Lecture 17:
Stochastic Optimization
Part II: Realizable vs Agnostic Rates
Part III: Nearest Neighbor Classification
Stochastic (Sub)-Gradient Descent

Online Gradient Descent
[Zinkevich 03]
Online Mirror Descent
[Shalev-Shwatz Singer 07]
online2stochastic
[Cesa-Binachi et al 02]
Stochastic Gradient Descent
[Nemirovski Yudin 78]
Stochastic Mirror Descent
[Nemirovski Yudin 78]

Optimize $F(w) = \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)]$ s.t. $w \in \mathcal{W}$

1. Initialize $w_1 = 0 \in \mathcal{W}$
2. At iteration $t = 1, 2, 3, ...$
 1. Sample $z_t \sim \mathcal{D}$ (Obtain g_t s.t. $\mathbb{E}[g_t] \in \partial F(w_t)$)
 2. $w_{t+1} = \Pi^\mathcal{W}(w_t - \eta_t \nabla f(w_t, z_t))$
3. Return $\overline{w}_m = \frac{1}{m} \sum_{t=1}^{m} w_t$

If $\|\nabla f(w, z)\|_2 \leq G$ then with appropriate step size:

$$\mathbb{E}[F(\overline{w}_m)] \leq \inf_{w \in \mathcal{W}, \|w\|_2 \leq B} F(w) + O\left(\sqrt{\frac{B^2 G^2}{m}}\right)$$

Similarly, also Stochastic Mirror Descent
Stochastic Optimization

$$\min_{w \in W} F(w) = \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)]$$

based only on stochastic information on F

- Only unbiased estimates of $F(w), \nabla F(w)$
- No direct access to F

E.g., fixed $f(w, z)$ but \mathcal{D} unknown

- Optimize $F(w)$ based on iid sample $z_1, z_2, \ldots, z_m \sim \mathcal{D}$
- $g = \nabla f(w, z_t)$ is unbiased estimate of $\nabla F(w)$

• Traditional applications
 - Optimization under uncertainty
 - Uncertainty about network performance
 - Uncertainty about client demands
 - Uncertainty about system behavior in control problems
 - Complex systems where its easier to sample then integrate over z
Machine Learning is Stochastic Optimization

\[
\min_h L(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)] = \mathbb{E}_{x,y \sim \mathcal{D}}[\text{loss}(h(x), y)]
\]

• Optimization variable: predictor \(h \)
• Objective: generalization error \(L(h) \)
• Stochasticity over \(z = (x, y) \)

“General Learning” \(\equiv \) Stochastic Optimization:

Valdimir Vapnik

Arkadi Nemirovskii
Stochastic Optimization

- Focus on computational efficiency
- Generally assumes unlimited sampling
 - as in monte-carlo methods for complicated objectives
- Optimization variable generally a vector in a normed space
 - complexity control through norm
- Mostly convex objectives

Statistical Learning

- Focus on sample size
- What can be done with a fixed number of samples?
- Abstract hypothesis classes
 - linear predictors, but also combinatorial hypothesis classes
 - generic measures of complexity such as VC-dim, fat shattering, Radamacher
- Also non-convex classes and loss functions

Arkadi Nemirovskii

Valdimir Vapnik
Two Approaches to Stochastic Optimization / Learning

\[
\min_{w \in \mathcal{W}} F(w) = \mathbb{E}_{z \sim \mathcal{D}}[f(w, z)]
\]

- **Empirical Risk Minimization (ERM) / Sample Average Approximation (SAA):**
 - Collect sample \(z_1, \ldots, z_m\)
 - Minimize \(F_S(w) = \frac{1}{m} \sum_i f(w, z_i)\)
 - Analysis typically based on Uniform Convergence

- **Stochastic Approximation (SA):** [Robins Monro 1951]
 - Update \(w_t\) based on \(z_t\)
 - E.g., based on \(g_t = \nabla f(w, z_t)\)
 - E.g.: stochastic gradient descent
 - Online-to-batch conversion of online algorithm...
SA/SGD for Machine Learning

- In learning with ERM, need to optimize
 \[\hat{w} = \arg\min_{w \in \mathcal{W}} L_S(w) \quad L_S(w) = \frac{1}{m} \sum_i \ell(w, z_i) \]

