
Human Motion Analysis
Lecture 12: Discriminative Prediction II

Raquel Urtasun

TTI Chicago

May 31, 2010

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 1 / 94



Materials used for this lecture

The slides for Non-parametric BP come from Erik Sudderth 2010
class on learning and inference on graphical models. Thanks Erik!

See references for the rest of the class.
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What did we look into last class?

Local and global image features

Similarities between images

Discriminative prediction

NN
Regression
Mixture of experts
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What are we going to see today?

Continue on discriminative prediction:

Latent spaces for discriminative prediction

Structure prediction

Look into combinations of generative and discriminative methods

No time for activity recognition: modern approaches are similar to object
recognition.
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Feature types

Global vs local

For local features: Interest points vs dense local features
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Different descriptors

Global descriptors: HOG, PHOG, Shape Context, GIST, HMAX

Local descriptors: SIFT, SURF, Geometric Blur
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Distances between features

Global descriptors: euclidean, mahalanobis, histogram intersection

Local features: BOW, matching, PMK, Spatial pyramid.

Multiple Kernel Learning

? 
Figure: (left) BOW, (right) Spatial pyramid
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Discriminative approaches

NN techniques: Linear search, Space partitioning (e.g., KD-trees),
LSH, PSH.

Regression: least-square regression, ridge regression, lasso, GP
regression

Mixture of experts due to multimodal mappings, e.g., mixtures of
local GPs.
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Shared latent space models

Many different models:

Canonical Correlation Analysis (CCA).

Shared-GPLVM (Shon et al. NIPS’06, Ek et al. MLMI’07,
Navaratnam et al. ICCV’07).

Shared-KIE (Sigal et al. CVPR’09).

X

Y Y(1) (2)

They are effective when the views are correlated.
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Canonical Correlation Analysis (CCA)

Seek vectors w1 and w2 so that the random variables w1Y(1) and w2Y(2) are
maximally correlated

ρ =
wT

1 Σ12w2√
wT

1 Σ11w1

√
wT

2 Σ22w2

Using a change of basis v1 = (Σ11)
1
2 w1 and v2 = (Σ22)

1
2 w2 we can write

ρ =
vT

1 (Σ11)−
1
2 Σ12(Σ22)−

1
2 v2√

vT
1 v1

√
vT

2 v2

Closed form solution: The maximum correlation is attained if v1 is the
eigenvector with maximum eigenvalue of the matrix
(Σ11)−

1
2 Σ12Σ−1

22 Σ21(Σ11)−
1
2 .

The subsequent pairs are found by using eigenvalues of decreasing
magnitudes.

Orthogonality is guaranteed by the symmetry of the correlation matrices.
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Some remarks on CCA

Use the kernel trick to learn non-linear mappings Kernel CCA

Problems with correlated noise

Kernel CCA very sensitive to parameter tuning.
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Shared Gaussian process latent variable model

Model the mapping from a joint latent space to an observation spaces as

p(Y(i)|Z(i),X) =

Di∏
d=1

N (Y
(i)
:,d |0,K

(i))

where K(i) is an N × N kernel matrix.

The model is learn by minimizing the negative log likelihood

Ldata =
V∑

i=1

(
Di

2
ln |K(i)|+ Di

2
tr
[
(K(i))−1Y(i)(Y(i))T

])
.

For inference, the mean prediction from a joint latent coordinate to a view is

given by ȳ
(i)
∗ = (k

(i)
∗ )T (K(i))−1Y(i).

X

Y Y(1) (2)
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Shared GPLVM

Developed by Shon et la. 06.

Adapted by Ek et al. 07 and Navaratnam et al. 07 to solve pose
estimation.

Figure: Modeling ambiguities (Navaratnam et al. 07)

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 13 / 94



Shared Kernel Information Embedding

Extension of the Kernel Information Embedded (Memisevic 06) to have a
shared latent space.

The model is learn by maximizing the mutual information of a shared latent
space x(i) and an observation space y(i)

X

Y Y(1) (2)

The mutual information is approximated using kernel density estimation
(KDE) as

Î
“
y(i), x)

”
= − 1

N

X
j

log
X

t

kx(xj , xt)−
1

N

X
j

log
X

t

ky (y
(i)
j , y

(i)
t )

+
1

N

X
j

log
X

t

kx(xj , xt)ky (y
(i)
j , y

(i)
t ) .
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Shared Kernel Information Embedding

In the shared KIE model the loss function is defined as (Sigal et al.
09).

