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Materials used for this lecture

This lecture is based on two

The ICML 2009 tutorial on dimensionality reduction given by Neil
Lawrence. Thanks Neil for your slides!
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Why dimensionality reduction

USPS Data Set Handwritten Digit

3648 Dimensions

64 rows by 57 columns
Space contains more
than just this digit.

Even if we sample
every nanosecond from
now until the end of
the universe, you won’t
see the original six!
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Simple model of a digit

Rotate a ’Prototype’
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Two dimensional representation

demDigitsManifold[1 2], ’all’)
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Two dimensional representation

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

In practice the data may undergo several distortions.

e.g. digits undergo ’thinning’, translation and rotation.

For data with ’structure’:

we expect fewer distortions than dimensions;
we therefore expect the data to live on a lower dimensional manifold.

Conclusion: deal with high dimensional data by looking for lower
dimensional embedding.
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What happened last week?

How to deal with high-dimensional data.

We will talk about different dimensionality reduction techniques

Linear models: PCA, CCA, etc.
Graph based methods: Isomap, Locally linear embedding, laplacian
eigenmaps, etc.
Latent variable models: GTM and GPLVM

We will see some examples in practice.
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Linear Dimensionality Reduction

Two dimensional plane projected into a three dimensional space.

(f x )y i=i

X Y

Figure: Mapping a 2D plane to a higher dimensional space in a linear way.

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + ηi ,:, where ηi ,: ∼ N
(
0, σ2I

)
.
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Linear Latent Variable Model

Probabilistic PCA

Linear-Gaussian
relationship between
latent variables and data.

X are ‘nuisance’ variables.

Latent variable model
approach:

Define Gaussian prior
over latent space, X.
Integrate out nuisance
latent variables.

X W

Y

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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p (X) =
NY
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N
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p (Y|W) =
NY

i=1
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

X W

Y

p (Y|W) =
NY

i=1

N
“

yi,:|0,WWT + σ2I
”
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

p (Y|W) =
DY

j=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
N

2
log |C| −

1

2
tr
“

C−1YTY
”

+ const.

If Uq are first q principal eigenvectors of N−1YTY and the corresponding eigenvalues are Λq ,

W = UqLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Factor Analysis

Very similar to PCA, but with a more complex notion of noise:

y = Wx + ε

with E{εεT} = Σ.

If the noise is known, then the factors can be estimated using PCA of
a modified matrix

C− Σ

with C the covariance matrix of the data.

If the noise is not know, then there exists different algorithms in the
literature to solve this.

We will not see them in this class.
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Why non-linear dimensionality reduction?

Complex datasets cannot be represented linearly.

−10 −5 0 5 10

−10

−5

0

5

10

15

0

50

Figure: The ‘Swiss Roll’ data set is data in three dimensions that is
inherently two dimensional.

We will see non-linear latent variable models and spectral methods.
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Non Probabilistic Existing Methods I

Spectral Approaches

Classical Multidimensional Scaling (MDS) (Mardia et al. 1979) .

Uses eigenvectors of similarity matrix.

Kernel PCA (Scholkopf et al., 1998)

Provides a representation and a mapping — representation is high
dimensional though!
Mapping is implied through the use of a kernel function as a similarity
matrix.

Isomap (Tenenbaum et al., 2000) is MDS with a particular proximity
measure.

Approximate distances measures along the manifold.
Compute neighborhood and compute shortest distance in graph.
Use classical MDS on that distance matrix.
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Non Probabilistic Existing Methods II

Locally Linear Embedding (Roweis and Saul, 2000) .

Looks to preserve locally linear relationships in a low dimensional space.
Compute neighborhood and point find reduced dimensional
relationships that preserve local linearity.

Laplacian Eigenmaps (Belkin and Niyogi, 2003) .

Uses spectral graph theory and information geometric arguments to
form embedding.
Compute neighborhood, graph Laplacian and seek 2nd lowest
eigenvector.

