Human Motion Analysis Lecture 12: Discriminative Prediction II

Raquel Urtasun

TTI Chicago

May 31, 2010

- The slides for Non-parametric BP come from Erik Sudderth 2010 class on learning and inference on graphical models. Thanks Erik!
- See references for the rest of the class.

- Local and global image features
- Similarities between images
- Discriminative prediction
 - NN
 - Regression
 - Mixture of experts

Continue on discriminative prediction:

- Latent spaces for discriminative prediction
- Structure prediction

Look into combinations of generative and discriminative methods

No time for activity recognition: modern approaches are similar to object recognition.

- Global vs local
- For local features: Interest points vs dense local features

- Global descriptors: HOG, PHOG, Shape Context, GIST, HMAX
- Local descriptors: SIFT, SURF, Geometric Blur

Distances between features

- Global descriptors: euclidean, mahalanobis, histogram intersection
- Local features: BOW, matching, PMK, Spatial pyramid.
- Multiple Kernel Learning

Figure: (left) BOW, (right) Spatial pyramid

- NN techniques: Linear search, Space partitioning (e.g., KD-trees), LSH, PSH.
- Regression: least-square regression, ridge regression, lasso, GP regression
- Mixture of experts due to multimodal mappings, e.g., mixtures of local GPs.

Many different models:

- Canonical Correlation Analysis (CCA).
- Shared-GPLVM (Shon et al. NIPS'06, Ek et al. MLMI'07, Navaratnam et al. ICCV'07).
- Shared-KIE (Sigal et al. CVPR'09).

They are effective when the views are correlated.

Canonical Correlation Analysis (CCA)

• Seek vectors w_1 and w_2 so that the random variables $w_1 Y^{(1)}$ and $w_2 Y^{(2)}$ are maximally correlated

$$\rho = \frac{\mathbf{w}_1^T \boldsymbol{\Sigma}_{12} \mathbf{w}_2}{\sqrt{\mathbf{w}_1^T \boldsymbol{\Sigma}_{11} \mathbf{w}_1} \sqrt{\mathbf{w}_2^T \boldsymbol{\Sigma}_{22} \mathbf{w}_2}}$$

• Using a change of basis $v_1 = (\Sigma_{11})^{\frac{1}{2}} w_1$ and $v_2 = (\Sigma_{22})^{\frac{1}{2}} w_2$ we can write

$$\rho = \frac{\mathbf{v}_1^T (\boldsymbol{\Sigma}_{11})^{-\frac{1}{2}} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22})^{-\frac{1}{2}} \mathbf{v}_2}{\sqrt{\mathbf{v}_1^T \mathbf{v}_1} \sqrt{\mathbf{v}_2^T \mathbf{v}_2}}$$

Canonical Correlation Analysis (CCA)

 Seek vectors w₁ and w₂ so that the random variables w₁Y⁽¹⁾ and w₂Y⁽²⁾ are maximally correlated

$$\rho = \frac{\mathbf{w}_1^T \boldsymbol{\Sigma}_{12} \mathbf{w}_2}{\sqrt{\mathbf{w}_1^T \boldsymbol{\Sigma}_{11} \mathbf{w}_1} \sqrt{\mathbf{w}_2^T \boldsymbol{\Sigma}_{22} \mathbf{w}_2}}$$

• Using a change of basis $\mathbf{v}_1 = (\Sigma_{11})^{\frac{1}{2}} \mathbf{w}_1$ and $\mathbf{v}_2 = (\Sigma_{22})^{\frac{1}{2}} \mathbf{w}_2$ we can write

$$\rho = \frac{\mathbf{v}_1^T (\boldsymbol{\Sigma}_{11})^{-\frac{1}{2}} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22})^{-\frac{1}{2}} \mathbf{v}_2}{\sqrt{\mathbf{v}_1^T \mathbf{v}_1} \sqrt{\mathbf{v}_2^T \mathbf{v}_2}}$$

- Closed form solution: The maximum correlation is attained if \mathbf{v}_1 is the eigenvector with maximum eigenvalue of the matrix $(\Sigma_{11})^{-\frac{1}{2}}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}(\Sigma_{11})^{-\frac{1}{2}}$.
- The subsequent pairs are found by using eigenvalues of decreasing magnitudes.
- Orthogonality is guaranteed by the symmetry of the correlation matrices.

Canonical Correlation Analysis (CCA)

 Seek vectors w₁ and w₂ so that the random variables w₁Y⁽¹⁾ and w₂Y⁽²⁾ are maximally correlated

$$\rho = \frac{\mathbf{w}_1^T \boldsymbol{\Sigma}_{12} \mathbf{w}_2}{\sqrt{\mathbf{w}_1^T \boldsymbol{\Sigma}_{11} \mathbf{w}_1} \sqrt{\mathbf{w}_2^T \boldsymbol{\Sigma}_{22} \mathbf{w}_2}}$$

• Using a change of basis $\mathbf{v}_1 = (\Sigma_{11})^{\frac{1}{2}} \mathbf{w}_1$ and $\mathbf{v}_2 = (\Sigma_{22})^{\frac{1}{2}} \mathbf{w}_2$ we can write

$$\rho = \frac{\mathbf{v}_1^T (\boldsymbol{\Sigma}_{11})^{-\frac{1}{2}} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22})^{-\frac{1}{2}} \mathbf{v}_2}{\sqrt{\mathbf{v}_1^T \mathbf{v}_1} \sqrt{\mathbf{v}_2^T \mathbf{v}_2}}$$

- Closed form solution: The maximum correlation is attained if \mathbf{v}_1 is the eigenvector with maximum eigenvalue of the matrix $(\Sigma_{11})^{-\frac{1}{2}}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}(\Sigma_{11})^{-\frac{1}{2}}$.
- The subsequent pairs are found by using eigenvalues of decreasing magnitudes.
- Orthogonality is guaranteed by the symmetry of the correlation matrices.