- \(L_S(w) \) is expensive to evaluate exactly—\(O(md) \) time

- Cheap to get unbiased gradient estimate—\(O(d) \) time
 \[i \sim Unif(1 \ldots m) \quad g = \nabla \ell(w, z_i) \]
 \[\mathbb{E}[g] = \sum_i \frac{1}{m} \nabla \ell(w, z_i) = \nabla L_S(w) \]

- SGD guarantee:
 \[\mathbb{E}[L_S(\overline{w}^{(T)})] \leq \inf_{w \in \mathcal{W}} L_S(w) + \sqrt{\frac{(\sup \|\nabla \ell\|_2^2)(\sup \|w\|_2^2)}{T}} \]
SGD for SVM

\[
\min L_S(w) \text{ s.t. } \|w\|_2 \leq B
\]

Use \(g_t = \nabla_w \text{loss}^{\text{hinge}}(\langle w_t, \phi_{i_t}(x) \rangle; y_{i_t}) \) for random \(i_t \)

Initialize \(w(0) = 0 \)

At iteration \(t \):

- Pick \(i \in 1 \ldots m \) at random
- If \(y_i \langle w(t), \phi(x_i) \rangle < 1 \),
 \[
 w(t+1) \leftarrow w(t) + \eta_t y_i \phi(x_i)
 \]
 else: \(w(t+1) \leftarrow w(t) \)
- If \(\|w(t+1)\|_2 > B \), then \(w(t+1) \leftarrow B \frac{w(t+1)}{\|w(t+1)\|_2} \)

Return \(\bar{w}(T) = \frac{1}{T} \sum_{t=1}^{T} w(t) \)

\[
\|\phi(x)\|_2 \leq G \implies \|g_t\|_2 \leq G \implies L_S(\bar{w}(T)) \leq L_S(\hat{w}) + \sqrt{\frac{B^2 G^2}{T}}
\]

(in expectation over randomness in algorithm)
Stochastic vs Batch

\[\min L_S(w) \text{ s.t. } \|w\|_2 \leq B \]

\[
g_1 = \nabla \text{loss}(w, (x_1, y_1)) \\
g_2 = \nabla \text{loss}(w, (x_2, y_2)) \\
g_3 = \nabla \text{loss}(w, (x_3, y_3)) \\
g_4 = \nabla \text{loss}(w, (x_4, y_4)) \\
g_5 = \nabla \text{loss}(w, (x_5, y_5)) \\
\vdots \\
g_m = \nabla \text{loss}(w, (x_m, y_m))
\]

\[
w \leftarrow w - \frac{1}{m} \sum g_i \\
w \leftarrow w - \sum g_i
\]
Stochastic vs Batch

• Intuitive argument: if only taking simple gradient steps, better to be stochastic

• To get $L_S(w) \leq L_S(\hat{w}) + \epsilon_{opt}$:

<table>
<thead>
<tr>
<th>Method</th>
<th>$B^2 G^2 / \epsilon_{opt}^2$</th>
<th>md</th>
<th>$md \frac{B^2 G^2}{\epsilon_{opt}^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch GD</td>
<td>$B^2 G^2 / \epsilon_{opt}^2$</td>
<td>md</td>
<td>$md \frac{B^2 G^2}{\epsilon_{opt}^2}$</td>
</tr>
<tr>
<td>SGD</td>
<td>$B^2 G^2 / \epsilon_{opt}^2$</td>
<td>d</td>
<td>$d \frac{B^2 G^2}{\epsilon_{opt}^2}$</td>
</tr>
</tbody>
</table>

• Comparison to methods with a log $1/\epsilon_{opt}$ dependence that use the structure of $L_S(w)$ (not only local access)?

• How small should ϵ_{opt} be?

• What about $L(w)$, which is what we really care about?
Overall Analysis of $L_D(w)$

- Recall for ERM: $L_D(\hat{w}) \leq L_D(w^*) + 2\sup_w |L_D(w) + L_S(w)|$

 $\hat{w} = \arg\min_{||w|| \leq B} L_S(w)$

 $w^* = \arg\min_{||w|| \leq B} L_D(w)$

- For ϵ_{opt} suboptimal ERM \bar{w}:

 $L_D(\bar{w}) \leq L_D(w^*) + 2\sup_w |L_D(w) - L_S(w)| + (L_S(\bar{w}) - L_S(\hat{w}))$

