# Human Motion Analysis Lecture 4: Dimensionality reduction II

Raquel Urtasun

TTI Chicago

March 15, 2010

This lecture is based on two

• The ICML 2009 tutorial on dimensionality reduction given by Neil Lawrence. Thanks Neil for your slides!

- 3648 Dimensions
  - 64 rows by 57 columns
  - Space contains more than just this digit.



- 3648 Dimensions
  - 64 rows by 57 columns
  - Space contains more than just this digit.
  - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!



- 3648 Dimensions
  - 64 rows by 57 columns
  - Space contains more than just this digit.
  - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!



- 3648 Dimensions
  - 64 rows by 57 columns
  - Space contains more than just this digit.
  - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!





















demDigitsManifold[1 2], 'all')



demDigitsManifold([1 2], 'sixnine')



#### Pure Rotation is too Simple

- In practice the data may undergo several distortions.
  - e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
  - we expect fewer distortions than dimensions;
  - we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional embedding.

- How to deal with high-dimensional data.
- We will talk about different dimensionality reduction techniques
  - Linear models: PCA, CCA, etc.
  - Graph based methods: Isomap, Locally linear embedding, laplacian eigenmaps, etc.
  - Latent variable models: GTM and GPLVM
- We will see some examples in practice.

# Linear Dimensionality Reduction

• Two dimensional plane projected into a three dimensional space.



Figure: Mapping a 2D plane to a higher dimensional space in a linear way.

### Linear Latent Variable Model

• Represent data, Y, with a lower dimensional set of latent variables X.

• Assume a linear relationship of the form

$$\mathbf{y}_{i,:} = \mathbf{W} \mathbf{x}_{i,:} + \boldsymbol{\eta}_{i,:}, \quad \text{where} \quad \boldsymbol{\eta}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right).$$

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.



- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:



- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:
  - Define Gaussian prior over *latent space*, **X**.



$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:
  - Define Gaussian prior over *latent space*, **X**.
  - Integrate out nuisance *latent variables.*



$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p\left(\mathbf{X}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:
  - Define Gaussian prior over *latent space*, **X**.
  - Integrate out nuisance *latent variables*.

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p(\mathbf{X}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

$$p\left(\mathbf{Y}|\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I}\right)$$

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)



#### Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}\right), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{N}{2} \log |\mathbf{C}| - \frac{1}{2} \operatorname{tr} \left( \mathbf{C}^{-1} \mathbf{Y}^{\mathrm{T}} \mathbf{Y} \right) + \operatorname{const.}$$

If  $\mathbf{U}_q$  are first q principal eigenvectors of  $N^{-1}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$  and the corresponding eigenvalues are  $\Lambda_q$ ,

$$\mathbf{W} = \mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L} = \left( \Lambda_{q} - \sigma^{2} \mathbf{I} \right)^{\frac{1}{2}}$$

where  ${\bm R}$  is an arbitrary rotation matrix.

• Very similar to PCA, but with a more complex notion of noise:

$$\mathbf{y} = \mathbf{W}\mathbf{x} + \epsilon$$

with  $E\{\epsilon \epsilon^T\} = \Sigma$ .

• If the noise is known, then the factors can be estimated using PCA of a modified matrix

$$\mathbf{C} - \Sigma$$

with **C** the covariance matrix of the data.

- If the noise is not know, then there exists different algorithms in the literature to solve this.
- We will not see them in this class.

## Why non-linear dimensionality reduction?

• Complex datasets cannot be represented linearly.



Figure: The 'Swiss Roll' data set is data in three dimensions that is inherently two dimensional.

• We will see non-linear latent variable models and spectral methods.

### **Spectral Approaches**

- Classical Multidimensional Scaling (MDS) (Mardia et al. 1979) .
  - Uses eigenvectors of similarity matrix.
- Kernel PCA (Scholkopf et al., 1998)
  - Provides a representation and a mapping representation is high dimensional though!
  - Mapping is implied through the use of a kernel function as a similarity matrix.
- Isomap (Tenenbaum et al., 2000) is MDS with a particular proximity measure.
  - Approximate distances measures along the manifold.
  - Compute neighborhood and compute shortest distance in graph.
  - Use classical MDS on that distance matrix.

