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Materials used for this lecture

See Bishop’s book for linear regression.

See references for the rest of the class.
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The problem of human pose estimation

The goal is given an image I to estimate the 3D location and orientation of
the body parts y.
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Pose estimation

Generative approaches: focus on modeling

p(φ|I) =
p(I|φ)p(φ)

p(I)

Discriminative approaches: focus on modeling directly

p(φ|I)

Today we will talk about discriminative approaches.
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Notation

y — the pose
I — the image

x — the image representation
N — number of training samples
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Learning paradigm for pose estimation

We have a set of training examples sampled i.i.d. from the joint
distribution p(x, y).

Learn a mapping from image observations x to pose y.

Main difficulties

What’s a good image representation?
What’s a good image similarity measure that can compare images of
different sizes?
High dimensional inputs and high dimensional structured outputs.
Potentially this requires a large number of training examples. Might
have computational issues.
The mapping is inherently multimodal.
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Ambiguities of pose estimation

Figure: Illustration of ambiguities inherent to pose estimation from a single image
(Ek 2009)
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Contents of today’s lecture?

We will look into discriminative approaches to pose estimation. We will
focus on:

NN approaches

Regression

Mixture of experts

Next lecture

Latent variable models for discriminative prediction.

Structure prediction for discriminative prediction.

Combination of discriminative and generative methods

Activity recognition.
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Feature types

Global vs local

For local features: Interest points vs dense local features
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Global features: HOG

Histogram of Oriented Gradients (Dalal and Triggs 05)
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Global features: PHOG

Pyramid of HOG (PHOG) due to (Bosch et al. 07)
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Global features: Shape context

Shape context: distribution over relative positions on the contour (Belongie
and Malik. 00)
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Other global features

Gist: Widely used, particularly for scene understanding (Oliva and Torralba
06)

HMAX (Poggio et al 99)
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Local features: SIFT (Lowe 04)

Interest points detected via differences of Gaussians at different scales.

A descriptor is created by first computing the gradient magnitude and
orientation at each image sample point in a region around the keypoint
location.

These are weighted by a Gaussian window, indicated by the overlaid circle.

Accumulate the samples into orientation histograms over 16x16 subregions.

This features are invariant to image translation, scaling, and rotation

Partially invariant to illumination changes and local geometric distortion

Used in conjunction with PCA to reduce dimensionality

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 14 / 62



Local features: SURF

Robust image detector and descriptor (Bay et al. in 06)

Faster than SIFT to compute.

It is used for real time applications

SURF is based on sums of approximated 2D Haar wavelet responses

Make use of integral images for efficient computation
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Local features: Geometric blur (Berg et al. 05)

It’s simply an average over geometric transformations of a signal.

It’s useful operation for comparing two signals when some geometric
distortion is expected

The signal should be sparse in order for the geometric blur to produce a
discriminative descriptor.

e.g. the output of orientation tuned edge detectors after non-max
suppression
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What’s next?

We now know how to compute global and local descriptors, but how can
we compare two images of different sizes

For global descriptors since they have the same size it’s easy, compute
similarity metrics

Local descriptor is more complicated since the number of features is
not necessary the same
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Similarity between global descriptors

Compute kernels by using different similarity measures

Euclidean distance between the high dimensional representations

d(x, x′) = (x− x′)T (x− x′)

Mahalanobis: some dimensions are more important than other

d(x, x′) = (x− x′)T Σ(x− x′)

with Σ a PSD matrix.

Comparing Histograms, e.g., intersection kernels are well used

d(x, x′) =

∑D
i=1 min(xi , x

′
i )∑D

i=1 xi x′i

RBF or polynomial kernels for non-linear relationships

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 18 / 62



Similarity between global descriptors

Compute kernels by using different similarity measures

Euclidean distance between the high dimensional representations

d(x, x′) = (x− x′)T (x− x′)

Mahalanobis: some dimensions are more important than other

d(x, x′) = (x− x′)T Σ(x− x′)

with Σ a PSD matrix.

