1 Announcements

• There is a homework exercise due this Thursday.

• All of you need to redo some parts of the exercise from the last class. Please return these on Thursday as well.

• We will be away next week because of an area conference. Matthias Blume will lecture on Tuesday.

• There is a in-class midterm next Thursday. Matthew Hammer will administer the midterm on Thursday.

• Homeworks 2, 3, are all available. They are due one week after the date on which they are posted in the schedule below. They are posted early in case you want to start them early.

2 Introduction

We settled on the following syntax for simply typed lambda calculus with booleans as base types.

\[
\begin{align*}
\text{Types} & \quad \tau ::= \text{bool} \mid \tau_1 \to \tau_2 \\
\text{Values} & \quad v ::= \text{true} \mid \text{false} \mid \lambda x : \tau . t \\
\text{Terms} & \quad t ::= v \mid t \ t \mid \text{if } t \ \text{then } t \ \text{else } t \\
\text{Context} & \quad \Gamma ::= \emptyset \mid \Gamma, x : \tau
\end{align*}
\]

We gave the following call-by-value operational semantics this language.
We decided on the following type system. Intuitively we think that if a program (a term) is well typed with respect to the type system, then the operational will be able to evaluate the term to a value (assuming that the term does not cause infinite evaluation).
3 Type Safety

We now have a set of typing rules for simply typed lambda calculus and a dynamic or operational semantics. But how do we know that the operational semantics and the dynamic semantics are consistent. Recall that our motivation is to design a language in which well-typed terms do not get stuck. To prove this claim we prove type safety. In the last class, we decided that there are two important properties that we want to prove: progress and preservation.

If $t : \tau$, then either t is a value, or $t \rightarrow t'$. We refer to this property as progress.

Note that progress property ties together types (the static semantics) and the operational semantics (dynamic semantics).

Does progress suffice? May be, but by itself, this is not quite satisfactory, for example, you can have a semantics that evaluates a function to the constant true. We will simply reject such semantics. Instead, we will insist that evaluation preserves typing. More precisely,

If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$, then $\Gamma \vdash t' : \tau$.

We refer to this property as preservation.

Let's think about these properties together. They tell us that if we start with a program (a term) in our language, then either that term is a value, or the term can be reduced to another term without changing its type. The progress property is what makes types a crucial notion in programming. They establish types as an invariant that does not change through evaluation.

4 Proving Type Safety

We are now ready to prove type safety.

Theorem 1 (Progress)
Suppose $\vdash t : \tau$. That is t is a well typed, closed term (of type τ). Then either t is a value of $t \rightarrow t'$ for some t'.

Proof: The proof is by induction on the typing derivation of $t : \tau$. As induction hypothesis, we will assume that the theorem holds for all subderivations of a typing derivation. Remember that induction on a derivation means that we can apply the induction hypothesis to subderivations of a derivation.

Let's do a few of the cases.

variable: A variable cannot be well typed with respect to the empty context.

The theorem hold vacuously.

true/false: We have $\vdash \text{true} : \text{bool}$. Since true is a value the theorem holds.
The case for false is similar.

$\lambda x : \tau_1.t$: We have $\vdash \lambda x : \tau_1.t : \tau_1 \rightarrow \tau_2$. Since $\lambda x : \tau_1.t$ is a value, the theorem holds.
(In general, the progress theorem holds for all values trivially.)

Theorem 2 (Preservation)

If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$ then $t' : \tau$.

Proof: The proof is by induction on the typing derivation $\Gamma \vdash t : \tau$. As induction hypothesis, we will assume that the theorem holds for the subderivations of the typing derivation.

The theorem holds for all values and variables vacuously because such terms does not take a step.

For the rest of the terms, we will consider each possible evaluation rule for $t \rightarrow t'$.

- **if true then t_2 else t_3 → t_2.** We have to show that $\Gamma \vdash t_2 : \tau$. This follows directly by inversion.