- Locally Linear Embedding (Roweis and Saul, 2000) .
  - Looks to preserve locally linear relationships in a low dimensional space.
  - Compute neighborhood and point find reduced dimensional relationships that preserve local linearity.
- Laplacian Eigenmaps (Belkin and Niyogi, 2003) .
  - Uses spectral graph theory and information geometric arguments to form embedding.
  - Compute neighborhood, graph Laplacian and seek 2nd lowest eigenvector.
- Maximum Variance Unfolding (Weinberger et al., 2004) .
  - Compute neighborhood, constrain local distances to be preserved.
  - Maximise the variance in latent space.

### Local Distance Preservation

- Most of the above dimensional reduction techniques preserve local distances.
  - Probabilistic Approaches do not.
- Probabilistic approaches map smoothly from latent to data space.
  - Points close in latent space are close in data space.
  - This does not imply points close in data space are close in latent space.
- Spectral approaches map smoothly from data to latent space.
  - Points close in data space are close in latent space.
  - This does not imply points close in latent space are close in data space.



• Algorithms based on local assumption



- Algorithms based on local assumption
- Global noise viewed locally



- Algorithms based on local assumption
- Global noise viewed locally

Non-linear latent variable models

- Density networks (MacKay, 1995)
- Generative topographic mapping (GTM) (Bishop et al., 1998a)
- Gaussian process latent variable models (GPLVM) (Lawrence, 2004)
  - Back-constraints (Lawrence et al., 2006)
  - Combining graph-based methods and latent variable models (Urtasun et al., 2008)
  - Automatic determination of dimensionality (Geiger et al., 2009)
  - Hierarchical models (Lawrence et al., 2007)
- Combining linear latent variable models
### Non Linear Probabilistic Methods I



Figure: Mapping a two dimensional plane to a higher dimensional space in a non-linear way.

### **Difficulty for Probabilistic Approaches**

- Propagate a probability distribution through a non-linear mapping.
- Normalisation of distribution becomes intractable.



Figure: Gaussian distribution propagated through a non-linear mapping.

- Proposed as Density Networks (MacKay, 1995)
- Likelihood is a Gaussian with non-linear mapping from latent space to data space for the mean

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j}|f_j(\mathbf{x}_{i,:};\boldsymbol{\theta}), \sigma^2\right)$$

$$p\left(\mathbf{X}\right) = \mathcal{N}\left(\mathbf{x}_{i,:}|\mathbf{0},\mathbf{I}\right)$$

- Take the mapping to be *e.g.* a multi-layer perceptron.
- Key idea: share same samples for all data points  $\hat{\mathbf{X}}_n = \hat{\mathbf{X}} = {\{\hat{\mathbf{x}}_{k,:}\}}_{k=1}^M$ .
- Saves computation compute the mapping M times instead of MN

• Mapping points to higher dimensions is easy.



Figure: One dimensional Gaussian mapped to two dimensions.

• Mapping points to higher dimensions is easy.



Figure: Two dimensional Gaussian mapped to three dimensions.

Sample approximation to log likelihood:

$$\log p(\mathbf{Y}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \frac{1}{M} \sum_{k=1}^{M} p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \bar{\mathbf{x}}_{k,:}\right)$$

so we have

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}\right) = \sum_{k=1}^{M} \frac{p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{k,:}\right)}{\sum_{m=1}^{M} p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{m,:}\right)} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{k,:}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}\right) = \sum_{k=1}^{M} \hat{\pi}_{i,k} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{k,:}\right)$$

**Note:**  $\hat{\pi}_{i,k}$  look a bit like the posterior over component k for data point i.

• Use gradient based optimisation to find the mapping.

# Generative Topographic Mapping

- Generative Topographic Mapping (GTM) (Bishop et al., 1998a)
- Key idea: Lay points out on a grid.
  - Constrained mixture of Gaussians.



Figure: One dimensional Gaussian mapped to two dimensions.