Comparing Histograms, e.g., intersection kernels are well used

d(x, x′) =

∑D
i=1 min(xi , x

′
i )∑D

i=1 xi x′i

RBF or polynomial kernels for non-linear relationships

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 18 / 62



Similarity between global descriptors

Compute kernels by using different similarity measures

Euclidean distance between the high dimensional representations

d(x, x′) = (x− x′)T (x− x′)

Mahalanobis: some dimensions are more important than other

d(x, x′) = (x− x′)T Σ(x− x′)

with Σ a PSD matrix.

Comparing Histograms, e.g., intersection kernels are well used

d(x, x′) =

∑D
i=1 min(xi , x

′
i )∑D

i=1 xi x′i

RBF or polynomial kernels for non-linear relationships

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 18 / 62



Similarity between local descriptors

More complicated since different number of local features per image.
Ways of solving this

Bag of Words

Feature matching

Pyramid match kernel

Spatial pyramid
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Bag of words

Compute local features either densely or detect keypoints

Compute a dictionary of features: either by clustering (e.g., K-means) or by
learning dictionaries (e.g., mutual information, sparse coding, deep belief
networks).

Compute histograms of the local features where the bins are the codewords

Use any distance measure between histograms.

? 
Figure: BOW illustration (Fei-Fei et al. ICCV09 tutorial)
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Problems of Bag of Words

All have equal probability for bag-of-words methods

Location information is important

BoW + location still doesnt give correspondence

Figure: BOW illustration (Fei-Fei et al. ICCV09 tutorial)
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Matching the features

Compare sets by computing a partial matching between their features.

Robust to clutter, segmentation errors, occlusion.

Very expensive computationally.

Figure: Feature matching (Grauman et al. 05)
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Pyramid Match Kernel

PMK measures similarity of a partial matching between two sets:

Place multi-dimensional, multi-resolution grid over point sets.

Points matched at finest resolution where they fall into same grid cell.

Approximate similarity between matched points with worst case similarity at
a given level

K =
L∑

i=0

wi Ni

Ni is the difference in histogram intersections across levels counts number of
new pairs matched

Ni = I(Hi (X),Hi (Y))− I(Hi−1(X),Hi−1(Y))
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Pyramid Match Kernel

optimal partial 

matching 

Figure: Pyramid match kernel (Grauman et al. 05)
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Spatial pyramid

Introduce spatial information by adding a pyramid.

Figure: Lazebnik et al. 2006
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Combining similarities: Multiple kernel learning

A simple way to combine multiple cues and similarities is a multiple
kernel learning

K =
∑

i

αi Ki

This has typically been addressed in a max margin framework.

More efficient learning can be achieved with GPs.

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 26 / 62



What’s next?

We have shown

how to compute image representations

how to compute similarities between images of different sizes

We now describe how to map from image observations to pose

NN

Regression

Mixture of experts

Structure prediction
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Nearest Neighbors

One simply searches in a database the example that it’s close to the
query under some metric.

Advantages:

Simple to implement

One car do metric learning to learn similarities

Disadvantages:

Generalization: Amount of training data required is very large

Then computing NN might be very slow.
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Algorithms for computing the Nearest Neighbors I

Linear search

Compute the distance from the query point to every other point in the
database, keeping track of the ”best so far”

This runs in O(Nd) with N the number of points and d the dimensionality
of the query.

Space partitioning

Several algorithms have been developed.

The simplest is kd-trees, which iteratively bisects the search space into two
regions containing half of the points of the parent region.

In this algorithm queries are performed traversing the tree.
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Algorithms for computing the Nearest Neighbors II

Locality sensitive hashing (LSH)

Way to compute approximate NN.

Is a technique for grouping points in space into ’buckets’ based on some
distance metric operating on the points.

Points that are close to each other under the chosen metric are mapped to
the same bucket with high probability.

Typically a function h is chosen such that

If d(p, q) ≤ R then h(p) = h(q) with probability at least P1.
If d(p, q) ≥ R then h(p) = h(q) with probability at most P2.