Ldata = −
V∑

i=1

Î
(
y(i), x

)
For inference, the mean prediction from a joint latent coordinate to a
view is given by

ȳ
(i)
∗ =

N∑
j=1

kx(x∗, xj)∑N
t=1 kx(x∗, xt)

y
(i)
j
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Human Pose Estimation

We seek to recover the 3D pose from image features.

The mapping is multimodal: an image observation can correspond to more
than one pose.

Private latent spaces can model these ambiguities.
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Shared and private information

Ek et al. 08 developed NCCA

First compute the shared space using CCA

Then solve for the private space iteratively by solving an eigenvalue problem
to reconstruct the residual information.

(1) Z(2)X

Y Y(1)

Z

(2)

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 17 / 94



Shared and private information

Use NCCA to initialize a GPLVM with shared and private spaces

Problem, learning the GPLVM tends to merge information between shared
and private

Figure: Modeling ambiguities (Ek et al. 08)
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Factorized Orthogonal Latent Spaces (FOLS)

Learn shared and private spaces that represent non-redundant information
by means of orthogonality constraints (Salzmann et al. 10)

Discover the structure and dimensionality of latent spaces by encourage
low-dimensionality (Geiger et al. 09).

Salzmann et al. demonstrate the effectiveness of our constraints on 2
different models: Shared GPLVM and Shared KIE.

(1) Z(2)X

Y Y(1)

Z

(2)

A FOLS model can be learned by minimizing

L = Ldata + Lortho + Ldim + Lenergy
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Orthogonality

We encourage the different latent spaces to be non-redundant.

Lortho = α
∑

i

||XT · Z(i)||2F +
∑
j>i

||(Z(i))T · Z(j)||2F

 .

Minimize the Frobenius norm of inner product of latent spaces.

This has the advantage of being continuous and differentiable.
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Low-Dimensionality

Encourage M(i) to be low rank, with m(i) = [x, z(i)].

Functions of the singular values si are typically used as relaxations.

Ldim = γ
∑

i

φ(si ) .

A particular instance of this is the trace norm, which is convex

φ(si ) =
∑

j

|si ,j | .

Ldata is non-convex, so we can use non-convex regularizers.

φ(si ) =
∑

j

(1 + β log(s2
i ,j)) .

This drives smaller singular values faster to 0.
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Energy Conservation

Orthogonality and low-dimensionality terms tend to drive the latent
coordinates to 0.

We seek to conserve the energy of the observed data.

Lenergy = η
∑

i

(E
(i)
0 −

∑
j

s2
i ,j)

2 ,

where E
(i)
0 =

∑
j p2

i ,j , with pi ,j the singular values of Y(i).
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Data Term

The data term Ldata depends on the particular model into which we
incorporate our constraints.

Salzmann et al. 10 used two different models:

Shared Gaussian Process Latent Variable Model.
Shared Kernel Information Embedding.
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FOLS-GPLVM

Shared GPLVM FOLS-GPLVM

X

Y Y(1) (2)

(1) Z(2)X

Y Y(1)

Z

(2)

We model the mapping from a joint latent space to an observation
spaces as

p(Y(i)|Z(i),X) =

Di∏
d=1

N (Y
(i)
:,d |0,K

(i)) ,

where K(i) is an N × N kernel matrix.

In practice we used the sum of an RBF kernel and a bias.
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FOLS-GPLVM

Shared GPLVM FOLS-GPLVM

X

Y Y(1) (2)

(1) Z(2)X

Y Y(1)

Z

(2)

In the FOLS-GPLVM, the loss function is defined as

Ldata =
V∑

i=1

(
Di

2
ln |K(i)|+ Di

2
tr
[
(K(i))−1Y(i)(Y(i))T

])
.