- Use the kernel trick to learn non-linear mappings Kernel CCA
- Problems with correlated noise
- Kernel CCA very sensitive to parameter tuning.

Shared Gaussian process latent variable model

• Model the mapping from a joint latent space to an observation spaces as

$$p(\mathbf{Y}^{(i)}|\mathbf{Z}^{(i)},\mathbf{X}) = \prod_{d=1}^{D_i} \mathcal{N}(\mathbf{Y}^{(i)}_{:,d}|\mathbf{0},\mathbf{K}^{(i)})$$

where $\mathbf{K}^{(i)}$ is an $N \times N$ kernel matrix.

• The model is learn by minimizing the negative log likelihood

$$L_{data} = \sum_{i=1}^{V} \left(\frac{D_i}{2} \ln |\mathbf{K}^{(i)}| + \frac{D_i}{2} tr \left[(\mathbf{K}^{(i)})^{-1} \mathbf{Y}^{(i)} (\mathbf{Y}^{(i)})^T \right] \right) \,.$$

• For inference, the mean prediction from a joint latent coordinate to a view is given by $\bar{\mathbf{y}}_*^{(i)} = (\mathbf{k}_*^{(i)})^T (\mathbf{K}^{(i)})^{-1} \mathbf{Y}^{(i)}$.

- Developed by Shon et la. 06.
- Adapted by Ek et al. 07 and Navaratnam et al. 07 to solve pose estimation.

Figure: Modeling ambiguities (Navaratnam et al. 07)

Shared Kernel Information Embedding

- Extension of the Kernel Information Embedded (Memisevic 06) to have a shared latent space.
- The model is learn by maximizing the mutual information of a shared latent space $\mathbf{x}^{(i)}$ and an observation space $\mathbf{y}^{(i)}$

• The mutual information is approximated using kernel density estimation (KDE) as

$$\begin{split} \hat{l}\left(\mathbf{y}^{(i)},\mathbf{x}\right) &= -\frac{1}{N}\sum_{j}\log\sum_{t}k_{x}(\mathbf{x}_{j},\mathbf{x}_{t}) - \frac{1}{N}\sum_{j}\log\sum_{t}k_{y}(\mathbf{y}^{(i)}_{j},\mathbf{y}^{(i)}_{t}) \\ &+ \frac{1}{N}\sum_{j}\log\sum_{t}k_{x}(\mathbf{x}_{j},\mathbf{x}_{t})k_{y}(\mathbf{y}^{(i)}_{j},\mathbf{y}^{(i)}_{t}) \,. \end{split}$$

• In the shared KIE model the loss function is defined as (Sigal et al. 09).

$$L_{data} = -\sum_{i=1}^{V} \hat{I}\left(\mathbf{y}^{(i)}, \mathbf{x}
ight)$$

 For inference, the mean prediction from a joint latent coordinate to a view is given by

$$\bar{\mathbf{y}}_{*}^{(i)} = \sum_{j=1}^{N} \frac{k_{\mathsf{x}}(\mathbf{x}_{*}, \mathbf{x}_{j})}{\sum_{t=1}^{N} k_{\mathsf{x}}(\mathbf{x}_{*}, \mathbf{x}_{t})} \mathbf{y}_{j}^{(i)}$$

Human Pose Estimation

• We seek to recover the 3D pose from image features.

• The mapping is multimodal: an image observation can correspond to more than one pose.

• Private latent spaces can model these ambiguities.

- Ek et al. 08 developed NCCA
- First compute the shared space using CCA
- Then solve for the private space iteratively by solving an eigenvalue problem to reconstruct the residual information.

Shared and private information

- Use NCCA to initialize a GPLVM with shared and private spaces
- Problem, learning the GPLVM tends to merge information between shared and private

Figure: Modeling ambiguities (Ek et al. 08)

Raquel Urtasun (TTI-C)

Factorized Orthogonal Latent Spaces (FOLS)

- Learn shared and private spaces that represent non-redundant information by means of orthogonality constraints (Salzmann et al. 10)
- Discover the structure and dimensionality of latent spaces by encourage low-dimensionality (Geiger et al. 09).
- Salzmann et al. demonstrate the effectiveness of our constraints on 2 different models: Shared GPLVM and Shared KIE.

A FOLS model can be learned by minimizing

$$\mathcal{L} = L_{data} + L_{ortho} + L_{dim} + L_{energy}$$

• We encourage the different latent spaces to be non-redundant.

$$L_{ortho} = \alpha \sum_{i} \left(|| \mathbf{X}^{T} \cdot \mathbf{Z}^{(i)} ||_{F}^{2} + \sum_{j > i} || (\mathbf{Z}^{(i)})^{T} \cdot \mathbf{Z}^{(j)} ||_{F}^{2} \right)$$

- Minimize the Frobenius norm of inner product of latent spaces.
- This has the advantage of being continuous and differentiable.

.

Low-Dimensionality

- Encourage $\mathbf{M}^{(i)}$ to be low rank, with $\mathbf{m}^{(i)} = [\mathbf{x}, \mathbf{z}^{(i)}]$.
- Functions of the singular values s_i are typically used as relaxations.

$$L_{dim} = \gamma \sum_i \phi(s_i) \; .$$

• A particular instance of this is the trace norm, which is convex

$$\phi(s_i) = \sum_j |s_{i,j}| \; .$$

• L_{data} is non-convex, so we can use non-convex regularizers.

$$\phi(s_i) = \sum_j (1 + \beta \log(s_{i,j}^2)) \;.$$

• This drives smaller singular values faster to 0.

