
CMCS 312: Programming Languages

Lecture 3: Lambda Calculus (Syntax, Substitution, Beta Reduction)

Acar & Ahmed 17 January 2008

Contents

1 Announcements 1

2 Introduction 1

3 Abstract Syntax 1

4 Bound and Free Variables 3

5 Substitution 4

6 Alpha Conversion and Alpha Equivalence 5

7 β-reduction 6

8 Homework Exercise 7

1 Introduction

Today we will talk about lambda calculus. Lambda calculus is tiny calculus
that is Turing complete. It is important because it enables us both to write
reasonably sophisticated programs and also study about the properties of such
programs using mathematics.

2 Abstract Syntax

Let V be a countable set V of variables. We define the abstract syntax for
lambda calculus as follows.

Definition 1 (Inductive Definition)
T is the least set of the terms that satisfy the following.

1. if x ∈ V then x ∈ T

2. if t1 ∈ T and t2 ∈ T then t1t2 ∈ T

3. if x ∈ V and t ∈ T then λx.t ∈ T

4. T is the “least” set verifying the above properties

1

Each term in T is called a lambda term. Some examples are x, λx.x, λx.x y.
The term λx.x is also known as (lambda) abstraction, and the term t1 t2 is
known as application.

Note that this is the definition of the abstract syntax. That is, it defines the
set of properly parsed terms (i.e., abstract syntax trees). It does not tell us
how to read a lambda term. For example, we can parse λx.x y as (λx.x y) or
(λx.x)y. Similarly, we can parse t1 t2 t3 as (t1 t2) t3 or t1 (t2 t3).

We will use parenthesis to aid in parsing (to disambiguate the syntax). To
minimize parenthesis, we will have the following conventions:

1. Application associates to the left.

2. The body of a lambda terms extends as far as right as possible.

With this convention λx.x y is parsed as λx.(x y) and t1 t2 t3 is parsed as
(t1 t2) t3.

We can define the same syntax based on inference rules:

Definition 2 (Inference Rules)
Given a countable set of variables V , the set of lambda terms is defined as
follows.

1.
x ∈ V
x ∈ T

2.

t1 ∈ T t2 ∈ T
t1 t2 ∈ T

3.
x ∈ V t ∈ T

λx.t ∈ T

The most succinct definition is the BNF style.

Definition 3 (BNF Style)
Assuming that x ranges over a countable set of variables, the set of lambda
terms t is defined as follows.

t : : = x | t1t2 | λx.t

So we have defined the syntax for lambda terms but what do they mean?
An intuitive way of thinking of λx.t is as a function that takes x and computes
the result in its body t.
To develop this intuition a bit further let’s abuse our notation a bit. Suppose
that our syntax allow us to write natural numbers and add them. For example,
we may have terms like this 1, 2,+ 1 2.

Now, what does the following lambda terms do?

1. λx. + x 1,

2. λx.λy. + x y,

3. λx.λy.λ.z.z(+ x y).

2

3 Bound and Free Variables

A lambda abstraction denotes a function. For example, the abstraction λx.+ x 1
denotes a function that takes a parameter, x, and returns the value x + 1. The
parameter x is called the formal parameter and we say that λ binds it. In a
lambda abstraction, the formal parameter is followed by a “.” and the body of
the function. A lambda abstraction always consists of the four parts: the λ, the
formal parameter, the “.”, and the body.

Consider the lambda abstraction, λx+ x y. In order to evaluate the function,
for a particular input parameter x, we need to know the value of y. The variable
y in this case is free and x is bound; λ binds x.

An occurrence of a variable is bound if there is an enclosing lambda abstrac-
tion that binds the variable, and is free otherwise.

Example 4
Some example lambda abstractions and their bound and free variables.

1. λx.x is the identity function. Here x is a bound variable.

2. λx.y is the constant “y” function. Here y is a free variable.

3. λx.x y has x as a bound variable and y as a free variable.

4. λx.(λy.x y) has both variables bound.

5. x λx. + x 1. In this term the first occurrence of x is free and the second
is bound.

We define the set of free variables of a term, t, as the set of variables that oc-
cur free in the term and denote it with FV (t). For example, FV (+ x λx. + x 1) =
{x}. Formally, we define the set of free variables of a term as follows.

Definition 5 (Free Variables)
The set of free variables of a term t is FV (t) ⊆ V is defined recursively as follows

1. If x ∈ V then FV (x) = {x}

2. If t1, t2 ∈ T then FV (t1 t2) = FV (t1) ∪ FV (t2)

3. If t ∈ T and x ∈ V then FV (λx.t) = FV (t) \ {x}

Now that we have a definition of the set of free variables in a term, we can
distinguish between two terms such as λx.x and λx. + xy.

Definition 6 (Closed and Open Terms)
A term t is closed if FV (t) = ∅. Otherwise t is open.

3

4 Substitution

A lambda abstraction denotes a function. How do we evaluate a function or a
lambda abstraction at a particular value? For example, the term (λx. + 1 x)2
denotes the application of (λx. + 1 x) to the parameter 2. To evaluate such a
term we would like to replace the occurrences of the formal parameter x with
the value 2. For example, for (λx. + 1 x) 2 evaluates to (+ 1 2). This is
an example substitution, where we substitute the value 2 for the variable x in
(λx. + 1 x). Formally, we define substitution as follows.

Definition 7
The substitution of a term, t′ for a variable x ∈ V in a term t, denoted by
[t′/x]t, is an instance of t where all the free occurrences x is replaced by the
term t′.