 $\epsilon_{aprox} \leq 2 \sqrt{B^2 G^2 \frac{m}{\epsilon}}$

 $\epsilon_{opt} \leq \sqrt{\frac{B^2 G^2}{T}}$

- Take $\epsilon_{opt} \approx \epsilon_{est}$, i.e. $\#iter T \approx \text{sample size } m$

- To ensure $L_D(w) \leq L_D(w^*) + \epsilon$:

 $T, m = O\left(\frac{B^2 G^2}{\epsilon^2}\right)$
Direct Online-to-Batch: SGD on $L_D(w)$

$$\min_w L_D(w)$$

use $g_t = \nabla_w hinge(y(w, \phi(x)))$ for random $y, x \sim D$

$$\Rightarrow E[g_t] = \nabla L_D(w)$$

Initialize $w^{(0)} = 0$

At iteration t:

- Draw $x_t, y_t \sim D$
- If $y_t \langle w^{(t)}, \phi(x_t) \rangle < 1$,
 $$w^{(t+1)} \leftarrow w^{(t)} + \eta_t y_t \phi(x_t)$$
- else: $w^{(t+1)} \leftarrow w^{(t)}$

Return $\bar{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)}$

$$L_D(\bar{w}^{(T)}) \leq \inf_{\|w\|_2 \leq B} L_D(w) + \sqrt{\frac{B^2 G^2}{T}}$$

$$\Rightarrow m = T = O \left(\frac{B^2 G^2}{\epsilon^2} \right)$$
SGD for Machine Learning

\[\min_{w} L(w) \]

Direct SA (online2batch) Approach:

Initialize \(w^{(0)} = 0 \)
At iteration \(t \):
\begin{itemize}
 \item Draw \(x_t, y_t \sim \mathcal{D} \)
 \item If \(y_t \langle w^{(t)}, \phi(x_t) \rangle < 1 \),
 \[w^{(t+1)} \leftarrow w^{(t)} + \eta_t y_t \phi(x_t) \]
 else: \(w^{(t+1)} \leftarrow w^{(t)} \)
\end{itemize}

Return \(\bar{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)} \)

- Fresh sample at each iteration, \(m = T \)
- No need to project nor require \(\|w\| \leq B \)
- Implicit regularization via early stopping

SGD on ERM:

\[\min_{\|w\|_2 \leq B} L_S(w) \]

Draw \((x_1, y_1), \ldots, (x_m, y_m) \sim \mathcal{D} \)
Initialize \(w^{(0)} = 0 \)
At iteration \(t \):
\begin{itemize}
 \item Pick \(i \in 1 \ldots m \) at random
 \item If \(y_i \langle w^{(t)}, \phi(x_i) \rangle < 1 \),
 \[w^{(t+1)} \leftarrow w^{(t)} + \eta_t y_i \phi(x_i) \]
 else: \(w^{(t+1)} \leftarrow w^{(t)} \)
 \item \(w^{(t+1)} \leftarrow \text{proj } w^{(t+1)} \text{ to } \|w\| \leq B \)
\end{itemize}

Return \(\bar{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)} \)

- Can have \(T > m \) iterations
- Need to project to \(\|w\| \leq B \)
- Explicit regularization via \(\|w\| \)
SGD for Machine Learning

\[\min_w L(w) \]

Direct SA (online2batch) Approach:

Initialize \(w(0) = 0 \)

At iteration \(t \):

- Draw \(x_t, y_t \sim \mathcal{D} \)
- If \(y_t\langle w(t), \phi(x_t) \rangle < 1 \),
 \[w(t+1) \leftarrow w(t) + \eta_t y_t \phi(x_t) \]
 else: \(w(t+1) \leftarrow w(t) \)

Return \(\bar{w}(T) = \frac{1}{T} \sum_{t=1}^{T} w(t) \)

\[L(\bar{w}(T)) \leq L(w^*) + \sqrt{\frac{B^2 G^2}{T}} \]

SGD on ERM:

\[\min_{\|w\|_2 \leq B} L_S(w) \]

Draw \((x_1, y_1), ..., (x_m, y_m) \sim \mathcal{D} \)

Initialize \(w(0) = 0 \)

At iteration \(t \):