Raquel Urtasun (TTI-C)

- Orthogonality and low-dimensionality terms tend to drive the latent coordinates to 0.
- We seek to conserve the energy of the observed data.

$$L_{energy} = \eta \sum_{i} (E_0^{(i)} - \sum_{j} s_{i,j}^2)^2 ,$$

where $E_0^{(i)} = \sum_j p_{i,j}^2$, with $p_{i,j}$ the singular values of $\mathbf{Y}^{(i)}$.

- The data term *L_{data}* depends on the particular model into which we incorporate our constraints.
- Salzmann et al. 10 used two different models:
 - Shared Gaussian Process Latent Variable Model.
 - Shared Kernel Information Embedding.

FOLS-GPLVM

• We model the mapping from a joint latent space to an observation spaces as

$$p(\mathbf{Y}^{(i)}|\mathbf{Z}^{(i)},\mathbf{X}) = \prod_{d=1}^{D_i} \mathcal{N}(\mathbf{Y}^{(i)}_{:,d}|\mathbf{0},\mathbf{K}^{(i)}),$$

where $\mathbf{K}^{(i)}$ is an $N \times N$ kernel matrix.

• In practice we used the sum of an RBF kernel and a bias.

FOLS-GPLVM

• In the FOLS-GPLVM, the loss function is defined as

$$L_{data} = \sum_{i=1}^{V} \left(\frac{D_i}{2} \ln |\mathbf{K}^{(i)}| + \frac{D_i}{2} tr \left[(\mathbf{K}^{(i)})^{-1} \mathbf{Y}^{(i)} (\mathbf{Y}^{(i)})^T \right] \right) \; .$$

• For inference, the mean prediction from a joint latent coordinate to a view is given by

$$ar{\mathbf{y}}_{*}^{(i)} = (\mathbf{k}_{*}^{(i)})^{\mathcal{T}} (\mathbf{K}^{(i)})^{-1} \mathbf{Y}^{(i)}$$
 .

FOLS-KIE

- We seek to maximize the mutual information of a joint latent space m⁽ⁱ⁾ and an observation space y⁽ⁱ⁾.
- The mutual information is approximated using kernel density estimation (KDE) as

$$\hat{l}\left(\mathbf{y}^{(i)}, (\mathbf{x}, \mathbf{z}^{(i)})\right) = -\frac{1}{N} \sum_{j} \log \sum_{t} k_{m}(\mathbf{m}_{j}^{(i)}, \mathbf{m}_{t}^{(i)}) - \frac{1}{N} \sum_{j} \log \sum_{t} k_{y}(\mathbf{y}_{j}^{(i)}, \mathbf{y}_{t}^{(i)}) \\ + \frac{1}{N} \sum_{j} \log \sum_{t} k_{m}(\mathbf{m}_{j}^{(i)}, \mathbf{m}_{t}^{(i)}) k_{y}(\mathbf{y}_{j}^{(i)}, \mathbf{y}_{t}^{(i)}) .$$

FOLS-KIE

• In the FOLS-KIE, the loss function is defined as

$$L_{data} = -\sum_{i=1}^{V} \hat{I}\left(\mathbf{y}^{(i)}, (\mathbf{x}, \mathbf{z}^{(i)})\right) \; .$$

• For inference, the mean prediction from a joint latent coordinate to a view is given by

$$\bar{\mathbf{y}}_{*}^{(i)} = \sum_{j=1}^{N} \frac{k_m(\mathbf{m}_{*}^{(i)}, \mathbf{m}_{j}^{(i)})}{\sum_{t=1}^{N} k_m(\mathbf{m}_{*}^{(i)}, \mathbf{m}_{t}^{(i)})} \mathbf{y}_{j}^{(i)} .$$

Inference strategy

- Find nearest neighbor in image features space.
- Compute k-NN in shared space.
- Take the corresponding private coordinates.
- Infer the pose from the FOLS-GPLVM or FOLS-KIE equations.

Baselines

- k-NN in image features space.
- GP regression.
- Shared GPLVM or Shared KIE.
- Shared-Private factorization (Ek et al. 2008, Leen 2008).

Inference strategy

- Find nearest neighbor in image features space.
- Compute k-NN in shared space.
- Take the corresponding private coordinates.
- Infer the pose from the FOLS-GPLVM or FOLS-KIE equations.
- Baselines
 - k-NN in image features space.
 - GP regression.
 - Shared GPLVM or Shared KIE.
 - Shared-Private factorization (Ek et al. 2008, Leen 2008).

We have already covered

- NN
- Regression
- Mixture of experts
- Subspace models

Now we are going to see structure prediction

Non parametric BP for hand tracking

- We will focus on Sudderth et al. 04.
- Similar ideas for whole body in Sigal et al. 03.
- Accurately locating a few fingers highly constrains the set of possible global poses.
- GOAL: Robustly propagate local image evidence to track arbitrary hand motions.
- Use structure prediction and graphical models to solve this.

Figure: Sudderth et al. 04

Graphical models

An undirected graph ${\mathcal G}$ is defined by

- \mathcal{V} the set of nodes $\{1, 2, \cdots, N\}$
- ${\mathcal E}$ the set of edges (i,j) connecting nodes $i,j\in {\mathcal V}$
- Nodes $i \in \mathcal{V}$ are associated with random variables \mathbf{x}_i
- Graph separation represents conditional independence

$$p(\mathbf{x}_A, \mathbf{x}_C | \mathbf{x}_B) = p(\mathbf{x}_A | \mathbf{x}_B) p(\mathbf{x}_C | \mathbf{x}_B)$$

Figure: Sudderth 10
- Product of arbitrary positive clique potential functions
- Guaranteed Markov with respect to corresponding graph

$$oldsymbol{
ho}(\mathbf{x},\mathbf{y}) = rac{1}{Z} \prod_{(i,j)\in\mathcal{E}} \psi_{i,j}(\mathbf{x}_i,\mathbf{x}_j) \prod_{i\in\mathcal{V}} (\mathbf{x}_i,\mathbf{y})$$

• One case that we have seen in class is an HMM, where the dependency is temporal.