• Prior distribution is a mixture model in a latent space.

$$p(\mathbf{X}) = \prod_{i=1}^{N} p(\mathbf{x}_{i,:})$$

$$p(\mathbf{x}_{i,:}) = \frac{1}{M} \sum_{k=1}^{M} \delta(\mathbf{x}_{i,:} - \hat{\mathbf{x}}_{k,:})$$

• The  $\hat{\mathbf{x}}_{k,:}$  are laid out on a regular grid.

• Likelihood is a Gaussian with non-linear mapping from latent space to data space for the mean

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j(\mathbf{x}_{i,:}; \boldsymbol{\theta}, l), \sigma^2\right)$$

In the original paper (Bishop et al., 1998b) an RBF network was suggested,

# Mapping distribution

• The distribution in data space is

$$p(\mathbf{y}| heta) = rac{1}{M}\sum_{m=1}^M p(\mathbf{y}|\mathbf{x}_k, heta)$$

and the log-likelihood becomes

$$\mathcal{L}( heta) = \sum_{n=1}^{N} \log\left(rac{1}{M}\sum_{k=1}^{M} p(\mathbf{y}|\hat{\mathbf{x}}_k, heta)
ight)$$



# Mapping and E-Step

• Likelihood is a Gaussian with non-linear mapping from latent space to data space for the mean

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j(\mathbf{x}_{i,:}; \boldsymbol{\theta}, l), \sigma^2\right)$$

In the original paper (Bishop et al., 1998b) an RBF network was suggested,

• In the E-step, posterior distribution over k is given by

$$\hat{\pi}_{i,k} = \frac{\prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j\left(\hat{\mathbf{x}}_k; \boldsymbol{\theta}, l\right), \sigma^2\right)}{\sum_{m=1}^{M} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j\left(\hat{\mathbf{x}}_m; \boldsymbol{\theta}, l\right), \sigma^2\right)}$$

sometimes called the "responsibility of component k for data point i".

## Likelihood Optimisation

• We then maximise the lower bound on the log likelihood,

$$\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}\right) \geq \left\langle \log p\left(\mathbf{y}_{i,:}, \hat{\mathbf{x}}_{k,:}|\boldsymbol{\theta}\right)\right\rangle_{q(k)} - \left\langle \log q\left(k\right)\right\rangle_{q(k)},$$

• Free energy part of bound

$$\langle \log p(\mathbf{y}_{i,:}, \hat{\mathbf{x}}_{k,:} | \boldsymbol{\theta}) \rangle = \sum_{k=1}^{M} \hat{\pi}_{i,k} \log p(\mathbf{y}_{i,:} | \hat{\mathbf{x}}_{k,:}, \boldsymbol{\theta}) + \text{const}$$

• When optimising parameters in EM, we ignore dependence of  $\hat{\pi}_{i,k}$  on parameters. So we have

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\left\langle \log p\left(\mathbf{y}_{i,:}, \hat{\mathbf{x}}_{k,:} | \boldsymbol{\theta}\right) \right\rangle = \sum_{k=1}^{M} \hat{\pi}_{i,k} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \log p\left(\mathbf{y}_{i,:} | \hat{\mathbf{x}}_{k,:}, \boldsymbol{\theta}\right)$$

which is very similar to density network result!

Interpretation of posterior is slightly different.

Raquel Urtasun (TTI-C)







demStickDnet1



Figure: Stick man data visualised with the GTM using an RBF network with  $10 \times 10$  points in the grid.

demStickDnet2



Figure: Stick man data visualised with the GTM using an RBF network with  $20 \times 20$  points in the grid.

# Bubblewrap Effect



Figure: The manifold is more like bubblewrap than a piece of paper.



Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 1 standard deviations apart.



Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 2 standard deviations apart.



Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 4 standard deviations apart.



Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 8 standard deviations apart.



Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 16 standard deviations apart.

- GTM and Density Networks have the same origin. (Bishop et al. 1996; McKay, 1995).
- In original Density Networks paper MacKay suggested Importance Sampling (MacKay, 1995).
- Early work on GTM also used importance sampling.
- Main innovation in GTM was to lay points out on a grid (inspired by Self Organizing Maps (Kohnonen, 2001).