A family of hash functions is interesting when P1 > P2
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Efficient NN for pose estimation

First NN approach due to Athitsos et al. 03

Learn hash functions such as similar poses fall into the same bucket
(Shakhnarovich et al 03).

Improve results using locally weighted regression taking into account
the modes of the distribution.

Figure: PSH (Shakhnarovich et al. 05)
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PSH results

Figure: PSH results (Shakhnarovich et al. 05)
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Classification vs Regression

−3 −2 −1 0 1 2 3
−4

−2

0

2

4

6

8

In regression y ∈ <.

−4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

w

w0 +wT x=0

In classification y ∈ {−1, 1}.

s

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 33 / 62



Statistical view of regression

We will now explicitly model the randomness in the data:

y = f (x; w) + ν

where the noise ν accounts for everything not captured by the
mapping f .
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Linear regression

The simplest linear model for regression is one that involves a linear
combination of the input variables

f(x,w) = w0 + w1x1 + · · ·+ wDxD

We can extend this simple model to have linear combination of non linear
functions

f(x,w) = w0 +
M∑

j=1

wjφj (x) = wT φ(x)

where w = (w0, · · · ,wM−1)T , φ = (φ0, · · · ,φM−1) and φ0 = 1 encodes the
bias.

If φ is non linear, we allow to have a non linear function of the input x.

Since it’s linear in w learning is simplified.
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Types of basis functions

Polynomial basis: problem of tis basis is that changes in one of the basis
affect globally.

φj (x) = x j

Gaussian basis functions: are local

φj (x) = exp{− (x − µj )
2

2s2
}

Sigmoidal basis functions

φj (x) = σ

(
x − µj

s

)
σ(a) =

1

1 + exp(−a)

where σ is the logistic sigmoid function.

Hyperbolic tangent
tanh(a) = 2σ(a)− 1

Fourier basis: leads to an expansion in sinusoidal functions.

Wavelets basis: which are localized in space and frequency.
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Examples of basis functions

Figure: Examples of basis functions, (left) polynomials , (center) Gaussians and
(right) sigmoidal (Bishop book).
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Noisy observations

We assume that the target is given by a deterministic function f(x,w) and
i.i.d. Gaussian noise ν

y = f (x; w) + ν

We can write the likelihood as

p(y |x,w, β) = N (y |f(x,w), β−1)

Note that if we assume a squared loss function, then the optimal prediction,
for a new value of x, will be given by the conditional mean of the target
variable

Ep(y |x) [y |x] =

∫
yp(y |x)dy = f(x,w)

This implies that p(y |x) is unimodal.
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Learning from training data

Consider we have training data X = {x1, · · · , xN} with corresponding target
values y = [y1, · · · , yN ] i. i. d. sampled from p(x, y), we can write

p(y|X,w, β) =
N∏

n=1

N (yn|wTφ(xn), β−1)

We can learn the model by minimizing the minus log likelihood
ED(w) = − ln p(y|X)

w∗ = argmin
w

1

N

N∑
i=1

(wTφ(xi )− yi )
2

The maximum likelihood is the least squares solution.

Necessary condition is that the derivative with respect to w must be zero.
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Least squares estimation

The derivative can be computed as

∇ ln p(y|w, β) =
N∑

i=1

{yn −wTφ(xn)}φ(xn)T

Setting the gradient to zero this gives

0 =
N∑

n=1

ynφ(xn)T −wT

(
N∑

n=1

φ(xn)φ(xn)T

)

Solving this we obtain
wML = (ΦT Φ)−1Φy

with Φ† = (ΦT Φ)−1Φ the Moore-Penrose pseudo-inverse and

Φ =

φ0(x1) φ1(x1) · · · φd (x1)
...

...
φ0(xN ) φ1(xN ) · · · φd (xN )

 ,
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Regularized least squares

Add a regularization term to an error function in order to control
over-fitting

ED(w) + λEW (w)

with λ the regularization coefficient

Multiple types of regularization.