Belief Propagation (BP)

• Beliefs: Approximate posterior marginal distributions (product update)

$$\hat{p}(\mathbf{x}_i|\mathbf{y}) = lpha \psi_i(\mathbf{x}_i, \mathbf{y}) \prod_{k \in \Gamma(i)} m_{ki}(\mathbf{x}_i)$$

with $\Gamma(i)$ the neighborhood of node *i*.

• Messages: Approximate sufficient statistics (integral update)

$$m_{ij} = \alpha \int_{\mathbf{x}_i} \psi_{ji}(\mathbf{x}_j, \mathbf{x}_i) \psi(\mathbf{x}_i, \mathbf{y}) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(\mathbf{x}_i) d\mathbf{x}_i = \alpha \int_{\mathbf{x}_i} \psi_{ji}(\mathbf{x}_j, \mathbf{x}_i) \frac{\hat{p}(\mathbf{x}_i | \mathbf{y})}{m_{ji}(\mathbf{x}_i)} d\mathbf{x}_i$$

• BP is exact for trees.

Messages for continuous variables

$$m_{ij} = \alpha \int_{\mathbf{x}_i} \psi_{ji}(\mathbf{x}_j, \mathbf{x}_i) \psi(\mathbf{x}_i, \mathbf{y}) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(\mathbf{x}_i) d\mathbf{x}_i$$

Discrete State Variables

- Messages are finite vectors
- Updated via matrix-vector products

Gaussian State Variables

- Messages are mean and covariance
- Updated via information Kalman filter

Continuous Non-Gaussian State Variables

- Closed parametric forms unavailable
- Discretization can be intractable even with 2 or 3 dimensional states

Messages for continuous variables

- Discrete State Variables
- Gaussian State Variables
- Continuous Non-Gaussian State Variables

Figure: Message representation as (left) discrete (center) Gaussian and (right) continuous non-Gaussian state variables (Sudderth 10)

Non-parametric Inference for General Graphs

Figure: Non-parametric Inference for General Graphs (Sudderth 10)

Nonparametric Density Estimates

 Kernel (Parzen Window) Density Estimator approximates PDF by a set of smoothed data samples

$$\hat{p}(x) = rac{1}{M} \sum_{i=1}^{M} rac{1}{\sigma} K\left(rac{x - X_i}{\sigma}
ight)$$

where X_i are M independent samples from p(x), K is a kernel, typically Gaussian, and σ is the bandwidth

Nonparametric BP

- Input messages are kernel density estimates (Gaussian)
- Message product: draw L samples

$$\mathbf{x}_i^{(l)} \sim \psi_i(\mathbf{x}_i, \mathbf{y}) \prod_{k \in \Gamma(i) \setminus j} m_{ki}(\mathbf{x}_i)$$

• Message propagation: Monte Carlo integration

$$\mathbf{x}_{j}^{(l)} \sim \psi_{ji}(\mathbf{x}_{j}, \mathbf{x}_{i}^{(l)})$$

Figure: Non Parametric BP (Sudderth 10)

Raquel Urtasun (TTI-C)

Nonparametric BP

• Output message estimated from weighted samples via a bandwidth selection rule

Figure: Non Parametric BP (Sudderth 10)

NBP Marginal Update

Importance Sampling

- Sample from product of all Gaussian mixture messages
- Reweight samples by likelihoods (like particle filter)

$$\mathbf{x}_i^{(l)} \sim \psi_i(\mathbf{x}_i, \mathbf{y}) \prod_{k \in \Gamma(i)} m_{ki}(\mathbf{x}_i)$$

Figure: NBP Marginal Update (Sudderth 10)

Structural model

- Hand described by 16 rigid bodies
- 3D geometry of each rigid body modeled by truncated quadric surfaces: Ellipsoids, cones and cylinders (Stenger et al. 01).
- Perspective projection maps quadrics to conics (ellipses, pairs of lines, etc.) for efficient computation of edge and silhouettes.
- Fixed geometry measured offline

Figure: Sudderth et al. 04

Hand model projections

Figure: Hand model projections (Sudderth et al. 04)

Raquel Urtasun (TTI-C)

Discriminative prediction

• We create the graphical model from constraints

Figure: Hand constraints, (a) kinematic, (b) structural, (c) dynamic and (d) occlusion (Sudderth et al. 04)

Kinematic model

- Rigid bodies kinematically related by revolute joints
- Model has total of 26 DOF: 20 joint angles (4 per finger), Palms global position and orientation.
- Likelihood calculation requires global coordinates of all bodies: No direct evidence for joint angle.
- Forward kinematics maps joint angles to 3D poses.
- The nodes are rigid bodies and the edges joints

Figure: Sudderth et al. 04

Local State Representation

- The hand has 16 joints $\textbf{x} = \{\textbf{x}_1, \cdots, \textbf{x}_{16}\}.$
- Each joint is described with a redundant parameterization $\mathbf{x}_i = [\mathbf{q}_i, \mathbf{r}_i]$
- \mathbf{q}_i is a 3D position, and \mathbf{r}_i is a quaternion.
- Advantage: Image appearance directly relates to local state
- Disadvantage: It's redundant, we have additional dof.