For inference, the mean prediction from a joint latent coordinate to a
view is given by

ȳ
(i)
∗ = (k

(i)
∗ )T (K(i))−1Y(i) .
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FOLS-KIE

Shared KIE FOLS-KIE

X

Y Y(1) (2)

(1) Z(2)X

Y Y(1)

Z

(2)

We seek to maximize the mutual information of a joint latent space
m(i) and an observation space y(i).

The mutual information is approximated using kernel density
estimation (KDE) as

Î
“
y(i), (x, z(i))

”
= − 1

N

X
j

log
X

t

km(m(i)
j ,m

(i)
t )− 1

N

X
j

log
X

t

ky (y
(i)
j , y

(i)
t )

+
1

N

X
j

log
X

t

km(m(i)
j ,m

(i)
t )ky (y

(i)
j , y

(i)
t ) .

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 26 / 94



FOLS-KIE

Shared KIE FOLS-KIE

X

Y Y(1) (2)

(1) Z(2)X

Y Y(1)

Z

(2)

In the FOLS-KIE, the loss function is defined as

Ldata = −
V∑

i=1

Î
(
y(i), (x, z(i))

)
.

For inference, the mean prediction from a joint latent coordinate to a
view is given by

ȳ
(i)
∗ =

N∑
j=1

km(m∗(i),m
(i)
j )∑N

t=1 km(m∗(i),m
(i)
t )

y
(i)
j .
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Human Pose Estimation

Inference strategy

Find nearest neighbor in image features space.
Compute k-NN in shared space.
Take the corresponding private coordinates.
Infer the pose from the FOLS-GPLVM or FOLS-KIE equations.

Baselines

k-NN in image features space.
GP regression.
Shared GPLVM or Shared KIE.
Shared-Private factorization (Ek et al. 2008, Leen 2008).
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Humaneva: Jog

FOLS-GPLVM FOLS-KIE

Figure: Humaneva jog motion (Salzmann et al. 10)
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Humaneva: Walk

FOLS-GPLVM FOLS-KIE

Figure: Humaneva walk motion (Salzmann et al. 10)
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Discriminative prediction

We have already covered

NN

Regression

Mixture of experts

Subspace models

Now we are going to see structure prediction
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Non parametric BP for hand tracking

We will focus on Sudderth et al. 04.

Similar ideas for whole body in Sigal et al. 03.

Accurately locating a few fingers highly constrains the set of possible
global poses.

GOAL: Robustly propagate local image evidence to track arbitrary
hand motions.

Use structure prediction and graphical models to solve this.

Figure: Sudderth et al. 04
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Graphical models

An undirected graph G is defined by

V the set of nodes {1, 2, · · · ,N}
E the set of edges (i , j) connecting nodes i , j ∈ V
Nodes i ∈ V are associated with random variables xi

Graph separation represents conditional independence

p(xA, xC |xB) = p(xA|xB)p(xC |xB)

Figure: Sudderth 10
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Pairwise Markov Random Fields

Product of arbitrary positive clique potential functions

Guaranteed Markov with respect to corresponding graph

p(x, y) =
1

Z

∏
(i ,j)∈E

ψi ,j(xi , xj)
∏
i∈V

(xi , y)

One case that we have seen in class is an HMM, where the
dependency is temporal.
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Belief Propagation (BP)

Beliefs: Approximate posterior marginal distributions (product update)

p̂(xi |y) = αψi (xi , y)
∏

k∈Γ(i)

mki (xi )

with Γ(i) the neighborhood of node i .

Messages: Approximate sufficient statistics (integral update)

mij = α

Z
xi

ψji (xj , xi )ψ(xi , y)
Y

k∈Γ(i)\j

mki (xi )dxi = α

Z
xi

ψji (xj , xi )
p̂(xi |y)
mji (xi )

dxi

BP is exact for trees.