- Pick \(i \in 1 \ldots m \) at random
- If \(y_i\langle w(t), \phi(x_i) \rangle < 1 \),
 \[w(t+1) \leftarrow w(t) + \eta_t y_i \phi(x_i) \]
 else: \(w(t+1) \leftarrow w(t) \)
- \(w(t+1) \leftarrow \text{proj } w(t+1) \text{ to } \|w\| \leq B \)

Return \(\bar{w}(T) = \frac{1}{T} \sum_{t=1}^{T} w(t) \)

\[L(\bar{w}(T)) \leq L(w^*) + 2 \sqrt{\frac{B^2 G^2}{m}} + \sqrt{\frac{B^2 G^2}{T}} \]

\[w^* = \arg \min_{\|w\| \leq B} L(w) \]
SGD for Machine Learning

\[
\min_w L(w)
\]

Direct SA (online2batch) Approach:

Initialize \(w^{(0)} = 0 \)

At iteration \(t \):
- Draw \(x_t, y_t \sim D \)
- If \(y_t \langle w^{(t)}, \phi(x_t) \rangle < 1 \),
 \[w^{(t+1)} \leftarrow w^{(t)} + \eta_t y_t \phi(x_t) \]
 else: \(w^{(t+1)} \leftarrow w^{(t)} \)

Return \(\bar{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)} \)

- Fresh sample at each iteration, \(m = T \)
- No need shrink \(w \)
- Implicit regularization via early stopping

SGD on RERM:

\[
\min L_S(w) + \frac{\lambda}{2} \|w\|
\]

Draw \((x_1, y_1), \ldots, (x_m, y_m) \sim D \)

Initialize \(w^{(0)} = 0 \)

At iteration \(t \):
- Pick \(i \in 1 \ldots m \) at random
- If \(y_i \langle w^{(t)}, \phi(x_i) \rangle < 1 \),
 \[w^{(t+1)} \leftarrow w^{(t)} + \eta_t y_i \phi(x_i) \]
 else: \(w^{(t+1)} \leftarrow w^{(t)} \)
- \(w^{(t+1)} \leftarrow w^{(t+1)} - \lambda w^{(t)} \)

Return \(\bar{w}^{(T)} = \frac{1}{T} \sum_{t=1}^{T} w^{(t)} \)

- Can have \(T > m \) iterations
- Need to shrink \(w \)
- Explicit regularization via \(\|w\| \)
SGD vs ERM

\[\hat{w} = \arg \min_{\|w\| \leq B} L_S(w) \]

\[w^* = \arg \min_{\|w\| \leq B} L(w) \]

\[\left(\frac{B^2 G^2}{m} \right) \]
The mixed approach (reusing examples) can make sense
Mixed Approach: SGD on ERM

- The mixed approach (reusing examples) can make sense
- Still: fresh samples are better
 - With a larger training set, can reduce generalization error faster
 - *Larger* training set means *less* runtime to get target generalization error
Online Optimization vs Stochastic Approximation

• In both Online Setting and Stochastic Approximation
 • Receive samples sequentially
 • Update \(\mathbf{w} \) after each sample

• But, in Online Setting:
 • Objective is empirical regret, i.e. behavior on observed instances
 • \(z_t \) chosen adversarially (no distribution involved)

• As opposed on Stochastic Approximation:
 • Objective is \(\mathbb{E}[\ell(\mathbf{w}, z)] \), i.e. behavior on “future” samples
 • i.i.d. samples \(z_t \)

• Stochastic Approximation is a computational approach, Online Learning is an analysis setup
 • E.g. “Follow the leader”
Part II: Realizable vs Agnostic Rates
Realizable vs Agnostic Rates

• Recall for finite hypothesis classes:

\[
L_D(\hat{h}) \leq \inf_{h \in \mathcal{H}} L_D(h) + 2\sqrt{\frac{\log |\mathcal{H}| + \log^2/\delta}{2m}} \Rightarrow m = O\left(\frac{\log|\mathcal{H}|}{\epsilon^2}\right)
\]

• But in the realizable case, if \(\inf_{h \in \mathcal{H}} L_D(h) = 0 \):

\[
L_D(\hat{h}) \leq \frac{\log|\mathcal{H}| + \log^1/\delta}{m} \Rightarrow m = O\left(\frac{\log|\mathcal{H}|}{\epsilon}\right)
\]

• Also for VC-classes, in general \(m = O\left(\frac{\text{VCdim}}{\epsilon^2}\right) \) while in the realizable case \(m = O\left(\frac{\text{VCdim} \cdot \log 1/\epsilon}{\epsilon}\right) \)