Figure: Sudderth et al. 04

Kinematic Constraints

• Define an indicator function for each joint edge $(i,j) \in \mathcal{E}_K$

$$\psi_{i,j}^{K}(\mathbf{x}_{i},\mathbf{x}_{j}) = \begin{cases} 1 & \text{if } (\mathbf{x}_{i},\mathbf{x}_{j}) \text{ valid} \\ 0 & \text{otherwise} \end{cases}$$

• Kinematic prior model:

$$p_{\mathcal{K}}(\mathbf{x}) = \prod_{(i,j)\in\mathcal{E}_{\mathcal{K}}} \psi_{i,j}^{\mathcal{K}}(\mathbf{x}_i,\mathbf{x}_j)$$

• Graphical model exactly enforcing original joint angle constraints, e.g., conditioned on the palm, the fingers are statistically independent

Structural Constraints

- Kinematics do not prevent finger intersection (joints not independent)
- Ideal structural constraint prevents 3D quadric surface intersection

$$\psi_{i,j}^{\mathsf{S}}(\mathsf{x}_i,\mathsf{x}_j) = \left\{ egin{array}{cc} 1 & ext{if } ||\mathbf{q}_i - \mathbf{q}_j|| > \delta_{i,j} \ 0 & ext{otherwise} \end{array}
ight.$$

• Structural prior model: $p_{S}(\mathbf{x}) = \prod_{(i,j)\in \mathcal{E}_{S}} \psi_{i,j}^{S}(\mathbf{x}_{i},\mathbf{x}_{j})$

Observation model

Figure: Observation model, (a) original image, (b) skin color, (c) edge intensity (Sudderth et al. 04)

Raquel Urtasun (TTI-C)

Silhouette Matching: Skin Color

- Assume RGB values at each pixel independent
- *p_{skin}* is the histogram estimated from labeled skin pixels
- *p*_{bkgd} is the histogram estimated from hand-free background images

$$p_{\mathcal{C}}(\mathbf{y}|\mathbf{x}) = \prod_{u \in \Omega(\mathbf{x})} p_{skin}(u) \prod_{v \in \Upsilon \setminus \Omega(\mathbf{x})} p_{bkgd}(v) \propto \prod_{u \in \Omega(\mathbf{x})} \frac{p_{skin}(u)}{p_{bkgd}(u)}$$

where $\Omega(\mathbf{x})$ are the pixels in the silhouette projected from \mathbf{x} , and Υ is the set of all pixels.

• Only evaluate likelihood ratio over projected silhouette

Figure: Sudderth et al. 04

Edge Matching: Steered Gradient

- Steer derivative of Gaussian response to orientation of projected hand boundary.
- *p_{edge}* is the histogram estimated from labeled edge pixels.
- *p*_{bkgd} is the histogram estimated from background images.

Figure: Derivatives with respect to the horizontal and vertical axis (Sudderth et al. 04)

Local Likelihood Decomposition

• If two hand components do not occlude each other, they will project to disjoint subsets of the image

$$p_{C}(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{16} p_{C}(\mathbf{y}|\mathbf{x}_{i}) \propto \prod_{u \in \Omega(\mathbf{x})} \frac{p_{skin}(u)}{p_{bkgd}(u)} = \prod_{i=1}^{16} \prod_{u \in \Omega(\mathbf{x}_{i})} \frac{p_{skin}(u)}{p_{bkgd}(u)}$$

- Edge likelihood ratio decomposes similarly
- Reasoning about self-occlusions discussed later ...

Inferring Hand Position

• When using kinematic and structural constraints the posterior can be computed as

• Pairwise Markov Random Field

$$\rho(\mathbf{x}|\mathbf{y}) = \frac{1}{Z} \prod_{(i,j)\in\mathcal{E}} \psi_{i,j}(\mathbf{x}_i,\mathbf{x}_j) \prod_{i\in\mathcal{V}} \psi_i(\mathbf{x}_i,\mathbf{y})$$

NBP Hand Tracker Marginal Update

Importance Sampling

- Sample from product of all Gaussian mixtures
- Reweight samples by analytic functions (like particle filter)

Figure: Sudderth 10

Kinematic Message Propagation

- Start with weighted samples $\mathbf{x}_{i}^{(I)}$ from last marginal update
- Kinematic potential gives all valid poses equal weight
- Sample uniformly among allowable joint angles θ .
- Compute corresponding pose of \mathbf{x}_j by forward kinematics

Figure: Kinematic message propagation (Sudderth 10)

Structural Message Propagation

- Exact: Integrate belief over all poses outside some ball centered at the candidate pose **x**_j
- Approximate: Sum weights of all Gaussians with centers outside that ball

$$m_{ij}(\mathbf{x}_j) = \alpha \int_{\mathbf{x}_i} \psi_{j,i}^{\mathsf{S}}(\mathbf{x}_j, \mathbf{x}_i) \frac{\hat{p}(\mathbf{x}_i | \mathbf{y})}{m_{ji}(\mathbf{x}_i)} d\mathbf{x}_i$$

• Reduces weight of particles which overlap with likely positions of neighboring nodes

$$\psi_{i,j}^{S}(\mathbf{x}_{i},\mathbf{x}_{j}) = \begin{cases} 1 & \text{if } ||\mathbf{q}_{i} - \mathbf{q}_{j}|| > \delta_{i,j} \\ 0 & \text{otherwise} \end{cases}$$

Figure: Structural message propagation (Sudderth 10)

Single Frame Inference

Figure: Single frame estimation (Sudderth et al. 04)

Raquel Urtasun (TTI-C)