- **if false then t_2 else t_3 → t_3.** We have to show that $\Gamma \vdash t_3 : \tau$. This follows directly by inversion.
\[
\begin{array}{c}
t_1 \rightarrow t'_1 \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3
\end{array}
\]

We know that
\[
\Gamma \vdash t_1 : \text{bool} \quad \Gamma \vdash t_2 : \tau \quad \Gamma \vdash t_3 : \tau
\]
\[
\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : \tau
\]

Since we know that \(t_1 \rightarrow t'_1 \) and we have the derivation for \(\Gamma \vdash t_1 : \text{bool} \), we can apply induction to obtain \(\Gamma \vdash t'_1 : \text{bool} \). We then know that
\[
\Gamma \vdash t'_1 : \text{bool} \quad \Gamma \vdash t_2 : \tau \quad \Gamma \vdash t_3 : \tau
\]
\[
\Gamma \vdash \text{if } t'_1 \text{ then } t_2 \text{ else } t_3 : \tau
\]

Thus the theorem holds.

Let’s apply induction to \(\Gamma \vdash t_2 : \tau \) and \(t_2 \rightarrow t'_2 \). We know that
\[
\Gamma \vdash t'_2 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash t_2 : \tau_1
\]
\[
\Gamma \vdash t'_2 t_2 : \tau_2
\]

This shows that theorem holds.

Let’s apply induction to \(\Gamma \vdash t_2 : \tau_1 \) and \(t_2 \rightarrow t'_2 \). We know that \(\Gamma \vdash t'_2 : \tau_1 \).
But then we have
\[
\Gamma \vdash t_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash t'_2 : \tau_1
\]
\[
\Gamma \vdash t_1 t'_2 : \tau_2
\]

Thus the theorem holds.
\[(\lambda x : \tau_1. t) \ v \rightarrow [v/x] t\]

In this case, we have to show that \(\Gamma \vdash [v/x] t : \tau\). For this, we need to prove a “substitution” lemma. This case will follow directly from substitution lemma.

\[\text{Lemma 3 (Substitution)}\]

If \(\Gamma, x : \tau_1 \vdash t : \tau_2\) and \(\Gamma \vdash t_1 : \tau_1\) then \(\Gamma \vdash [t_1/x] t : \tau_2\).

\[\text{Proof:}\]

The proof on the typing derivation \(\Gamma, x : \tau_1 \vdash t : \tau_2\). We will consider each possible typing rule for the final typing judgement.

- The term \(t\) is \text{true} or \text{false}. These are very similar consider \(t = \text{true}\).

\[\Gamma, x : \tau_1 \vdash \text{true} : \text{bool}\]

Since \([t_1/x] \text{true} = \text{true}\) by the definition of substitution, we know that \(\Gamma, x : \tau_1 \vdash \text{true} : \text{bool}\). Since \text{true} has no free variables, it follows that \(\Gamma \vdash \text{true} : \text{bool}\).

- The term \(t\) is the variable \(y\).

\[(y, \tau_2) \in (\Gamma, x : \tau_1)\]

\[\Gamma, x : \tau_1 \vdash y : \tau_2\]

Consider now the substituted term \([t_1/x] y\). We have two cases to consider.

In the first case, we have \(x = y\) and \([t_1/x] y = t_1\). Note that since \(x = y\), we have \(\tau_1 = \tau_2\). To prove the lemma we have to show that \(\Gamma \vdash t_1 : \tau_1\). This follows immediately by the assumption.

In this second case, we have \(x \neq y\) and \([t_1/x] y = y\). In this case, we have to show that \(\Gamma \vdash y : \tau_2\). Since we know that \((y, \tau_2) \in (\Gamma, x : \tau_1)\) and \(x \neq y\), we have \((y, \tau_2) \in \Gamma\), i.e., \(\Gamma \vdash y : \tau_2\).