• What happens if \(L^* = \inf_{h \in \mathcal{H}} L_D(h) \) is low, but not zero?
Estimating the Bias of a Coin

\[|p - \hat{p}| \leq \sqrt{\frac{\log^2/\delta}{2m}} \]

\[|p - \hat{p}| \leq \sqrt{\frac{2p \log^2/\delta}{m}} + \frac{2 \log^2/\delta}{3m} \]
Optimistic VC bound
(aka L^*-bound, multiplicative bound)

$$\hat{h} = \arg \min_{h \in \mathcal{H}} L_S(h)$$
$$L^* = \inf_{h \in \mathcal{H}} L(h)$$

- For a hypothesis class with VC-dim D, w.p. 1-δ over n samples:

$$L(\hat{h}) \leq L^* + 2\sqrt{\frac{L^* D \log^{2\text{em}}/D + \log^2/\delta}{m}} + 4\frac{D \log^{2\text{em}}/D + \log^2/\delta}{m}$$

$$= \inf_{\alpha} (1 + \alpha)L^* + \left(1 + \frac{1}{\alpha}\right)4\frac{D \log^{2\text{em}}/D + \log^2/\delta}{m}$$

- Sample complexity to get $L(h) \leq L^* + \epsilon$:

$$m(\epsilon) = O\left(\frac{D \cdot L^* + \epsilon}{\epsilon} \log \frac{1}{\epsilon}\right)$$

- Extends to bounded real-valued loss in terms of VC-subgraph dim
From Parametric to Scale Sensitive

\[L(h) = \mathbb{E}[\text{loss}(h(x), y)] \quad h \in \mathcal{H} \]

- Instead of VC-dim or VC-subgraph-dim (\(\approx \#\text{params} \)), rely on metric scale to control complexity, e.g.:
 \[\mathcal{H} = \{ w \mapsto \langle w, x \rangle \mid \|w\|_2 \leq B \} \]

- Learning depends on:
 - Metric complexity measures: fat shattering dimension, covering numbers, Rademacher Complexity
 - Scale sensitivity of loss (bound on derivatives or “margin”)

- For \(\mathcal{H} \) with Rademacher Complexity \(\mathcal{R}_m(\mathcal{H}) \), and \(|\text{loss}'| \leq G \):

\[
\mathcal{R}_m(\mathcal{H}) = \sqrt{\frac{B^2 \sup\|x\|^2}{m}}
\]

\[
\mathcal{R}_m \leq \sqrt{\frac{R}{m}}
\]

\[
L(\hat{h}) \leq L^* + 2G\mathcal{R}_m + \sqrt{\frac{\log^2/\delta}{2m}}
\]

\[
\leq L^* + O \left(\sqrt{\frac{G^2R + \log^2/\delta}{2m}} \right)
\]
Non-Parametric Optimistic Rate for Smooth Loss

- **Theorem:** for any \mathcal{H} with (worst case) Rademacher Complexity $\mathcal{R}_m(\mathcal{H})$, and any smooth loss with $|\text{loss}''| \leq H$, $|\text{loss}| \leq b$, w.p. $1 - \delta$ over n samples:

$$L(\hat{h}) \leq \inf_{\alpha} (1+\alpha)L^* + (1+\frac{1}{\alpha})K \left(H^2 \mathcal{R}_n^2 \log^3(n) + \frac{b \log(1/\delta)}{n} \right)$$

$$\mathcal{R}_n \leq \sqrt{\frac{R}{n}}$$

$$= L^* + \tilde{O} \left(\sqrt{L^*HR} + HR \right)$$

- Sample complexity

$$n(\epsilon) = O \left(\frac{R}{\epsilon} \cdot \frac{L^* + \epsilon}{\epsilon} \log^3(R/\epsilon) \right) = \tilde{O} \left(\frac{R}{\epsilon} \cdot \frac{L^* + \epsilon}{\epsilon} \right)$$
Parametric vs Non-Parametric

