 0/1 error is problematic
• Computationally intractable
• Not scale-sensitive—can’t learn in high dim even with norm 

regularization

• Instead, minimize upper bound on 0/1 error

• Minimizing margin loss or ramp loss
• Upper bound on 0/1 error
• Scale sensitive—can generalize even in infinite dim
• But still not tractable

• Minimize hinge loss
• Upper bound on 0/1 error
• Scale sensitive (Lipschitz continuous)  generalization
• Convex  tractability

• But: to ensure success, need low 𝐿𝒟
ℎ𝑖𝑛𝑔𝑒

𝑤 , not enough low 
𝐿𝒟
01 𝑤 or 𝐿𝒟

𝑚𝑟𝑔
𝑤



Other Regularized Classes
• “Geometric (Euclidean) Margin” corresponds to the Euclidean norm 𝑤 2

• Separating to a scale-sensitive loss (e.g. hinge loss, logistic loss, exp-loss, 
the intractable margin loss) and a scale-sensitive class, allows us to 
consider other “margins”

• E.g. ℓ1 margin, corresponding to 𝑦 𝑤, 𝑥 > 1 with low 𝑤 1

ℋ𝐵 = 𝑥 ↦ 𝑤, 𝑥 | 𝑤 1 ≤ 𝐵

• More generally, can define such a class hierarchy for any regularizer on 𝑤

• To ensure tractability, we will focus on linear prediction, with a convex 
regularizer 𝑟(𝑤), and a convex loss function:

ℋ𝐵 = {𝑥 ↦ 𝑤,𝜙 𝑥 | 𝑟 𝑤 ≤ 𝐵}

This ensures that the ERM/SRM problem is convex:

min𝑟 𝑤 ≤𝐵 𝐿𝑆(𝑤) or min 𝐿𝑆 𝑤 + 𝜆𝑟 𝑤



Convex Learning  Linear Learning

• Consider supervised learning with a “non-degenerate” 𝑙𝑜𝑠𝑠  𝑦; 𝑦

• Claim: ℓ(ℎ𝑤 , 𝑥, 𝑦 ) will be convex in a parametrization 
𝑤 only if ℎ𝑤 𝑥 is affine in 𝑤.  I.e.:

ℎ𝑤 𝑥 = 𝑤,𝜙 𝑥 + 𝜙0(𝑥)

• Proof sketch: if the loss is non-degenerate, it must sometimes (for some 
value of 𝑦) be increasing in  𝑦 and sometimes decreasing.  If its 
increasing, for 𝑙𝑜𝑠𝑠(ℎ𝑤 𝑥 ; 𝑦) to be convex in 𝑤, we must have ℎ𝑤(𝑥)
convex in w.  But if its decreasing, it must be concave in 𝑤.

• Conclusion: the only form of tractable supervised learning is linear 
learning with a convex loss and convex regularizer or constraint on 𝑤.



Generalized Linear Learning

• Different loss functions
• Hinge, logistic, exp-loss, multi-class, structured, etc

• Different regularizers
• ℓ2, ℓ1 (LASSO), group-regularizers, matrix-regularizers, etc

• Different feature spaces and different computationally 
efficient ways of representing them
• Kernels
• Boosting (implicit through weak learning oracle)
• Indirectly

• Statistical Complexity of such classes?

• Computational efficiency?

• Relationships and interpertations