Maximum Variance Unfolding (Weinberger et al., 2004) .

Compute neighborhood, constrain local distances to be preserved.
Maximise the variance in latent space.
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Distance Preservation

Local Distance Preservation

Most of the above dimensional reduction techniques preserve local
distances.

Probabilistic Approaches do not.

Probabilistic approaches map smoothly from latent to data space.

Points close in latent space are close in data space.
This does not imply points close in data space are close in latent space.

Spectral approaches map smoothly from data to latent space.

Points close in data space are close in latent space.
This does not imply points close in latent space are close in data space.
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Locality
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Algorithms based on local assumption

Global noise viewed locally
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Contents of today’s lecture

Non-linear latent variable models

Density networks (MacKay, 1995)

Generative topographic mapping (GTM) (Bishop et al., 1998a)

Gaussian process latent variable models (GPLVM) (Lawrence, 2004)

Back-constraints (Lawrence et al., 2006)
Combining graph-based methods and latent variable models (Urtasun
et al., 2008)
Automatic determination of dimensionality (Geiger et al., 2009)
Hierarchical models (Lawrence et al., 2007)

Combining linear latent variable models
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Non Linear Probabilistic Methods I

(f x )y
i

=
i

Figure: Mapping a two dimensional plane to a higher dimensional space in a
non-linear way.
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Non Linear Probabilistic Methods II

Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping.

Normalisation of distribution becomes intractable.

Figure: Gaussian distribution propagated through a non-linear mapping.
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Sampling Approach

Proposed as Density Networks (MacKay, 1995)

Likelihood is a Gaussian with non-linear mapping from latent space to
data space for the mean

p (Y|X) =
N∏

i=1

D∏
j=1

N
(
yi ,j |fj (xi ,:; θ) , σ2

)
p (X) = N (xi ,:|0, I)

Take the mapping to be e.g. a multi-layer perceptron.

Key idea: share same samples for all data points X̂n = X̂ = {x̂k,:}Mk=1.

Saves computation — compute the mapping M times instead of MN
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Mapping of Points

Mapping points to higher dimensions is easy.

Figure: One dimensional Gaussian mapped to two dimensions.
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Mapping of Points

Mapping points to higher dimensions is easy.

Figure: Two dimensional Gaussian mapped to three dimensions.
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Log Likelihood

Sample approximation to log likelihood:

log p (Y|θ) =
N∑

i=1

log
1

M

M∑
k=1

p
(
yi ,:|θ, ¯̂xk,:

)
so we have

d

dθ
log p (yi,:|θ) =

MX
k=1

p (yi,:|θ, x̂k,:)PM
m=1 p (yi,:|θ, x̂m,:)

d

dθ
log p (yi,:|θ, x̂k,:)

d

dθ
log p (yi,:|θ) =

MX
k=1

π̂i,k
d

dθ
log p (yi,:|θ, x̂k,:)

Note: π̂i ,k look a bit like the posterior over component k for data point i .

Use gradient based optimisation to find the mapping.
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Generative Topographic Mapping

Generative Topographic Mapping (GTM) (Bishop et al., 1998a)

Key idea: Lay points out on a grid.

Constrained mixture of Gaussians.

Figure: One dimensional Gaussian mapped to two dimensions.
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The GTM Prior

Prior distribution is a mixture model in a latent space.

p (X) =
N∏

i=1

p (xi ,:)

p (xi ,:) =
1

M

M∑
k=1

δ (xi ,: − x̂k,:)

The x̂k,: are laid out on a regular grid.
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Mapping

Likelihood is a Gaussian with non-linear mapping from latent space to
data space for the mean

p (Y|X,θ) =
NY

i=1

DY
j=1

N
“
yi,j |fj (xi,:; θ, l) , σ

2
”

In the original paper (Bishop et al., 1998b) an RBF network was
suggested,
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Mapping distribution