Ridge regression uses an L2 which is a Gaussian prior

Ew (w) =
1

2
wT w

The solution to this problem can also be obtain in closed form

w = (λI + ΦT Φ)−1Φy
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More general regularizers

A more general regularizer takes the form

1

2

N∑
i=1

(wTφ(xi )− yi )
2 +

λ

2

M∑
j=1

||wj ||qq

Figure: Contours of the regularization term for various values of q (Bishop
book).
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Why does the lasso result in sparse solutions?

When q = 1 we have the Lasso which enforces sparsity

Figure: Contours of the unregularized error function (blue) along with the
constraint region for (left) the quadratic regularizer q = 2 (right) the lasso
regularizer q = 1 (Bishop book).
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Prediction in these models

The posterior mean can be computed as

f (x,w) = wTφ(x)

Equivalently the Representer theorem

f (x,α) =
N∑

i=1

αi k(xi , x)

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 44 / 62



Gaussian Process (GP)

Prior for Functions

Probability Distribution over Functions

Functions are infinite dimensional.

Prior distribution over instantiations of the function: finite dimensional
objects.
Can prove by induction that GP is ‘consistent’.

Mean and Covariance Functions

Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

Mean function often taken to be zero or constant.
Covariance function must be positive definite.
Class of valid covariance functions is the same as the class of Mercer
kernels.
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Gaussian Processes II

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

The linear kernel with noise has the form

K = XXT + σ2I

Priors over non-linear functions are also possible.

To see what functions look like, we can sample from the prior process.
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Covariance Samples
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Figure: linear kernel, K = XXT
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Covariance Samples
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Figure: RBF kernel with l = 10, α = 1
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Covariance Samples
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples
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Figure: MLP kernel with α = 8, w = 100 and b = 100

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 47 / 62



Covariance Samples
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples
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Figure: bias kernel with α = 1 and
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Covariance Samples
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel, α =1;
and white noise kernel, β = 100
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Gaussian Process Regression

Posterior Distribution over Functions

Gaussian processes are often used for regression.

We are given a known inputs X and targets Y.

We assume a prior distribution over functions by selecting a kernel.

Combine the prior with data to get a posterior distribution over
functions.

Raquel Urtasun (TTI-C) Discriminative prediction May 17, 2010 48 / 62



Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Marginal likelihood

The marginal log likelihood is

p(y|X) =

∫
p(y|f,X)p(f|X)df = N

(
y; 0,K + σ2I

)
The negative log marginal likelihood is

− log p(y|X) =
1

2
yT (K + σ2I)−1y +

1

2
log |K + σ2I|+ n

2
log 2π
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Learning the GP

Learning the GP means estimating the hyperparameters.

We do not need to estimate the weights since we have marginalized
them.

The hyperparameters are typically estimated by maximizing the
likelihood, or equivalently by minimizing the negative log likelihood,
which ignoring constants is

Θ = argmin
Θ

1

2
yT (K + σ2I)−1y +

1

2
log |K + σ2I|
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Predictive distribution and representer theorem

Using compact notation

f̄∗ = kT
∗ (K + σ2I)−1y

The mean prediction is a linear combination of the observations y.

It is also a linear combination of n kernel functions, each center at a
training point

f̄∗ =
n∑

i=1

αi k(xi , x∗)

where the α = (K + σ2I)−1y.

This is the representer theorem!

What’s the difference with SVMs?

Answer: α has closed-form solution.
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Is regression a good approach for pose estimation?

Regression cannot model mutimodal mappings

Solution is to use a mixture of experts

Figure: Regression is not a good model for pose estimation (Urtasun et al. 08)
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Mixture of experts

One solution to the multimodal problem is to use a mixture of experts where
each expert focus on a modality.

The problem is still there when there is a continium of solutions.

In that case the best you can do is use NN.