Self Occlusion Mask

• Condition on occlusion mask z allows exact likelihood decomposition

$$p_{C}(\mathbf{y}|\mathbf{x}) \propto \prod_{i=1}^{16} \prod_{u \in \Omega(\mathbf{x}_{i})} \left(\frac{p_{skin}(u)}{p_{bkgd}(u)}
ight)^{z_{i(u)}}$$

where the occlusion variables

 $z_{i(u)} = \begin{cases} 1 & \text{if pixel } u \text{ in the projection of body i is occluded} \\ 0 & \text{otherwise} \end{cases}$

Figure: Sudderth 10

Raquel Urtasun	(TTI-C)
----------------	---------

Distributed Occlusion Reasoning

- Factor graph imposes constraints ensuring occlusion consistency
- Use BP to analytically estimate probability of pixels occlusion

$$v_{i(u)} = \Pr[z_{i(u)} = 0]$$

• Neglecting correlations among the occlusion variables, the likelihood function (integrating over occlusions) becomes

Occlusion Reasoning Example

Figure: Pose estimation (left) without and (right) with occlusion reasoning. The middle finger is depicted in yellow and the Ring finger in pink (Sudderth et al. 04)

Temporal Constraints and Tracking

• Add Gaussian potentials between adjacent time steps

$$\psi(\mathbf{x}_{t-1,i},\mathbf{x}_{t,i}) = \mathcal{N}(\mathbf{x}_{t-1,i}|0,\mathbf{A}_{t,i})$$

- This can be interpreted as maximum entropy model given marginal variances in 3D pose ...
- ... or random walks implicitly coupled by kinematic and structural constraints

Figure: Temporal constraints (Sudderth et al. 04)

Raquel Urtasun (TTI-C)

Tracking Hand Rotation (Sudderth et al 04)

Tracking Finger Motion (Sudderth et al 04)

Nonparametric Belief Propagation

- Inference in continous, non-Gaussian graphical models
- Very flexible, easy to adapt to diverse applications
- Multiscale samplers lead to computational efficiency

Framework for Tracking Problems

- Modular state representation
- Graphical model of kinematics, structure, and dynamics
- NBP may accommodate complexities such as occlusions
- Many other potential applications

Code available online *http* : //*ssg.mit.edu/nbp/*

MRF with discretization

• Use discrete MRF to choose within a set of poses

Approaches for Articulated Pose Estimation

Articulated pose estimation

Discriminative Approaches

- + Allow for any image representation
- Require large training sets
- Assume output dimensions are independent given the inputs

Generative Approaches

- + Yield better accuracy
- Require good initialization

• Discriminative and generative methods should be used together.

- This was observed in the past, however
 - [Sminchisescu et al. 06] rely on the generative only for training,
 - [Rosales et al. 06] and [Sigal et al. 07] rely on the discriminative only for initialization.
- We would like a more principled combination of generative and discriminative methods.

Discriminative Regression

- Discriminative methods focus on learning an estimate $\hat{\mathbf{f}}$ of the mapping $\mathbf{y} = \mathbf{f}(\mathbf{x}) + \epsilon$ from training data.
- Given a new input $x_*,\,y$ is computed as the prediction $\hat{f}(x_*).$
- When **y** is multi-dimensional, the outputs are typically assumed to be independent.

Discriminative Regression: Limitations

• The outputs independence assumption yields estimations that do not satisfy some known constraints.

- We seek to improve the discriminative prediction by introducing explicit constraints.
- In particular, we enforce the distances between pairs of 3D points (y_j, y_k) to remain constant.

$$\begin{split} & \min_{\mathbf{y}} \ ||\hat{\mathbf{f}}(\mathbf{x}_*) - \mathbf{y}||_2^2 \\ & \text{subject to} \ ||\mathbf{y}_k - \mathbf{y}_j||_2^2 = l_{j,k}^2 \ , \ \forall (j,k) \in \mathcal{E} \ , \end{split}$$

where \mathcal{E} is the set of constrained link and $I_{i,k}$ are the known distances.

• Our optimization problem is non-convex due the constraints:

$$c_{jk}(\mathbf{y}) = ||\mathbf{y}_k - \mathbf{y}_j||_2^2 = l_{j,k}^2 \;,\; orall (j,k) \in \mathcal{E}$$

• We iteratively approximate the constraints $c_{jk}(\mathbf{y})$ with their first order Taylor expansion

$$c_{jk}(\mathbf{y}_{t+1}) = c_{jk}(\mathbf{y}_t) + \nabla c_{jk}(\mathbf{y}_t) \delta \mathbf{y}_t = l_{j,k}^2$$
.

 At each iteration t, we compute the constraints Jacobian matrix J_t and the constraint errors g_t, and seek a displacement δy_t, such that

$$\mathbf{J}_t \delta \mathbf{y}_t = \mathbf{g}_t \; .$$

- The previous system has more unknowns than constraints.
- Therefore it defines the family of solutions

$$\mathbf{s}(\boldsymbol{\gamma}_t) = \mathbf{y}_t + \mathbf{J}_t^{+} \mathbf{g}_t + \mathbf{V}_t^{T} \boldsymbol{\gamma}_t ,$$

where \mathbf{J}_t^+ is the pseudo-inverse of \mathbf{J}_t , and \mathbf{V}_t contains the right singular vectors of \mathbf{J}_t which have zero-valued singular values.

• Given the new unknowns γ_t that implicitly minimize the constraints violation, we re-write our problem as

$$\boldsymbol{\gamma}_t^* = \operatorname*{argmin}_{||} |\mathbf{\hat{f}}(\mathbf{x}_*) - \mathbf{s}(\boldsymbol{\gamma}_t)||_2^2 ,$$

which has a closed-form solution.