The distribution in data space is

p(y|θ) =
1

M

M∑
m=1

p(y|xk , θ)

and the log-likelihood becomes

L(θ) =
N∑

n=1

log

(
1

M

M∑
k=1

p(y|x̂k , θ)

)
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Mapping and E-Step

Likelihood is a Gaussian with non-linear mapping from latent space to
data space for the mean

p (Y|X,θ) =
NY

i=1

DY
j=1

N
“
yi,j |fj (xi,:; θ, l) , σ

2
”

In the original paper (Bishop et al., 1998b) an RBF network was
suggested,

In the E-step, posterior distribution over k is given by

π̂i ,k =

∏D
j=1N

(
yi ,j |fj (x̂k ; θ, l) , σ2

)∑M
m=1

∏D
j=1N (yi ,j |fj (x̂m; θ, l) , σ2)

sometimes called the “responsibility of component k for data point i”.
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Likelihood Optimisation

We then maximise the lower bound on the log likelihood,

log p (yi ,:|θ) ≥ 〈log p (yi ,:, x̂k,:|θ)〉q(k) − 〈log q (k)〉q(k) ,

Free energy part of bound

〈log p (yi ,:, x̂k,:|θ)〉 =
M∑

k=1

π̂i ,k log p (yi ,:|x̂k,:,θ) + const

When optimising parameters in EM, we ignore dependence of π̂i ,k on
parameters. So we have

d
dθ
〈log p (yi ,:, x̂k,:|θ)〉 =

M∑
k=1

π̂i ,k
d
dθ

log p (yi ,:|x̂k,:,θ)

which is very similar to density network result!

Interpretation of posterior is slightly different.
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Stick Man Data

N = 55 frames of motion capture.

xyz locations of 34 points on the
body.

D = 102 dimensional data.

“Run 1” available from http:
//accad.osu.edu/research/
mocap/mocap_data.htm.

Changing

Angle

of Run
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Media File (video/avi)

http://accad.osu.edu/research/mocap/mocap_data.htm
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Stick Man Data

demStickDnet1
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Figure: Stick man data visualised with the GTM using an RBF network with
10×10 points in the grid.
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Stick Man Data

demStickDnet2
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Figure: Stick man data visualised with the GTM using an RBF network with
20× 20 points in the grid.
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Bubblewrap Effect

Figure: The manifold is more like bubblewrap than a piece of paper.
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Effect of Separated Means

−6 −4 −2 0 2 4 6
0

0.5

1

Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 1 standard deviations apart.
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 2 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 4 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 8 standard deviations apart.
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Effect of Separated Means
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Figure: As Gaussians become further apart the posterior probability becomes
more abrupt. 16 standard deviations apart.
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Equivalence of GTM and Density Networks

GTM and Density Networks have the same origin. (Bishop et al.
1996; McKay, 1995).

In original Density Networks paper MacKay suggested Importance
Sampling (MacKay, 1995).

Early work on GTM also used importance sampling.

Main innovation in GTM was to lay points out on a grid (inspired by
Self Organizing Maps (Kohnonen, 2001).
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Summary

We have explored two point based approaches to dimensionality
reduction.

Approaches seem to generalise well even when dimensions of data is
greater than number of points.

Both approaches are difficult to extend to higher dimensional latent
spaces

number of samples/centres required increases exponentially with
dimension.

Next we will explore a different probabilistic interpretation of PCA
and extend that to non-linear models.
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Dual Probabilistic PCA

Probabilistic PCA

We have seen that PCA has a probabilistic interpretation (Tipping and

Bishop, 1999b) .

It is difficult to ‘non-linearise’ directly.

GTM and Density Networks are an attempt to do so.

Dual Probabilistic PCA

There is an alternative probabilistic interpretation of PCA (Lawrence,

2005) .

This interpretation can be made non-linear.

The result is non-linear probabilistic PCA.
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
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latent variables and data.
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Integrate out
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W

Y

X

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

W

Y

X

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´
, K = XXT + σ2I

log p (Y|X) = −
D

2
log |K| −

1

2
tr
“

K−1YYT
”

+ const.