| | Parametric \(\dim(\mathcal{H}) \leq D, \ |h| \leq 1 \) | Scale-Sensitive \(R_n(\mathcal{H}) \leq \sqrt{R/n} \) |
|---------------------|---|---|
| **Lipschitz:** \(|\phi'| \leq G \) (e.g. hinge, \(\ell_1 \)) | \[\frac{GD}{m} + \sqrt{\frac{L^*GD}{m}} \] | \[\sqrt{\frac{G^2R}{m}} \] |
| **Smooth:** \(|\phi''| \leq H \) (e.g. logistic, Huber, smoothed hinge) | \[\frac{HD}{m} + \sqrt{\frac{L^*HD}{m}} \] | \[\frac{HR}{m} + \sqrt{\frac{L^*HR}{m}} \] |
| **Smooth & strongly convex:** \(\mu \leq |\phi''| \leq H \) (e.g. square loss) | \[\frac{H}{\mu} \cdot \frac{HD}{m} \] | \[\frac{HR}{m} + \sqrt{\frac{L^*HR}{m}} \] |

Min-max tight up to poly-log factors
Optimistic Learning Guarantees

\[L(\hat{h}) \leq (1 + \alpha)L^* + \left(1 + \frac{1}{\alpha} \right) \tilde{O}\left(\frac{R}{m} \right) \]

\[m(\epsilon) \leq \tilde{O}\left(\frac{R}{\epsilon} \cdot \frac{L^* + \epsilon}{\epsilon} \right) \]

✓ Parametric classes
✓ Scale-sensitive classes with smooth loss
✓ Perceptron guarantee
✓ Margin Bounds
✓ Stability-based guarantees with smooth loss
✓ Online Learning/Optimization with smooth loss

× Non-param (scale sensitive) classes with non-smooth loss
× Online Learning/Optimization with non-smooth loss
Why Optimistic Guarantees?

\[
L(\hat{h}) \leq (1 + \alpha)L^* + \left(1 + \frac{1}{\alpha}\right)\tilde{O}\left(\frac{R}{m}\right)
\]

\[
m(\varepsilon) \leq \tilde{O}\left(\frac{R}{\varepsilon} \cdot \frac{L^* + \varepsilon}{\varepsilon}\right)
\]

- Optimistic regime typically relevant regime:
 - Approximation error \(L^* \approx \) Estimation error \(\varepsilon \)
 - If \(\varepsilon \ll L^* \), better to spend energy on lowering approx. error (use more complex class)

- Often important in highlighting true phenomena
Part III: Nearest Neighbor Classification
The Nearest Neighbor Classifier

- Training sample $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$
- Want to predict label of new point x
- The Nearest Neighbor Rule:
 - Find the closest training point: $i = \arg \min_i \rho(x, x_i)$
 - Predict label of x as y_i
The Nearest Neighbor Classifier

- Training sample $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$
- Want to predict label of new point x
- The Nearest Neighbor Rule:
 - Find the closest training point: $i = \arg\min_i \rho(x, x_i)$
 - Predict label of x as y_i

- As learning rule: $NN(S) = h$ where $h(x) = y_{\arg\min_i \rho(x, x_i)}$
Where is the Bias Hiding?

- Find the closest training point: \(i = \arg \min_i \rho(x, x_i) \)
- Predict label of \(x \) as \(y_i \)

- What is the right “distance” between images? Between sound waves? Between sentences?
- Option 1: \(\rho(x, x') = \|\phi(x) - \phi(x')\|_2 \)
 - What representation \(\phi(x) \)?

\[
\begin{align*}
\|x - x'\|_2 \\
\|\tilde{\phi}(x) - \tilde{\phi}(x')\|_2 \\
\tilde{\phi}(x) = (5x[1], x[2])
\end{align*}
\]
Where is the Bias Hiding?

- Find the closest training point: $i = \arg \min_i \rho(x, x_i)$
- Predict label of x as y_i

- What is the right “distance” between images? Between sound waves? Between sentences?

- Option 1: $\rho(x, x') = \|\phi(x) - \phi(x')\|_2$
 - What representation $\phi(x)$?
 - Maybe a different distance? $\|\phi(x) - \phi(x')\|_1$? $\|\phi(x) - \phi(x)\|_\infty$? $\sin(\angle(\phi(x), \phi(x')))$$? K_L(\phi(x) | | \phi(x'))$?

\[
\|x - x'\|_1
\]

\[
\|x' - x'\|_\infty
\]
Where is the Bias Hiding?

- Find the closest training point: \(i = \arg \min_i \rho(x, x_i) \)
- Predict label of \(x \) as \(y_i \)

- What is the right “distance” between images? Between sound waves? Between sentences?