Figure: Sudderth 10
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Messages for continuous variables

mij = α

∫
xi

ψji (xj , xi )ψ(xi , y)
∏

k∈Γ(i)\j

mki (xi )dxi

Discrete State Variables

Messages are finite vectors

Updated via matrix-vector products

Gaussian State Variables

Messages are mean and covariance

Updated via information Kalman filter

Continuous Non-Gaussian State Variables

Closed parametric forms unavailable

Discretization can be intractable even with 2 or 3 dimensional states
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Messages for continuous variables

Discrete State Variables

Gaussian State Variables

Continuous Non-Gaussian State Variables

Figure: Message representation as (left) discrete (center) Gaussian and (right)
continuous non-Gaussian state variables (Sudderth 10)
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Non-parametric Inference for General Graphs

Figure: Non-parametric Inference for General Graphs (Sudderth 10)
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Nonparametric Density Estimates

Kernel (Parzen Window) Density Estimator approximates PDF by a set of
smoothed data samples

p̂(x) =
1

M

M∑
i=1

1

σ
K

(
x − Xi

σ

)
where Xi are M independent samples from p(x), K is a kernel, typically
Gaussian, and σ is the bandwidth

Figure: Kernel density estimation (Sudderth 10)
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Nonparametric BP

Input messages are kernel density estimates (Gaussian)
Message product: draw L samples

x
(l)
i ∼ ψi (xi , y)

∏
k∈Γ(i)\j

mki (xi )

Message propagation: Monte Carlo integration

x
(l)
j ∼ ψji (xj , x

(l)
i )

Figure: Non Parametric BP (Sudderth 10)
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Nonparametric BP

Output message estimated from weighted samples via a bandwidth
selection rule

Figure: Non Parametric BP (Sudderth 10)
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NBP Marginal Update

Importance Sampling

Sample from product of all Gaussian mixture messages

Reweight samples by likelihoods (like particle filter)

x
(l)
i ∼ ψi (xi , y)

∏
k∈Γ(i)

mki (xi )

Figure: NBP Marginal Update (Sudderth 10)

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 42 / 94



Structural model

Hand described by 16 rigid bodies

3D geometry of each rigid body modeled by truncated quadric surfaces:
Ellipsoids, cones and cylinders (Stenger et al. 01).

Perspective projection maps quadrics to conics (ellipses, pairs of lines, etc.)
for efficient computation of edge and silhouettes.

Fixed geometry measured offline

Figure: Sudderth et al. 04
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Hand model projections

Figure: Hand model projections (Sudderth et al. 04)
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Graphical model

We create the graphical model from constraints

Figure: Hand constraints, (a) kinematic, (b) structural, (c) dynamic and (d)
occlusion (Sudderth et al. 04)
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Kinematic model

Rigid bodies kinematically related by revolute joints

Model has total of 26 DOF: 20 joint angles (4 per finger), Palms global
position and orientation.

Likelihood calculation requires global coordinates of all bodies: No direct
evidence for joint angle.

Forward kinematics maps joint angles to 3D poses.

The nodes are rigid bodies and the edges joints

Figure: Sudderth et al. 04
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Local State Representation

The hand has 16 joints x = {x1, · · · , x16}.
Each joint is described with a redundant parameterization xi = [qi , ri ]

qi is a 3D position, and ri is a quaternion.

Advantage: Image appearance directly relates to local state

Disadvantage: It’s redundant, we have additional dof.

Figure: Sudderth et al. 04
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Kinematic Constraints

Define an indicator function for each joint edge (i , j) ∈ EK

ψK
i,j(xi , xj) =

{
1 if (xi , xj) valid
0 otherwise

Kinematic prior model:
pK (x) =

∏
(i,j)∈EK

ψK
i,j(xi , xj)

Graphical model exactly enforcing original joint angle constraints, e.g.,
conditioned on the palm, the fingers are statistically independent

Figure: Sudderth et al. 04
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Structural Constraints

Kinematics do not prevent finger intersection (joints not independent)

Ideal structural constraint prevents 3D quadric surface intersection

ψS
i,j(xi , xj) =

{
1 if ||qi − qj || > δi,j
0 otherwise

Structural prior model: pS(x) =
∏

(i,j)∈ES

ψS
i,j(xi , xj)

Figure: Sudderth et al. 04
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Observation model

Figure: Observation model, (a) original image, (b) skin color, (c) edge intensity
(Sudderth et al. 04)
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Silhouette Matching: Skin Color

Assume RGB values at each pixel independent

pskin is the histogram estimated from labeled skin pixels

pbkgd is the histogram estimated from hand-free background images

pC (y|x) =
∏

u∈Ω(x)

pskin(u)
∏

v∈Υ\Ω(x)

pbkgd(v) ∝
∏

u∈Ω(x)

pskin(u)

pbkgd(u)

where Ω(x) are the pixels in the silhouette projected from x, and Υ is the set
of all pixels.