If U′q are first q principal eigenvectors of D−1YYT and the corresponding eigenvalues are Λq ,

X = U′qLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model IV

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

p (Y|W) =
NY

i=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
N

2
log |C| −

1

2
tr
“

C−1YTY
”

+ const.

If Uq are first q principal eigenvectors of N−1YTY and the corresponding eigenvalues are Λq ,

W = UqLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLVT

Solution for Dual Probabilistic PCA (solves for the latent positions)

YYTU′q = U′qΛq X = U′qLVT

Equivalence is from

Uq = YTU′qΛ
− 1

2
q
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Gaussian Process (GP)

Prior for Functions

Probability Distribution over Functions

Functions are infinite dimensional.

Prior distribution over instantiations of the function: finite dimensional
objects.
Can prove by induction that GP is ‘consistent’.

Mean and Covariance Functions

Instead of mean and covariance matrix, GP is defined by mean
function and covariance function.

Mean function often taken to be zero or constant.
Covariance function must be positive definite.
Class of valid covariance functions is the same as the class of Mercer
kernels.
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Gaussian Processes II

Zero mean Gaussian Process

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

The linear kernel with noise has the form

K = XXT + σ2I

Priors over non-linear functions are also possible.

To see what functions look like, we can sample from the prior process.
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Covariance Samples

demCovFuncSample
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Figure: linear kernel, K = XXT
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 10, α = 1
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Covariance Samples
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Figure: RBF kernel with l = 1, α = 1
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Covariance Samples

demCovFuncSample
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Figure: RBF kernel with l = 0.3, α = 4
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Covariance Samples

demCovFuncSample
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Figure: MLP kernel with α = 8, w = 100 and b = 100

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 41 / 77



Covariance Samples

demCovFuncSample
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Figure: MLP kernel with α = 8, b = 0 and w = 100
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Covariance Samples

demCovFuncSample
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Figure: bias kernel with α = 1 and
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Covariance Samples

demCovFuncSample
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel, α =1;
and white noise kernel, β = 100
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Gaussian Process Regression

Posterior Distribution over Functions

Gaussian processes are often used for regression.

We are given a known inputs X and targets Y.

We assume a prior distribution over functions by selecting a kernel.

Combine the prior with data to get a posterior distribution over
functions.
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Gaussian Process Regression

demRegression
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Figure: Examples include WiFi localization, C14 callibration curve.
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Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d

length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d
length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d
length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d
length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Learning Kernel Parameters
Can we determine length scales and noise levels from the data?

demOptimiseKern

−1.5 −1 −0.5 0.5 1 1.5

−2

−1.5

−1

−0.5

0.5

1

10
−1

10
0

10
1

−15

−10

−5

0

5

lo
g−

lik
el

ih
oo

d
length scale

min

(
D

2
ln |K|+ D

2
tr(K−1YYT )

)

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 44 / 77



Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.

We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
“

y:,j |0,XXT + σ2I
”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.

This is called the Gaussian Process Latent Variable Model (GPLVM)
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Non-Linear Latent Variable Model

RBF Kernel

The RBF kernel has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−

(xi ,: − xj ,:)
T (xi ,: − xj ,:)

2l2

)
.

No longer possible to optimise wrt X via an eigenvalue problem.

Instead find gradients with respect to X, α, l and σ2 and optimise
using gradient methods.
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Swiss roll: Initialisation I

‘Swiss Roll’
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Figure: The ‘Swiss Roll’ data set is data in three dimensions that is inherently
two dimensional.
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Swiss Roll: Initialisation II

Quality of solution is Initialisation Dependent
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Figure: Left: Swiss roll solution initalised by PCA. Right: Swiss roll solution
initialised by Isomap.
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Stick Man Data

N = 55 frames of motion capture.

xyz locations of 34 points on the
body.

D = 102 dimensional data.

“Run 1” available from http:
//accad.osu.edu/research/
mocap/mocap_data.htm.