- The previous system has more unknowns than constraints.
- Therefore it defines the family of solutions

$$\mathbf{s}(\boldsymbol{\gamma}_t) = \mathbf{y}_t + \mathbf{J}_t^{+} \mathbf{g}_t + \mathbf{V}_t^{T} \boldsymbol{\gamma}_t ,$$

where \mathbf{J}_t^+ is the pseudo-inverse of \mathbf{J}_t , and \mathbf{V}_t contains the right singular vectors of \mathbf{J}_t which have zero-valued singular values.

• Given the new unknowns $\boldsymbol{\gamma}_t$ that implicitly minimize the constraints violation, we re-write our problem as

$$\boldsymbol{\gamma}_t^* = \operatorname*{argmin}_{||} |\hat{\mathbf{f}}(\mathbf{x}_*) - \mathbf{s}(\boldsymbol{\gamma}_t)||_2^2 ,$$

which has a closed-form solution.

 $\begin{aligned} \mathbf{y}_1 &= \hat{\mathbf{f}}(\mathbf{x}_*) \\ \text{for } t &= 1 \text{ to iters } \mathbf{do} \\ \text{Compute the constraints Jacobian matrix } \mathbf{J}_t \\ \text{Compute the constraints errors } \mathbf{g}_t \\ \gamma_t &= \operatorname{argmin} || \hat{\mathbf{f}}(\mathbf{x}_*) - (\mathbf{y}_t + \mathbf{J}_t^+ \mathbf{g}_t + \mathbf{V}_t^T \gamma_t) ||_2^2 \\ \mathbf{y}_{t+1} &= \mathbf{y}_t + \mathbf{J}_t^+ \mathbf{g}_t + \mathbf{V}_t^T \gamma_t \\ \text{end for} \end{aligned}$

- The approach described above depends on the predictor only through its fixed prediction $\hat{f}(x_*)$.
- We propose to rely on the Representer theorem which states that

$$\hat{f}(\mathbf{x}_*) = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}_i, \mathbf{x}_*) = \alpha \mathbf{k}_* ,$$

where k is a kernel function and α is learned from the N training examples.

• For multi-dimensional outputs, we can write $\mathbf{y} = \hat{\mathbf{f}}(\mathbf{x}_*) = \alpha \mathbf{k}_*$, with $\alpha \in \Re^{D \times N}$.

Better Use of the Predictor

- We can rely more strongly on the learned predictor by treating ${\bm k}_*$ as an unknown.
- This lets us re-write our optimization problem as

$$egin{aligned} \min_{\mathbf{k}_*} & ||\hat{\mathbf{f}}(\mathbf{x}_*) - oldsymbol{lpha} \mathbf{k}_*||_2^2 \ \mathrm{subject \ to} & ||\mathbf{y}_k(\mathbf{k}_*) - \mathbf{y}_j(\mathbf{k}_*)||_2^2 = l_{j,k}^2 \ , \ orall (j,k) \in \mathcal{E} \ . \end{aligned}$$

- Following a similar approach as before, we iteratively compute the Taylor expansion of our constraints with respect to **k**_*.
- This yields a family of solutions characterized as

$$\mathbf{s}({m \gamma}_t) = m lpha \cdot \left(\mathbf{k}_{*,t} + ar{\mathbf{J}}_t^+ ar{\mathbf{g}}_t + ar{\mathbf{V}}_t^{ op} {m \gamma}_t
ight) \, .$$

• The optimal γ_t can still be obtained in closed-form.

Better Use of the Predictor

- \bullet We can rely more strongly on the learned predictor by treating ${\bm k}_*$ as an unknown.
- This lets us re-write our optimization problem as

$$\begin{split} \min_{\mathbf{k}_*} & ||\hat{\mathbf{f}}(\mathbf{x}_*) - \boldsymbol{\alpha} \mathbf{k}_*||_2^2\\ \text{subject to} & ||\mathbf{y}_k(\mathbf{k}_*) - \mathbf{y}_j(\mathbf{k}_*)||_2^2 = l_{j,k}^2 \ , \ \forall (j,k) \in \mathcal{E} \ . \end{split}$$

- Following a similar approach as before, we iteratively compute the Taylor expansion of our constraints with respect to **k**_*.
- This yields a family of solutions characterized as

$$\mathbf{s}(\boldsymbol{\gamma}_t) = \boldsymbol{lpha} \cdot \left(\mathbf{k}_{*,t} + \mathbf{\bar{J}}_t^+ \mathbf{\bar{g}}_t + \mathbf{\bar{V}}_t^\top \boldsymbol{\gamma}_t
ight) \; .$$

• The optimal γ_t can still be obtained in closed-form.

- One drawback of this method is that it only uses image information through the prediction of the discriminative method.
- The recovered pose will satisfy the constraints, but may have drifted away from the pose depicted in the image.

Combining Generative and Discriminative

• At each iteration t, given the new variable γ_t , we solve

$$\begin{split} \min_{\boldsymbol{\gamma}_t} ~~ \mathcal{L}(\cdot,\boldsymbol{\gamma}_t) + \lambda || \hat{\mathbf{f}}(\mathbf{x}_*) - \mathbf{s}(\boldsymbol{\gamma}_t) ||_2^2 ~, \end{split}$$
 where $\mathcal{L}(\cdot,\boldsymbol{\gamma}_t)$ is an image-based loss function.

In practice, we implemented 3 different image loss functions.