Throughout this course, we will use the notation [t′/x]t to denote a substi-
tution of t′ for x in t. Different notations are preferred by different textbooks or
authors. Two other commonly used notations are t[t′/x] and [x := t′]t. Pierce’s
book uses the notation [x → t′]t.

Example 8
Some example substitutions.

1. [λy.y/x](x x) = (λy.y) (λy.y)

2. [λy.y/x](λx.x) = λx.x (x is not free.)

3. [y/x](λz.x) = λz.y

A substitution, as we defined it, is actually “incorrect”. For example, con-
sider the lambda abstraction λy.x, the constant function, and the substitution
[y/x](λy.x), which is equal to λy.y, the identity function. Thus, the substi-
tution would naively change the constant function into the identity function.
Here, the problem is that the variable x, a free variable, is substituted with y,
which then becomes bound by the lambda abstraction. In this case, we say that
y is captured in the substitution.

We do not want to transform free variables into bound variables during the
substitution process. We need to redefine substitution to avoid capture. What
can we do? Consider the following situation: given a program which has a
function that takes a variable x and has a variable y in its body, we can change
the name of y to z without any modification of the results, but we cannot change
the name of y to x without adversely affecting the results. The next definition
avoids capture.

Definition 9 (Capture Avoiding substitution)

[t/x]y =
{

t if y = x
y if y 6= x

4

[t/x](t1 t2) = [t/x]t1 [t/x]t2.

[t′/x](λy.t) =
{

λy.t if x = y (y is bound)
λy.[t′/x]t if x 6= y and y 6∈ FV (t′)

Question: What does the substitution [λy.x y y/z](λx.x z) yield?
Solution: This substitution is undefined.

Question: How about the substitution [λy.x y y/z](λy.y z)
Solution: λy.y (λy.x y y)

According to this definition a substitution that causes capture is undefined.
But something is just not right, because the lambda abstractions λx.x z and
λy.y z differ only in the name of their bound variables. Lambda abstractions
denote functions, thus these two lambda abstractions are the same; it should
not matter what the bound variables are named.

5 Alpha Conversion and Alpha Equivalence

One way to avoid capture is to rename the bound variables in a lambda ab-
straction. To goal is to ensure that no bound variable has the same name as a
free variable in the term being substituted.

This process of renaming the bound variables is called α-conversion or α-
variation. Two terms that are reducible to each other by α-conversions are alpha
equivalent. We denote α-equivalent terms t1 and t2 as t1 =α t2.

1. λx.x =α λy.y.

2. λx.λy.λz.x y z =α λz.λy.λx.z y x.

3. λx.t =α λy.[y/x]t if y 6∈ FV (t).

Exercise: Show that =α is an equivalence relation.
Alpha conversion gives us a way to define substitution without worrying

about capture.

Definition 10 (Substitution with Explicit Alpha Conversion)

[t/x]y =
{

t if y = x
y if y 6= x

[t/x](t1 t2) = [t/x]t1 [t/x]t2.

[t′/x](λy.t) =
{

λy.t if x = y
λz.[t′/x][z/y]t if x 6= y ∧ z 6∈ FV (t) ∪ FV (t′)

5

The idea of this definition is to rename formal variable of the lambda ab-
straction so that it does not occur freely in t′. This ensures that no free variables
of t′ are captured. This is not enough, however, because we also have to make
sure that we do not capture the free variables of t itself.

Note that, in this definition, substitution is a relation not a function. That
is the result of a substitution is a set of terms where the renaming take differ-
ent forms. More precisely, the variable z can take many values (the names of
difference variables). All such terms are α-equivalent.

Now that we made precise the idea of alpha conversion, we can now forget
about it. From now on, we will work modulo α-equivalence. That is, we will
not distinguish between two terms that are α-equivalent. We can use our old
definition, with implicit alpha conversion applied as required.

Definition 11 (Substitution with Implicit Alpha Conversion)

[t/x]y =
{

t if y = x
y if y 6= x

[t/x](t1 t2) = [t/x]t1 [t/x]t2.

[t′/x](λy.t) =
{

λy.t if x = y (y is bound)
λy.[t′/x]t if x 6= y ∧ y 6∈ FV (t′)

6 β-reduction

In Section 5, we briefly discussed how to evaluate a function with a given param-
eter by substitution. We can give an operational semantics for lambda terms
based on substitution. The idea is to take each application and reduce it to an-
other term by applying substitution—this is called β reduction, and is denoted
→β .

Definition 12 (Single-step β-reduction)

(λx.t1) t2 →β [t2/x]t1

t1 →β t′1
t1 t2 →β t′1 t2

t2 →β t′2
t1 t2 →β t1 t′2

t →β t′

λx.t →β λx.t′

6

We define multi-step beta reduction, denoted →∗
β , as 0 or more appli-

cations of single-step beta reduction rules. The use of ∗ to denote reductions
suggests their use in Kleene Algebra of Automata Theory.

Definition 13 (Multi-step β-reduction)

t →∗
β t

t →β t′

t →∗
β t′

t1 →∗
β t2 t2 →∗

β t3

t1 →∗
β t3

Two terms that are β-reducible to each other are called β-equivalent, denoted
by =β .

Definition 14 (β-equivalence)

t =β t

t →β t′

t =β t′

t1 =β t2 t2 =β t3
t1 =β t3

t =β t′

t′ =β t

7 Homework Exercise

A term t is in normal form if there is no t′ such that t →β t′. We say that a
term t is normalizable if there is some t′ such that t →∗

β t′ and t′ is in normal
form. Answer the following questions and prove your answer (if your answer is
yes, an example suffices).

1. Are there any normalizable terms?

2. Are there any non-normalizable terms?

7