Changing

Angle

of Run

Raquel Urtasun (TTI-C) Human Body Representations March 15, 2010 49 / 77


urtasun_cvpr06_tracking.avi
Media File (video/avi)

http://accad.osu.edu/research/mocap/mocap_data.htm
http://accad.osu.edu/research/mocap/mocap_data.htm
http://accad.osu.edu/research/mocap/mocap_data.htm


Stick Man

demStick1
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Figure: The latent space for the stick man motion capture data.
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Non-smooth latent spaces

Non smooth latent spaces can be avoided by:

Constrain the forward-mapping: using back-constraints

Combine graph-based methods and non-linear latent variable models

Use better optimization schemes that are less prone to get stuck in
local minima

Marginalize the latent space
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NeuroScale

Multi-Dimensional Scaling with a Mapping

Lowe and Tipping (1997) made latent positions a function of the
data.

xij = fj (yi ; w)

Function was either multi-layer perceptron or a radial basis function
network.
Their motivation was different from ours:

They wanted to add the advantages of a true mapping to
multi-dimensional scaling.
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Back Constraints in the GP-LVM

Back Constraints

We can use the same idea to force the GP-LVM to respect local
distances (Lawrence and Quinonero Candela, 2006).

By constraining each xi to be a ‘smooth’ mapping from yi local
distances can be respected.

This works because in the GP-LVM we maximise wrt latent variables,
we don’t integrate out.

Can use any ‘smooth’ function:
1 Neural network.
2 RBF Network.
3 Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xij = fj (yi ,:; B)

where B are parameters.

We can compute dL
dB via chain rule and optimise parameters of

mapping.
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Motion Capture Results

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right) and without
(left) dynamics. The dynamics us a Gaussian process with an RBF kernel.
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Stick Man Results

demStickResults

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1.5

−1

−0.5

0

0.5

1

(a)

(b)

(c)

(d)

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The inclination of

the runner changes becoming more upright.
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Incorporating prior knowledge

It is useful to use prior knowledge when additional information is
available, e.g., cyclic motions, smoothness.

We design priors over the latent space that incorporate the prior
knowledge.

Our prior is based on the Locally Linear Embedding (LLE) [Roweis,
01] cost function

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) + λ

N∑
i=1

d∑
q=1

||xi,q −
∑
j∈ηi

wij,qxj,q||2

with xi ,q the q-th dimension of xi .

We define the weights to reflect the prior knowledge.

This is the Locally Linear GPLVM (LL-GPLVM) (Urtasun et al., 2008)
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Generate animations by sampling

We learn style-content separation models using the following sources of prior
knowledge (Urtasun et al. 2008)

I smoothness: points close in observation space should be close in latent
space.

I cyclic structure: points with similar phase should be close.
I transitions: points where a transition could happen should be close in

the latent space.

Figure: GPLVM
Figure: Topologies Figure: Sampling
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manifold.mp4
Media File (video/mp4)


transitions.mp4
Media File (video/mp4)



Problems with the GPLVM

It relies on the optimization of a non-convex function

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) .
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Even with the right dimensionality, they can result in poor representations if
initialized far from the optimum.
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This is even worst if the dimensionality of the latent space is small.
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This is even worst if the dimensionality of the latent space is small.

As a consequence this models have only been applied to small databases of
a single activity.
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Rank priors

No distortion is introduced by an initialization step; the latent
coordinates are initialized to be the original observations

Xinit = Y

We introduce a prior over the latent space that encourages latent
spaces to be low dimensional.

Our method is able to estimate the latent space and its
dimensionality (Geiger et al., 2009).
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Continuous dimensionality reduction

We want to encourage latent space that are low-dimensional.

Dimensionality can be measure by the rank of XXT .

We would like to penalize the rank, but the rank is a discrete
function. The optimization would have to solve a complex
combinatorial problem.