- Inverse mapping
 - Learn an estimate $\hat{\mathbf{h}}$ of the mapping $\mathbf{x} = \mathbf{h}(\mathbf{y}) + \epsilon$.
 - $\mathcal{L}(\mathbf{x}_*, \boldsymbol{\gamma}_t) = ||\mathbf{x}_* \hat{\mathbf{h}}(\mathbf{s}(\boldsymbol{\gamma}_t))||_2^2$.
- 3D-2D correspondences
 - $\mathcal{L}(\boldsymbol{\gamma}_t) = ||\mathbf{Ms}(\boldsymbol{\gamma}_t) \mathbf{b}||_2^2$.
 - Closed-form solution.

In practice, we implemented 3 different image loss functions.

- Inverse mapping
 - Learn an estimate $\hat{\mathbf{h}}$ of the mapping $\mathbf{x} = \mathbf{h}(\mathbf{y}) + \epsilon$.
 - $\mathcal{L}(\mathbf{x}_*, \boldsymbol{\gamma}_t) = ||\mathbf{x}_* \hat{\mathbf{h}}(\mathbf{s}(\boldsymbol{\gamma}_t))||_2^2$.
- 3D-2D correspondences
 - $\mathcal{L}(\boldsymbol{\gamma}_t) = ||\mathbf{Ms}(\boldsymbol{\gamma}_t) \mathbf{b}||_2^2$.
 - Closed-form solution.
- More complete image representation
 - Template matching.
 - Edge information.

In practice, we implemented 3 different image loss functions.

- Inverse mapping
 - Learn an estimate $\hat{\mathbf{h}}$ of the mapping $\mathbf{x} = \mathbf{h}(\mathbf{y}) + \epsilon$.
 - $\mathcal{L}(\mathbf{x}_*, \boldsymbol{\gamma}_t) = ||\mathbf{x}_* \hat{\mathbf{h}}(\mathbf{s}(\boldsymbol{\gamma}_t))||_2^2$.
- 3D-2D correspondences
 - $\mathcal{L}(\boldsymbol{\gamma}_t) = ||\mathbf{Ms}(\boldsymbol{\gamma}_t) \mathbf{b}||_2^2$.
 - Closed-form solution.
- More complete image representation
 - Template matching.
 - Edge information.

$$\begin{split} & \mathbf{y}_1 = \hat{\mathbf{f}}(\mathbf{x}_*), \text{ or } \mathbf{k}_{*,1} = \mathbf{k}_* \\ & \text{for } t = 1 \text{ to } \textit{iters } \mathbf{do} \\ & \text{Compute the constraints Jacobian matrix } \mathbf{J}_t, \text{ or } \mathbf{\bar{J}}_t \\ & \text{Compute the constraints errors } \mathbf{g}_t, \text{ or } \mathbf{\bar{g}}_t \\ & \gamma_t = \operatorname{argmin} \mathcal{L}(\cdot, \gamma_t) + \lambda || \hat{\mathbf{f}}(\mathbf{x}_*) - \mathbf{s}(\gamma_t) ||_2^2 \\ & \text{Compute } \mathbf{y}_{t+1} = \mathbf{y}_t + \mathbf{J}_t^+ \mathbf{g}_t + \mathbf{V}_t^\top \gamma_t, \text{ or } \mathbf{k}_{*,t+1} = \mathbf{k}_{*,t} + \mathbf{\bar{J}}_t^+ \mathbf{\bar{g}}_t + \mathbf{\bar{V}}_t^\top \gamma_t \end{split}$$

end for

Comparison with Previous Reconstructions

- In practice, we used Gaussian processes as our discriminative predictor.
- ullet In this case, the basis lpha can be computed in closed form as

$$oldsymbol{lpha} = oldsymbol{\mathsf{Y}}^{\mathcal{T}} oldsymbol{\mathsf{K}}^{-1} \; ,$$

where $\mathbf{Y} \in \Re^{N \times D}$ is the matrix of training outputs (e.g., poses), and **K** is the covariance matrix formed by evaluating the kernel function $k(\mathbf{x}_i, \mathbf{x}_j)$ on the training inputs.

• Our kernel was taken to be the sum of an RBF kernel and a bias.

Experimental Evaluation

Reconstructing a Piece of Cardboard from 2D Locations

MSE as a function of the 2D noise variance when optimizing \mathbf{y} (left), or \mathbf{k}_* (right).

Reconstructing a Piece of Cardboard from 2D Locations

MSE as a function of the number of training examples when optimizing \mathbf{y} (left), or \mathbf{k}_* (right).

Non-Rigid Reconstruction from Pyramid HOG

MSE for a well-textured piece of cardboard (left) and a poorly-textured surface (right).

MSE for several features.

Human Pose Estimation

MSE for several features.

[11] Rogez et al. CVPR'08.

- We proposed an effective approach to introducing constraints in discriminative methods.
- We presented a principled combination of discriminative and generative methods.
- Our framework is valid for articulated pose estimation and deformable shape reconstruction.
- We demonstrated the effectiveness of our approach in the task of hand and human body pose estimation, as well as deformable surface reconstruction.

We have seen character animation

- Inverse kinematics
- NN and blending, i.e., motion graphs
- Latent variable models
- Physics (very little unfortunatelly)

We have seen different modules we need to choose to create our tracker

- Generative models
 - Inference techniques: particle filter vs optimization
 - Likelihood models: for monocular and multi-view settings
 - Priors: pose, motion, shape, physics, joint limits
- Discriminative models
 - NN
 - Regression
 - Mixture of experts
 - Subspace models
 - Structure prediction
- Combination of generative and discriminative models

- Multi-view case in controlled environments is mostly solved
- Multi-view outdoors is unsolved
- Monocular tracking it's very far from been solved
- There is room for a lot of research and PhD topics.
- I'm still looking for PhD students... ;)