- We have explored two point based approaches to dimensionality reduction.
- Approaches seem to generalise well even when dimensions of data is greater than number of points.
- Both approaches are difficult to extend to higher dimensional latent spaces
  - number of samples/centres required increases exponentially with dimension.
- Next we will explore a different probabilistic interpretation of PCA and extend that to non-linear models.

### Probabilistic PCA

- We have seen that PCA has a probabilistic interpretation (Tipping and Bishop, 1999b).
- It is difficult to 'non-linearise' directly.
- GTM and Density Networks are an attempt to do so.

- There is an alternative probabilistic interpretation of PCA (Lawrence, 2005) .
- This interpretation can be made non-linear.
- The result is non-linear probabilistic PCA.

- Define *linear-Gaussian relationship* between latent variables and data.
  - **Novel** Latent variable approach:



$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

- Define *linear-Gaussian relationship* between latent variables and data.
  - **Novel** Latent variable approach:
  - Define Gaussian prior over *parameters*, **W**.



$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

- Define *linear-Gaussian* relationship between latent variables and data.
  - Novel Latent variable approach:
  - Define Gaussian prior over *parameters*, **W**.
  - Integrate out *parameters*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} | \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)$$

$$p\left(\mathbf{W}\right) = \prod_{i=1}^{D} \mathcal{N}\left(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

- Define *linear-Gaussian relationship* between latent variables and data.
  - **Novel** Latent variable approach:
  - Define Gaussian prior over *parameters*, W.
  - Integrate out parameters.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} | \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)$$

$$p(\mathbf{W}) = \prod_{i=1}^{D} \mathcal{N}(\mathbf{w}_{i,:}|\mathbf{0},\mathbf{I})$$

$$p\left(\mathbf{Y}|\mathbf{X}\right) = \prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}\right)$$

### Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)



Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

$$p\left(\mathbf{Y}|\mathbf{X}\right) = \prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0},\mathbf{K}\right), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{X}\right) = -\frac{D}{2}\log |\mathbf{K}| - \frac{1}{2}\mathrm{tr}\left(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\right) + \mathrm{const}$$

If  $\mathbf{U}'_{q}$  are first q principal eigenvectors of  $D^{-1}\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$  and the corresponding eigenvalues are  $\Lambda_{q}$ ,

$$\mathbf{X} = \mathbf{U}'_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L} = (\Lambda_{q} - \sigma^{2} \mathbf{I})^{\frac{1}{2}}$$

where  $\mathbf{R}$  is an arbitrary rotation matrix.

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}\right), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{W}\right) = -\frac{N}{2}\log |\mathbf{C}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{C}^{-1}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\right) + \operatorname{const.}$$

If  $\mathbf{U}_q$  are first q principal eigenvectors of  $N^{-1}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$  and the corresponding eigenvalues are  $\Lambda_q$ ,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where R is an arbitrary rotation matrix.

#### The Eigenvalue Problems are equivalent

• Solution for Probabilistic PCA (solves for the mapping)

$$\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\mathbf{U}_{q} = \mathbf{U}_{q}\Lambda_{q}$$
  $\mathbf{W} = \mathbf{U}_{q}\mathbf{L}\mathbf{V}^{\mathrm{T}}$ 

• Solution for Dual Probabilistic PCA (solves for the latent positions)

$$\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\mathbf{U}_{q}^{\prime}=\mathbf{U}_{q}^{\prime}\boldsymbol{\Lambda}_{q}\qquad\mathbf{X}=\mathbf{U}_{q}^{\prime}\mathbf{L}\mathbf{V}^{\mathrm{T}}$$

Equivalence is from

$$\mathbf{U}_q = \mathbf{Y}^{\mathrm{T}} \mathbf{U}_q' \Lambda_q^{-\frac{1}{2}}$$

### **Prior for Functions**

- Probability Distribution over Functions
- Functions are infinite dimensional.
  - Prior distribution over *instantiations* of the function: finite dimensional objects.
  - Can prove by induction that GP is 'consistent'.
- Mean and Covariance Functions
- Instead of mean and covariance matrix, GP is defined by mean function and covariance function.
  - Mean function often taken to be zero or constant.
  - Covariance function must be *positive definite*.
  - Class of valid covariance functions is the same as the class of *Mercer kernels*.