Only evaluate likelihood ratio over projected silhouette

Figure: Sudderth et al. 04
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Edge Matching: Steered Gradient

Steer derivative of Gaussian response to orientation of projected hand
boundary.

pedge is the histogram estimated from labeled edge pixels.

pbkgd is the histogram estimated from background images.

Figure: Derivatives with respect to the horizontal and vertical axis (Sudderth et
al. 04)
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Local Likelihood Decomposition

If two hand components do not occlude each other, they will project to
disjoint subsets of the image

pC (y|x) =
16∏
i=1

pC (y|xi ) ∝
∏

u∈Ω(x)

pskin(u)

pbkgd(u)
=

16∏
i=1

∏
u∈Ω(xi )

pskin(u)

pbkgd(u)

Edge likelihood ratio decomposes similarly

Reasoning about self-occlusions discussed later ...

Figure: Sudderth 10
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Inferring Hand Position

When using kinematic and structural constraints the posterior can be
computed as

p(x|y) ∝ pK (x)pS(x)

 16∏
i=1

pC (y|xi )pE (y|xi )︸ ︷︷ ︸
Color and edge



Pairwise Markov Random Field

p(x|y) =
1

Z

∏
(i,j)∈E

ψi,j(xi , xj)
∏
i∈V

ψi (xi , y)
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NBP Hand Tracker Marginal Update

Importance Sampling

Sample from product of all Gaussian mixtures

Reweight samples by analytic functions (like particle filter)

Figure: Sudderth 10
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Kinematic Message Propagation

Start with weighted samples x
(l)
i from last marginal update

Kinematic potential gives all valid poses equal weight

Sample uniformly among allowable joint angles θ.

Compute corresponding pose of xj by forward kinematics

Figure: Kinematic message propagation (Sudderth 10)
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Structural Message Propagation

Exact: Integrate belief over all poses outside some ball centered at the
candidate pose xj

Approximate: Sum weights of all Gaussians with centers outside that ball

mij(xj) = α

∫
xi

ψS
j,i (xj , xi )

p̂(xi |y)

mji (xi )
dxi

Reduces weight of particles which overlap with likely positions of
neighboring nodes

ψS
i,j(xi , xj) =

{
1 if ||qi − qj || > δi,j
0 otherwise

Figure: Structural message propagation (Sudderth 10)
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Single Frame Inference

Figure: Single frame estimation (Sudderth et al. 04)
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Self Occlusion Mask

Condition on occlusion mask z allows exact likelihood decomposition

pC (y|x) ∝
16∏
i=1

∏
u∈Ω(xi )

(
pskin(u)

pbkgd(u)

)zi(u)

where the occlusion variables

zi(u) =

{
1 if pixel u in the projection of body i is occluded
0 otherwise

Figure: Sudderth 10
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Distributed Occlusion Reasoning

Factor graph imposes constraints ensuring occlusion consistency

Use BP to analytically estimate probability of pixels occlusion

vi(u) = Pr [zi(u) = 0]

Neglecting correlations among the occlusion variables, the likelihood
function (integrating over occlusions) becomes

pC (y|xi ) ∝
∏

u∈Ω(xi )

vi(u) (1)︸︷︷︸
uninformative

+(1− vi(u))

(
pskin(u)

pbkgd(u)

)
︸ ︷︷ ︸

skincolor



Figure: Sudderth 10
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Occlusion Reasoning Example

Figure: Pose estimation (left) without and (right) with occlusion reasoning. The
middle finger is depicted in yellow and the Ring finger in pink (Sudderth et al. 04)
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Temporal Constraints and Tracking

Add Gaussian potentials between adjacent time steps

ψ(xt−1,i , xt,i ) = N (xt−1,i |0,At,i )

This can be interpreted as maximum entropy model given marginal variances
in 3D pose ...