We relax the rank minimization and define a prior that encourages
sparsity of the eigenvalues, such that:

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) + α

D∑
i=1

φ(si )

with si the eigenvalues of X̄X̄T , X̄ the zero-mean X, and φ is a
function that encourages sparsity.
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Choice of the penalty function

Common choice for sparseness is the power family

φ(si , p) = |si |p

p = 1 is a Laplace prior (i.e., L1 norm), which is linear.

However, our objective function is non-convex. We use a penalty that
drives faster to zero the small singular values

φ(si ) = log(1 + βsi ) .
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Estimating the dimensionality

Minimizing the negative log posterior results in a reduction of the
energy of the spectrum. We prevent this by optimizing instead

minL s.t. ∀i si ≥ 0, E (Y)− E (X) = 0,

with the energy E (X) =
∑

i s2
i .

Finally, we choose the dimensionality to be

Q = argmaxi

si

si+1 + ε

where ε� 1, and s1 ≥ s2 ≥ · · · ≥ sD
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Dimensionality Estimation Results
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Results on mocap
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Figure: Running (top) and walking (bottom) models from mocap data. Different
subjects are depicted in different colors. Unlike with the GPLVM, the latent
coordinates using rank priors are very smooth.
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Hierarchical GP-LVM

Stacking Gaussian Processes (Lawrence et al., 2007)

The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.

Ideally we should marginalise latent spaces

In practice we seek MAP solutions.
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Two Correlated Subjects

Figure: Hierarchical model of two subjects

We would like to marginalize the latent coordinates

p(Y1,Y2) =

∫
p(Y1|X1)

∫
p(Y2|X2)

∫
p(X1,X2|X3)dX3dX2X1

with GP likelihoods
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Two Correlated Subjects

Figure: Hierarchical model of two subjects

Instead do MAP estimation

max (log p(Y1|X1) + log p(Y2|X2) + log p(X1,X2|X3))

with GP likelihoods
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Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.
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Mixture of local models

For complex data, the manifolds are usually non-linear.

However, we can characterize these manifolds as locally linear.

To a good approximation, they can be represented by collections of simpler
models, each of which describes a locally linear neighborhood.

An example of this is a mixture of factor analyzers.

Figure: Mixture of local models
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Mixture of factor analyzers

y— observation
s— discrete variable, with s ∈ {1, 2, · · · ,S}

xs— latent representation of the s-th component

The model is parameterized with a joint distribution

p(y, s, xs) = p(y|s, xs)p(xs |s)p(s)

The local models are Factor Analyzers

p(y|s, xs) = |2πΨs |−
1
2 exp

{
−1

2
[y − µs − Λsxs ]Ψ−1

s [y − µs − Λsxs ]T
}

The marginal distribution p(y) is a mixture of Gaussians.

This model can be learned using Expectation Maximization (EM)
(Ghahramani et al., 1996)
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Coordinated mixture of factor analyzers

The coordinates of neighboring clusters should be similar.

This is achieved by introducing additional variables g that ensure the
coordination

Figure: (Left) Mixture of FA. (right) Coordinated mixture of FA
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Coordinated mixture of factor analyzers II

Assume a deterministic relationship between local and global variables

p(g|s, xs) = δ(g − Asxs − κs)

We assume that the global coordinates and the data are independent
given the mixture component and it’s local coodinates xs

Introduce additional constraints such that local neighborhood agree
on global componets.

This is achieved by assuring that p(g|yn) is unimodal.
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Coordinated mixture of factor analyzers III

In particular, (Roweis et al., 01) introduced a regularizer that
encourage global conssitency

Φ =
∑
n

log p(yn)− λ
∑
n,s

∫
q(g, s|yn) log

q(g, s|yn)

p(g, s|yn)

with q a unimodal family of distributions.

The regularizer is the sum of Kullback-Leibler (KL) divergences.

The model is learned using EM.
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Why not coordination at the end?

Noise makes it difficult to coordinate at the end.

Figure: Problem with late coordination
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More?

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will do dynamical models.

Let’s do some exercises now!
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