### Zero mean Gaussian Process

• A (zero mean) Gaussian process likelihood is of the form

$$p\left(\mathbf{y}|\mathbf{X}
ight)=N\left(\mathbf{y}|\mathbf{0},\mathbf{K}
ight),$$

where  $\mathbf{K}$  is the covariance function or *kernel*.

• The linear kernel with noise has the form

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

- Priors over non-linear functions are also possible.
  - To see what functions look like, we can sample from the prior process.

#### demCovFuncSample



#### demCovFuncSample



Figure: RBF kernel with I = 10,  $\alpha = 1$






Figure:





Figure: MLP kernel with  $\alpha = 8$ , b = 0 and w = 100





Figure: summed combination of: RBF kernel,  $\alpha = 1$ , l = 0.3; bias kernel,  $\alpha = 1$ ; and white noise kernel,  $\beta = 100$ 

### **Posterior Distribution over Functions**

- Gaussian processes are often used for regression.
- We are given a known inputs **X** and targets **Y**.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a *posterior* distribution over functions.

demRegression



demRegression



demRegression



demRegression



demRegression



demRegression



demRegression



demRegression



Can we determine length scales and noise levels from the data?



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathcal{T}})\right)$$

Can we determine length scales and noise levels from the data?



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?

#### demOptimiseKern



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Raquel Urtasun (TTI-C)

Can we determine length scales and noise levels from the data?



$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?



Can we determine length scales and noise levels from the data?



# Non-Linear Latent Variable Model

### **Dual Probabilistic PCA**

- Define *linear-Gaussian relationship* between latent variables and data.
- Novel Latent variable approach:
  - Define Gaussian prior over *parameteters*, **W**.
  - Integrate out *parameters*.



$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} N(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:}, \sigma^{2}\mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^{D} N(\mathbf{w}_{i,:}|\mathbf{0},\mathbf{I})$$
$$p(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{D} N(\mathbf{y}_{:,i}|\mathbf{0},\mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I})$$

- Inspection of the marginal likelihood shows ...
  - The covariance matrix is a covariance function.



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{D} N\left(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}\right)$$

- Inspection of the marginal likelihood shows ...
  - The covariance matrix is a covariance function.
  - We recognise it as the 'linear kernel'.



$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{D} N(\mathbf{y}_{:,j}|\mathbf{0},\mathbf{K})$$

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^2 \mathbf{I}$$

- Inspection of the marginal likelihood shows ...
  - The covariance matrix is a covariance function.
  - We recognise it as the 'linear kernel'.



This is a product of Gaussian processes with linear kernels.

- Inspection of the marginal likelihood shows ...
  - The covariance matrix is a covariance function.
  - We recognise it as the 'linear kernel'.



Replace linear kernel with non-linear kernel for non-linear model.

This is called the Gaussian Process Latent Variable Model (GPLVM)

### **RBF Kernel**

• The RBF kernel has the form  $k_{i,j} = k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)$ , where

$$k\left(\mathbf{x}_{i,:},\mathbf{x}_{j,:}\right) = \alpha \exp\left(-\frac{\left(\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right)^{\mathrm{T}}\left(\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right)}{2l^{2}}\right)$$

- No longer possible to optimise wrt X via an eigenvalue problem.
- Instead find gradients with respect to  $\mathbf{X}, \alpha, I$  and  $\sigma^2$  and optimise using gradient methods.

# Swiss roll: Initialisation I

'Swiss Roll'



Figure: The 'Swiss Roll' data set is data in three dimensions that is inherently two dimensional.

### Quality of solution is Initialisation Dependent



Figure: *Left:* Swiss roll solution initialised by PCA. *Right:* Swiss roll solution initialised by Isomap.