... or random walks implicitly coupled by kinematic and structural
constraints

Figure: Temporal constraints (Sudderth et al. 04)
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Tracking Hand Rotation (Sudderth et al 04)
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Tracking Finger Motion (Sudderth et al 04)
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Conclusions on structure prediction with NBP

Nonparametric Belief Propagation

Inference in continous, non-Gaussian graphical models

Very flexible, easy to adapt to diverse applications

Multiscale samplers lead to computational efficiency

Framework for Tracking Problems

Modular state representation

Graphical model of kinematics, structure, and dynamics

NBP may accommodate complexities such as occlusions

Many other potential applications

Code available online http : //ssg .mit.edu/nbp/
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MRF with discretization

Use discrete MRF to choose within a set of poses
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Approaches for Articulated Pose Estimation

Articulated pose estimation

Discriminative Approaches

+ Allow for any image
representation

– Require large training sets
– Assume output dimensions are

independent given the inputs

Generative Approaches

+ Yield better accuracy
– Require good initialization
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Combining Generative and Discriminative

Discriminative and generative methods should be used together.

This was observed in the past, however

[Sminchisescu et al. 06] rely on the generative only for training,
[Rosales et al. 06] and [Sigal et al. 07] rely on the discriminative only
for initialization.

We would like a more principled combination of generative and
discriminative methods.
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Our Approach

3) Generative↖

1) Discriminative−→

2) Constraints

↙
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Discriminative Regression

x

−→
f

y

Discriminative methods focus on learning an estimate f̂ of the
mapping y = f(x) + ε from training data.

Given a new input x∗, y is computed as the prediction f̂(x∗).

When y is multi-dimensional, the outputs are typically assumed to be
independent.
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Discriminative Regression: Limitations

The outputs independence assumption yields estimations that do not
satisfy some known constraints.
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Constrained Discriminative Regression

y

We seek to improve the discriminative prediction by introducing
explicit constraints.

In particular, we enforce the distances between pairs of 3D points
(yj , yk) to remain constant.

min
y
||̂f(x∗)− y||22

subject to ||yk − yj ||22 = l2
j ,k , ∀(j , k) ∈ E ,

where E is the set of constrained link and lj ,k are the known distances.
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Constrained Discriminative Regression

Our optimization problem is non-convex due the constraints:

cjk(y) = ||yk − yj ||22 = l2
j ,k , ∀(j , k) ∈ E

We iteratively approximate the constraints cjk(y) with their first order
Taylor expansion

cjk(yt+1) = cjk(yt) +∇cjk(yt)δyt = l2
j ,k .

At each iteration t, we compute the constraints Jacobian matrix Jt

and the constraint errors gt , and seek a displacement δyt , such that

Jtδyt = gt .
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Constrained Discriminative Regression

The previous system has more unknowns than constraints.

Therefore it defines the family of solutions

s(γt) = yt + J+
t gt + VT

t γt ,

where J+
t is the pseudo-inverse of Jt ,and Vt contains the right

singular vectors of Jt which have zero-valued singular values.

Given the new unknowns γt that implicitly minimize the constraints
violation, we re-write our problem as

γ∗t = argmin
|
|̂f(x∗)− s(γt)||22 ,

which has a closed-form solution.
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Algorithm

y1 = f̂(x∗)
for t = 1 to iters do

Compute the constraints Jacobian matrix Jt

Compute the constraints errors gt

γt = argmin ||̂f(x∗)− (yt + J+
t gt + VT

t γt)||22
yt+1 = yt + J+

t gt + VT
t γt

end for
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Better Use of the Predictor

The approach described above depends on the predictor only through
its fixed prediction f̂(x∗).

We propose to rely on the Representer theorem which states that

f̂ (x∗) =
N∑

i=1

αik(xi , x∗) = αk∗ ,

where k is a kernel function and α is learned from the N training
examples.

For multi-dimensional outputs, we can write y = f̂(x∗) = αk∗, with
α ∈ <D×N .
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Better Use of the Predictor

We can rely more strongly on the learned predictor by treating k∗ as
an unknown.

This lets us re-write our optimization problem as

min
k∗
||̂f(x∗)−αk∗||22

subject to ||yk(k∗)− yj(k∗)||22 = l2
j ,k , ∀(j , k) ∈ E .

Following a similar approach as before, we iteratively compute the
Taylor expansion of our constraints with respect to k∗.