- The term \(t\) is a conditional.

\[\Gamma, x : \tau_1 \vdash t_2 : \text{bool}\]

\[\Gamma, x : \tau_1 \vdash t_3 : \tau\]

\[\Gamma, x : \tau_1 \vdash t_4 : \tau\]

\[\Gamma, x : \tau_1 \vdash \text{if } t_2 \text{ then } t_3 \text{ else } t_4 : \tau\]
We can now apply induction to each of the subderivations to obtain \(\Gamma \vdash [t_1/x] t_2 : \text{bool} \), \(\Gamma \vdash [t_1/x] t_3 : \tau \), and \(\Gamma \vdash [t_1/x] t_4 : \tau \). We then know that

\[
\Gamma \vdash [t_1/x] t_2 : \text{bool} \quad \Gamma \vdash [t_1/x] t_3 : \tau \quad \Gamma \vdash [t_1/x] t_4 : \tau
\]

\[
\Gamma \vdash \text{if} [t_1/x] t_2 \text{ then } [t_1/x] t_3 \text{ else } [t_1/x] t_4 : \tau
\]

Since \(\text{if} [t_1/x] t_2 \text{ then } [t_1/x] t_3 \text{ else } [t_1/x] t_4 = [t_1/x] t_2 \text{ if } t_2 \text{ then } t_3 \text{ else } t_4 \), the lemma follows.

- The term \(t \) is an application.

\[
\Gamma, x : \tau_1 \vdash t_2 : \tau_{21} \quad \Gamma, x : \tau_2 \vdash t_2 : \tau_{21}
\]

\[
\Gamma, x : \tau_1 \vdash t_2 \ t_2_{21}
\]

We can now apply induction to each of the subderivations to obtain \(\Gamma \vdash [t_1/x] t_2 : \tau_{21} \) and \(\Gamma \vdash [t_1/x] t_2 : \tau_{21} \). But then we have

\[
\Gamma \vdash ([t_1/x] t_2) : \tau_{21} \quad \Gamma \vdash ([t_1/x] t_2) : \tau_{21}
\]

\[
\Gamma \vdash ([t_1/x] t_2) ([t_1/x] t_2_{21})
\]

Since \(([t_1/x] t_2) ([t_1/x] t_2_{21}) = [t_1/x] (t_2 t_2_{21}) \) the lemma holds.

- The term \(t \) is a lambda abstraction.

\[
\Gamma, x : \tau_1, y : \tau_{21} \vdash t_2 : \tau_{22}
\]

\[
\Gamma, x : \tau_1 \vdash \lambda y : \tau_{21}, t_2 : \tau_{21} \rightarrow \tau_{22}
\]

By lambda conversion and capture avoiding property of substitutions, we know that \(y \not\in \text{dom}(\Gamma) \cup \{x\} \) and \(y \not\in \text{FV}(t_1) \). We have to show that \(\Gamma \vdash [t_1/x](\lambda y : \tau_{21}, t_2) : \tau_{21} \rightarrow \tau_{22} \) assuming that \(\Gamma \vdash t_1 : \tau_1 \).

By weakening, we know that \(\Gamma, y : \tau_{21} \vdash t_1 : \tau_1 \). Knowing this, we apply induction to the derivation \(\Gamma, y : \tau_{21}, x : \tau_1 \vdash t_2 : \tau_{22} \) which we obtain by permutation of the context. By induction, we know that \(\Gamma, y : \tau_{21} \vdash [t_1/x] t_2 : \tau_{22} \).

But then we know that

\[
\Gamma, y : \tau_{21} \vdash [t_1/x] t_2 : \tau_{22}
\]

\[
\Gamma \vdash \lambda y : \tau_{21}, [t_1/x] t_2 : \tau_{21} \rightarrow \tau_{22}
\]

Since we know that \([t_1/x](\lambda y : \tau_{21}, t_2) = \lambda y : \tau_{21}, [t_1/x] t_2 \) by the definition of substitution. The lemma holds.

\[\blacksquare\]

5 Homework Exercise

For the simply typed lambda calculus with booleans state and prove the inversion and the canonical forms lemmas.