# Stick Man

demStick1



Figure: The latent space for the stick man motion capture data.

Non smooth latent spaces can be avoided by:

- Constrain the forward-mapping: using back-constraints
- Combine graph-based methods and non-linear latent variable models
- Use better optimization schemes that are less prone to get stuck in local minima
- Marginalize the latent space

### Multi-Dimensional Scaling with a Mapping

• Lowe and Tipping (1997) made latent positions a function of the data.

$$x_{ij} = f_j\left(\mathbf{y}_i; \mathbf{w}\right)$$

- Function was either multi-layer perceptron or a radial basis function network.
- Their motivation was different from ours:
  - They wanted to add the advantages of a true mapping to multi-dimensional scaling.
#### Back Constraints

- We can use the same idea to force the GP-LVM to respect local distances (Lawrence and Quinonero Candela, 2006).
- By constraining each **x**<sub>i</sub> to be a 'smooth' mapping from **y**<sub>i</sub> local distances can be respected.
- This works because in the GP-LVM we maximise wrt latent variables, we don't integrate out.
- Can use any 'smooth' function:
  - Neural network.
  - 2 RBF Network.
  - Sernel based mapping.

#### **Computing Gradients**

• GP-LVM normally proceeds by optimising

$$L(\mathbf{X}) = \log p(\mathbf{Y}|\mathbf{X})$$

with respect to **X** using  $\frac{dL}{dX}$ .

• The back constraints are of the form

$$x_{ij} = f_j(\mathbf{y}_{i,:}; \mathbf{B})$$

where **B** are parameters.

• We can compute  $\frac{dL}{dB}$  via chain rule and optimise parameters of mapping.

# Motion Capture Results

#### demStick1 and demStick3



Figure: The latent space for the motion capture data with (*right*) and without (*left*) dynamics. The dynamics us a Gaussian process with an RBF kernel.

# Stick Man Results

#### demStickResults



Projection into data space from four points in the latent space. The inclination of the runner changes becoming more upright.

- It is useful to use prior knowledge when additional information is available, e.g., cyclic motions, smoothness.
- We design priors over the latent space that incorporate the prior knowledge.
- Our prior is based on the Locally Linear Embedding (LLE) [Roweis, 01] cost function

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \lambda \sum_{i=1}^{N} \sum_{q=1}^{d} ||\mathbf{x}_{i,q} - \sum_{j \in \eta_{i}} w_{ij,q} \mathbf{x}_{j,q}||^{2}$$

with  $\mathbf{x}_{i,q}$  the *q*-th dimension of  $\mathbf{x}_i$ .

- We define the weights to reflect the prior knowledge.
- This is the Locally Linear GPLVM (LL-GPLVM) (Urtasun et al., 2008)

- It is useful to use prior knowledge when additional information is available, e.g., cyclic motions, smoothness.
- We design priors over the latent space that incorporate the prior knowledge.
- Our prior is based on the Locally Linear Embedding (LLE) [Roweis, 01] cost function

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \lambda \sum_{i=1}^{N} \sum_{q=1}^{d} ||\mathbf{x}_{i,q} - \sum_{j \in \eta_{i}} w_{ij,q} \mathbf{x}_{j,q}||^{2}$$

with  $\mathbf{x}_{i,q}$  the *q*-th dimension of  $\mathbf{x}_i$ .

- We define the weights to reflect the prior knowledge.
- This is the Locally Linear GPLVM (LL-GPLVM) (Urtasun et al., 2008)

## Generate animations by sampling

- We learn style-content separation models using the following sources of prior knowledge (Urtasun et al. 2008)
  - smoothness: points close in observation space should be close in latent space.
  - cyclic structure: points with similar phase should be close.
  - transitions: points where a transition could happen should be close in the latent space.





Figure: Topologies



• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) \; .$$

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T})$$

 Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.



• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathcal{T}}) \; .$$

 Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.



• This is even worst if the dimensionality of the latent space is small.

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathcal{T}}) \; .$$

• Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.



- This is even worst if the dimensionality of the latent space is small.
- As a consequence this models have only been applied to small databases of a single activity.