- Option 1: \(\rho(x, x') = \|\phi(x) - \phi(x')\|_2 \)
 - What representation \(\phi(x) \)?
 - Maybe a different distance? \(\|\phi(x) - \phi(x')\|_1 \) ? \(\|\phi(x) - \phi(x)\|_{\infty} \) ? \(\sin(\angle(\phi(x), \phi(x'))) \) ? \(KL(\phi(x)||\phi(x')) \) ?

- Option 2: Special-purpose distance measure on \(x \)
 - E.g. edit distance, deformation measure, etc
Nearest Neighbor Learning Guarantee

• Optimal predictor: \(h^* = \arg \min L_D(h) \)
 \[
 h^*(x) = \begin{cases}
 +1, & \eta(x) > 0.5 \\
 -1, & \eta(x) < 0.5
 \end{cases}
 \eta(x) = P_D(y = 1|x)
 \]

• For the NN rule with \(\rho(x, x') = \|\phi(x) - \phi(x')\|_2 \), and \(\phi: \mathcal{X} \to [0,1]^d \):
 \[
 \mathbb{E}_{S \sim D^m}[L(NN(S))] \leq 2L(h^*) + 4c_D \frac{\sqrt{d}}{d+1} \frac{1}{\sqrt{m}}
 \]
 \[
 |\eta(x) - \eta(x')| \leq c_D \cdot \rho(x, x')
 \]
Data Fit / Complexity Tradeoff

\[\mathbb{E}_{S \sim \mathcal{D}^m}[L(NN(S))] \leq 2L(h^*) + 4c_D \frac{\sqrt{d}}{(d+1)\sqrt{m}} \]

- \(k \)-Nearest Neighbor: predict according to majority among \(k \) closest point from \(S \).
k-Nearest Neighbor:
Data Fit / Complexity Tradeoff

$S = \quad h^* =$
k-Nearest Neighbor Guarantee

- For k-NN with $\rho(x, x') = \|\phi(x) - \phi(x')\|_2$, and $\phi: \mathcal{X} \to [0,1]^d$:

 \[|\eta(x) - \eta(x')| \leq c_D \cdot \rho(x, x') \]

 \[
 \mathbb{E}_{S \sim \mathcal{D}^m} \left[L(NN_k(S)) \right] \leq \left(1 + \sqrt{\frac{8}{k}} \right) L(h^*) + \frac{6c_D \sqrt{d} + k}{d+1 \sqrt{m}}
 \]

- Should increase k with sample size m
 - Above theory suggests $k_m \propto L(h^*)^{2/3} \cdot m^{2/(d+1)}$

- “Universal” Learning: for any “smooth” \mathcal{D} and representation $\phi(\cdot)$ (with continuous $P(y|\phi(x))$), if we increase k slowly enough, we will eventually converge to optimal $L(h^*)$

- Very non-uniform: sample complexity depends not only on h^*, but also on \mathcal{D}
Uniform and Non-Uniform Learnability

• **Definition:** A hypothesis class \mathcal{H} is **agnostically PAC-Learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\exists m(\epsilon, \delta)$, $\forall \mathcal{D}$, $\forall h$, $\forall \delta S \sim \mathcal{D} m(\epsilon, \delta)$,
 $$L_\mathcal{D}(A(S)) \leq L_\mathcal{D}(h) + \epsilon$$

• **Definition:** A hypothesis class \mathcal{H} is **non-uniformly learnable** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\forall h$, $\exists m(\epsilon, \delta, h)$, $\forall \mathcal{D}$, $\forall \delta S \sim \mathcal{D} m(\epsilon, \delta, h)$,
 $$L_\mathcal{D}(A(S)) \leq L_\mathcal{D}(h) + \epsilon$$

• **Definition:** A hypothesis class \mathcal{H} is **“consistently learnable”** if there exists a learning rule A such that $\forall \epsilon, \delta > 0$, $\forall h \forall \mathcal{D}$, $\exists m(\epsilon, \delta, h, \mathcal{D})$, $\forall \delta S \sim \mathcal{D} m(\epsilon, \delta, h, \mathcal{D})$,
 $$L_\mathcal{D}(A(S)) \leq L_\mathcal{D}(h) + \epsilon$$

Realizable/Optimistic Guarantees: \mathcal{D} dependence through $L_\mathcal{D}(h)$