Figure: Illustration of ambiguities inherent to pose estimation from a single image
(Ek 2009)
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Simplest mixture: partition the space

The simplest mixture model is to partition the space and learn a regressor
for each cluster.

Make sure that for each cluster all the examples are of the same mode

Then learn a regressor independently for each cluster.

The advantage is that it’s fast, e.g., O(Tk3) with k the number of points
per cluster and T the number of clusters for kernel regressors.

Problem of discontinuities in the boundaries of the clusters
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Figure: Discontinuities when using clustered experts (Urtasun et al. 08)
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Online partitioning

To avoid the discontinuities due to clustering, Urtasun et al. 08 proposed to
center the predictor at each test point.

The difficulty is that for each test point we don’t know the pose.

Solution: compute the NN of the new point, and split those into modes, and
learn a regressor for each.

Problem, as many regressors as training points.

Solution: Urtasun et al. 08 proposed to use GP since they are close form if
no hyperparameter is estimated.

Hyperparameters learned offline, and assume smoothness of the space.

For each online regressor take the hyperparameters of the regressor that is
located closer to it.

One advantage with respect to global learning is that the regressors are
adapted to the local characteristics of the data.
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Online vs Offline
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Figure: Advantages of online local regression (Urtasun et al. 08). (a,b) global
GP, (c,d) Offline clustering, (e,f) online GP (g) Global GP with multimodal
mappings (h) local GP with multimodal mappings.
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Algorithm for learning and inference

OFFLINE: Learning hyperparameters
R: number of local GP to learn
for n = 1 . . .R do

i = rand(N)
κ = findNN(X, xi , S)
{β̄i} ← max p(Xκ, β̄i |Yκ)
YR = [YR , yi ]

end for

ONLINE: Inference of test point x∗
T : number of experts, S: size of each expert
η = findNN(X, x∗,T )
for j = 1 . . .T do
ζ = findNN(Y, yηj , S)
t = findNN(YR , yηj , 1)

β̄ = β̄t

µj = K∗,ζ(Kζ,ζ + σ2
noise I)−1Yζ

σj = k∗,∗ − K∗,ζ(Kζ,ζ + σ2
noise I)−1Kζ,∗

end for
p(f∗|y) ≈

PT
i=1 πiN (µi , σ

2
i )
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Results with local online GPs

walk jog box mono. discrim. dyn.
Lee et al. I 3.4 – – yes no no
Lee et al. II 3.1 – – yes no yes

Pope 4.53 4.38 9.43 yes yes no
Muendermann et al. 5.31 – 4.54 no no yes

Li et al. – – 20.0 yes no yes
Brubaker et al. 10.4 – – yes no yes
Our approach 3.27 3.12 3.85 yes yes no

Table: Comparison with state of the art (error in cm).
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Learning from very large training sets

When used with fast NN techniques, it can be trained from millions of
examples and represent any possible pose.

DB size 1-NN Best of-10-NN GP (S = 10) GP (S = 20) GP (S = 30) GP (S = 40)
1,500 0.88 ± 1.77 0.71 ± 1.38 0.83 ± 1.53 0.98 ± 1.70 0.56 ± 1.40 0.70 ± 1.45

15,000 1.92 ± 2.76 1.49 ± 1.81 1.32 ± 2.07 1.10 ± 1.88 1.03 ± 1.81 0.99 ± 1.77
50,000 1.83 ± 2.62 1.34 ± 1.47 1.10 ± 1.85 0.91 ± 1.64 0.90 ± 1.66 0.87 ± 1.58
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More results

10 20 30 40 50 60 70 80 90 100
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Size of each local GP

3D
 p

os
itio

n 
er

ro
rs

 (c
m

)

Hand database: 3D position errors (cm) with 10 expert

 

 

GP SIFT PMK
GP Shape Context PMK
GP Steerable Filter PMK
GP Hierarchical Features

Figure: Hand pose from multiple features
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More?

Discriminative techniques are great since they do not require
initialization.

Difficult to model the multimodal mappings.

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will look more into discriminative prediction
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