# Rank priors

• No distortion is introduced by an initialization step; the latent coordinates are initialized to be the original observations

$$\mathbf{X}_{init} = \mathbf{Y}$$

- We introduce a prior over the latent space that encourages latent spaces to be low dimensional.
- Our method is able to estimate the latent space and its dimensionality (Geiger et al., 2009).

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of  $XX^{T}$ .

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of **XX**<sup>T</sup>.
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of  $XX^{T}$ .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.
- We relax the rank minimization and define a prior that encourages sparsity of the eigenvalues, such that:

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \alpha \sum_{i=1}^{D} \phi(s_{i})$$

with  $s_i$  the eigenvalues of  $\bar{\mathbf{X}}\bar{\mathbf{X}}^T$ ,  $\bar{\mathbf{X}}$  the zero-mean  $\mathbf{X}$ , and  $\phi$  is a function that encourages sparsity.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of  $XX^{T}$ .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.
- We relax the rank minimization and define a prior that encourages sparsity of the eigenvalues, such that:

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathsf{T}}) + \alpha \sum_{i=1}^{D} \phi(\mathbf{s}_i)$$

with  $s_i$  the eigenvalues of  $\bar{\mathbf{X}}\bar{\mathbf{X}}^T$ ,  $\bar{\mathbf{X}}$  the zero-mean  $\mathbf{X}$ , and  $\phi$  is a function that encourages sparsity.

• Common choice for sparseness is the power family

$$\phi(s_i,p) = |s_i|^p$$

- p = 1 is a Laplace prior (i.e., L1 norm), which is linear.
- However, our objective function is non-convex. We use a penalty that drives faster to zero the small singular values

$$\phi(s_i) = \log(1 + \beta s_i) \; .$$

• Common choice for sparseness is the power family

$$\phi(s_i,p) = |s_i|^p$$

p = 1 is a Laplace prior (i.e., L1 norm), which is linear.

• However, our objective function is non-convex. We use a penalty that drives faster to zero the small singular values

$$\phi(s_i) = \log(1 + \beta s_i) \; .$$

• Minimizing the negative log posterior results in a reduction of the energy of the spectrum. We prevent this by optimizing instead

min 
$$\mathcal{L}$$
 s.t.  $\forall i \ s_i \geq 0$ ,  $E(\mathbf{Y}) - E(\mathbf{X}) = 0$ ,

with the energy  $E(\mathbf{X}) = \sum_{i} s_{i}^{2}$ .

• Finally, we choose the dimensionality to be

$$Q = \operatorname{argmax}_{i} \frac{s_{i}}{s_{i+1} + \epsilon}$$

where  $\epsilon \ll 1$ , and  $s_1 \ge s_2 \ge \cdots \ge s_D$ 

• Minimizing the negative log posterior results in a reduction of the energy of the spectrum. We prevent this by optimizing instead

min 
$$\mathcal{L}$$
 s.t.  $\forall i \ s_i \geq 0$ ,  $E(\mathbf{Y}) - E(\mathbf{X}) = 0$ ,

with the energy  $E(\mathbf{X}) = \sum_{i} s_{i}^{2}$ .

• Finally, we choose the dimensionality to be

$$Q = \operatorname{argmax}_{i} \frac{s_{i}}{s_{i+1} + \epsilon}$$

where  $\epsilon \ll 1$ , and  $s_1 \ge s_2 \ge \cdots \ge s_D$ 

#### Results on mocap



Figure: Running (top) and walking (bottom) models from mocap data. Different subjects are depicted in different colors. Unlike with the GPLVM, the latent coordinates using rank priors are very smooth.

#### Stacking Gaussian Processes (Lawrence et al., 2007)

- The input space of the GP is governed by another GP.
- By stacking GPs we can consider more complex hierarchies.
- Ideally we should marginalise latent spaces
  - In practice we seek MAP solutions.