This yields a family of solutions characterized as

s(γt) = α ·
(
k∗,t + J̄+

t ḡt + V̄T
t γt

)
.

The optimal γt can still be obtained in closed-form.
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Poor Use of the Image

One drawback of this method is that it only uses image information
through the prediction of the discriminative method.

The recovered pose will satisfy the constraints, but may have drifted
away from the pose depicted in the image.
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Combining Generative and Discriminative

x∗

←−
Constraints

s(γt)

At each iteration t, given the new variable γt , we solve

min
γt

L(·,γt) + λ||̂f(x∗)− s(γt)||22 ,

where L(·,γt) is an image-based loss function.
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Image-based Loss Functions

In practice, we implemented 3 different image loss functions.

Inverse mapping

Learn an estimate ĥ of the mapping x = h(y) + ε.
L(x∗,γt) = ||x∗ − ĥ(s(γt))||22.

3D-2D correspondences

L(γt) = ||Ms(γt)− b||22.
Closed-form solution.

More complete image representation

Template matching.
Edge information.
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Algorithm

y1 = f̂(x∗), or k∗,1 = k∗
for t = 1 to iters do

Compute the constraints Jacobian matrix Jt , or J̄t

Compute the constraints errors gt , or ḡt

γt = argmin L(·,γt) + λ||̂f(x∗)− s(γt)||22
Compute yt+1 = yt + J+

t gt + VT
t γt , or k∗,t+1 = k∗,t + J̄+

t ḡt + V̄T
t γt

end for
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Comparison with Previous Reconstructions

Discriminative Constrained Discr. Constrained Discr. + Gen.
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Our Choice of Predictor

In practice, we used Gaussian processes as our discriminative
predictor.

In this case, the basis α can be computed in closed form as

α = YTK−1 ,

where Y ∈ <N×D is the matrix of training outputs (e.g., poses), and
K is the covariance matrix formed by evaluating the kernel function
k(xi , xj) on the training inputs.

Our kernel was taken to be the sum of an RBF kernel and a bias.
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Experimental Evaluation
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Reconstructing a Piece of Cardboard from 2D Locations

0 2 4 6 8 100

500

1000

1500

2000

2500

3000

Gaussian noise variance

M
SE

 

 

GP
Constr GP
Constr GP + Inv GP
Constr GP + Img

0 2 4 6 8 100

500

1000

1500

2000

2500

3000

Gaussian noise variance

M
SE

 

 

GP
Constr GP
Constr GP + Inv GP
Constr GP + Img

MSE as a function of the 2D noise variance when optimizing y (left), or k∗ (right).
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Reconstructing a Piece of Cardboard from 2D Locations
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MSE as a function of the number of training examples when optimizing y (left), or k∗

(right).
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Non-Rigid Reconstruction from Pyramid HOG

MSE for a well-textured piece of cardboard (left) and a poorly-textured surface (right).
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Reconstructing a Piece of Paper
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Recovering the Pose of a Hand

MSE for several features.
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Human Pose Estimation

MSE for several features.

[11] Rogez et al. CVPR’08.
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Summary of constrained regression

We proposed an effective approach to introducing constraints in
discriminative methods.

We presented a principled combination of discriminative and
generative methods.

Our framework is valid for articulated pose estimation and deformable
shape reconstruction.

We demonstrated the effectiveness of our approach in the task of
hand and human body pose estimation, as well as deformable surface
reconstruction.
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Summary of the class

We have seen character animation

Inverse kinematics

NN and blending, i.e., motion graphs

Latent variable models

Physics (very little unfortunatelly)
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Summary of the class

We have seen different modules we need to choose to create our tracker

Generative models

Inference techniques: particle filter vs optimization
Likelihood models: for monocular and multi-view settings
Priors: pose, motion, shape, physics, joint limits

Discriminative models

NN
Regression
Mixture of experts
Subspace models
Structure prediction

Combination of generative and discriminative models
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More?

Multi-view case in controlled environments is mostly solved

Multi-view outdoors is unsolved

Monocular tracking it’s very far from been solved

There is room for a lot of research and PhD topics.

I’m still looking for PhD students... ;)
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