# Two Correlated Subjects



Figure: Hierarchical model of two subjects

We would like to marginalize the latent coordinates

$$p(\mathbf{Y}_1, \mathbf{Y}_2) = \int p(\mathbf{Y}_1 | \mathbf{X}_1) \int p(Y_2 | \mathbf{X}_2) \int p(\mathbf{X}_1, \mathbf{X}_2 | \mathbf{X}_3) d\mathbf{X}_3 d\mathbf{X}_2 \mathbf{X}_1$$

with GP likelihoods

# Two Correlated Subjects



Figure: Hierarchical model of two subjects

Instead do MAP estimation

 $\max\left(\log p(\mathbf{Y}_1|\mathbf{X}_1) + \log p(\mathbf{Y}_2|\mathbf{X}_2) + \log p(\mathbf{X}_1,\mathbf{X}_2|\mathbf{X}_3)\right)$ 

with GP likelihoods

Raquel Urtasun (TTI-C)

# Two Correlated Subjects

#### demHighFive1



Figure: Hierarchical model of a 'high five'.

Raquel Urtasun (TTI-C)

#### **Decomposition of Body**



Figure: Decomposition of a subject.

# Single Subject Run/Walk

demRunWalk1



Figure: Hierarchical model of a walk and a run.

## Mixture of local models

- For complex data, the manifolds are usually non-linear.
- However, we can characterize these manifolds as locally linear.
- To a good approximation, they can be represented by collections of simpler models, each of which describes a locally linear neighborhood.
- An example of this is a mixture of factor analyzers.



Figure: Mixture of local models

 $\begin{array}{l} \textbf{y-} \text{ observation} \\ \textbf{s-} \text{ discrete variable, with } \textbf{s} \in \{1,2,\cdots,S\} \\ \textbf{x}_{\textbf{s}}\text{--} \text{ latent representation of the } \textbf{s}\text{-th component} \end{array}$ 

• The model is parameterized with a joint distribution

$$p(\mathbf{y}, s, \mathbf{x}_s) = p(\mathbf{y}|s, \mathbf{x}_s)p(\mathbf{x}_s|s)p(s)$$

• The local models are Factor Analyzers

$$p(\mathbf{y}|s, \mathbf{x}_s) = |2\pi\Psi_s|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}[\mathbf{y} - \mu_s - \Lambda_s \mathbf{x}_s]\Psi_s^{-1}[\mathbf{y} - \mu_s - \Lambda_s \mathbf{x}_s]^{\mathsf{T}}\right\}$$

- The marginal distribution  $p(\mathbf{y})$  is a mixture of Gaussians.
- This model can be learned using Expectation Maximization (EM) (Ghahramani et al., 1996)

## Coordinated mixture of factor analyzers

- The coordinates of neighboring clusters should be similar.
- $\bullet\,$  This is achieved by introducing additional variables  ${\bf g}$  that ensure the coordination



Figure: (Left) Mixture of FA. (right) Coordinated mixture of FA

• Assume a deterministic relationship between local and global variables

$$p(\mathbf{g}|s,\mathbf{x}_s) = \delta(\mathbf{g} - \mathbf{A}_s \mathbf{x}_s - \kappa_s)$$

- We assume that the global coordinates and the data are independent given the mixture component and it's local coodinates **x**<sub>s</sub>
- Introduce additional constraints such that local neighborhood agree on global componets.
- This is achieved by assuring that  $p(\mathbf{g}|\mathbf{y}_n)$  is unimodal.

• In particular, (Roweis et al., 01) introduced a regularizer that encourage global conssitency

$$\Phi = \sum_{n} \log p(\mathbf{y}_n) - \lambda \sum_{n,s} \int q(\mathbf{g}, s | \mathbf{y}_n) \log \frac{q(\mathbf{g}, s | \mathbf{y}_n)}{p(\mathbf{g}, s | \mathbf{y}_n)}$$

with q a unimodal family of distributions.

- The regularizer is the sum of Kullback-Leibler (KL) divergences.
- The model is learned using EM.

#### Why not coordination at the end?

• Noise makes it difficult to coordinate at the end.



Figure: Problem with late coordination

- If you want to learn more, look at the additional material.
- Otherwise, do the research project on this topic!
- Next week we will do dynamical models.
- Let's do some exercises now!