Human Motion Analysis Lecture 4: Dimensionality reduction II

Raquel Urtasun

TTI Chicago

March 15, 2010

This lecture is based on two

• The ICML 2009 tutorial on dimensionality reduction given by Neil Lawrence. Thanks Neil for your slides!

- 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.

- 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.
 - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

- 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.
 - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

- 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.
 - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

demDigitsManifold[1 2], 'all')

demDigitsManifold([1 2], 'sixnine')

Pure Rotation is too Simple

- In practice the data may undergo several distortions.
 - e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
 - we expect fewer distortions than dimensions;
 - we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional embedding.

- How to deal with high-dimensional data.
- We will talk about different dimensionality reduction techniques
 - Linear models: PCA, CCA, etc.
 - Graph based methods: Isomap, Locally linear embedding, laplacian eigenmaps, etc.
 - Latent variable models: GTM and GPLVM
- We will see some examples in practice.

Linear Dimensionality Reduction

• Two dimensional plane projected into a three dimensional space.

Figure: Mapping a 2D plane to a higher dimensional space in a linear way.

Linear Latent Variable Model

• Represent data, Y, with a lower dimensional set of latent variables X.

• Assume a linear relationship of the form

$$\mathbf{y}_{i,:} = \mathbf{W} \mathbf{x}_{i,:} + \boldsymbol{\eta}_{i,:}, \quad \text{where} \quad \boldsymbol{\eta}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right).$$

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, **X**.

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, **X**.
 - Integrate out nuisance *latent variables.*

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p\left(\mathbf{X}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.
- Latent variable model approach:
 - Define Gaussian prior over *latent space*, **X**.
 - Integrate out nuisance *latent variables*.

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p(\mathbf{X}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

$$p\left(\mathbf{Y}|\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I}\right)$$

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}\right), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{N}{2} \log |\mathbf{C}| - \frac{1}{2} \operatorname{tr} \left(\mathbf{C}^{-1} \mathbf{Y}^{\mathrm{T}} \mathbf{Y} \right) + \operatorname{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $N^{-1}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{W} = \mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L} = \left(\Lambda_{q} - \sigma^{2} \mathbf{I} \right)^{\frac{1}{2}}$$

where ${\bm R}$ is an arbitrary rotation matrix.

• Very similar to PCA, but with a more complex notion of noise:

$$\mathbf{y} = \mathbf{W}\mathbf{x} + \epsilon$$

with $E\{\epsilon \epsilon^T\} = \Sigma$.

• If the noise is known, then the factors can be estimated using PCA of a modified matrix

$$\mathbf{C} - \Sigma$$

with **C** the covariance matrix of the data.

- If the noise is not know, then there exists different algorithms in the literature to solve this.
- We will not see them in this class.

Why non-linear dimensionality reduction?

• Complex datasets cannot be represented linearly.

Figure: The 'Swiss Roll' data set is data in three dimensions that is inherently two dimensional.

• We will see non-linear latent variable models and spectral methods.

Spectral Approaches

- Classical Multidimensional Scaling (MDS) (Mardia et al. 1979) .
 - Uses eigenvectors of similarity matrix.
- Kernel PCA (Scholkopf et al., 1998)
 - Provides a representation and a mapping representation is high dimensional though!
 - Mapping is implied through the use of a kernel function as a similarity matrix.
- Isomap (Tenenbaum et al., 2000) is MDS with a particular proximity measure.
 - Approximate distances measures along the manifold.
 - Compute neighborhood and compute shortest distance in graph.
 - Use classical MDS on that distance matrix.

- Locally Linear Embedding (Roweis and Saul, 2000) .
 - Looks to preserve locally linear relationships in a low dimensional space.
 - Compute neighborhood and point find reduced dimensional relationships that preserve local linearity.
- Laplacian Eigenmaps (Belkin and Niyogi, 2003) .
 - Uses spectral graph theory and information geometric arguments to form embedding.
 - Compute neighborhood, graph Laplacian and seek 2nd lowest eigenvector.
- Maximum Variance Unfolding (Weinberger et al., 2004) .
 - Compute neighborhood, constrain local distances to be preserved.
 - Maximise the variance in latent space.

Local Distance Preservation

- Most of the above dimensional reduction techniques preserve local distances.
 - Probabilistic Approaches do not.
- Probabilistic approaches map smoothly from latent to data space.
 - Points close in latent space are close in data space.
 - This does not imply points close in data space are close in latent space.
- Spectral approaches map smoothly from data to latent space.
 - Points close in data space are close in latent space.
 - This does not imply points close in latent space are close in data space.

• Algorithms based on local assumption

- Algorithms based on local assumption
- Global noise viewed locally

- Algorithms based on local assumption
- Global noise viewed locally

Non-linear latent variable models

- Density networks (MacKay, 1995)
- Generative topographic mapping (GTM) (Bishop et al., 1998a)
- Gaussian process latent variable models (GPLVM) (Lawrence, 2004)
 - Back-constraints (Lawrence et al., 2006)
 - Combining graph-based methods and latent variable models (Urtasun et al., 2008)
 - Automatic determination of dimensionality (Geiger et al., 2009)
 - Hierarchical models (Lawrence et al., 2007)
- Combining linear latent variable models
Non Linear Probabilistic Methods I

Figure: Mapping a two dimensional plane to a higher dimensional space in a non-linear way.

Difficulty for Probabilistic Approaches

- Propagate a probability distribution through a non-linear mapping.
- Normalisation of distribution becomes intractable.

Figure: Gaussian distribution propagated through a non-linear mapping.

- Proposed as Density Networks (MacKay, 1995)
- Likelihood is a Gaussian with non-linear mapping from latent space to data space for the mean

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j}|f_j(\mathbf{x}_{i,:};\boldsymbol{\theta}), \sigma^2\right)$$

$$p\left(\mathbf{X}\right) = \mathcal{N}\left(\mathbf{x}_{i,:}|\mathbf{0},\mathbf{I}\right)$$

- Take the mapping to be *e.g.* a multi-layer perceptron.
- Key idea: share same samples for all data points $\hat{\mathbf{X}}_n = \hat{\mathbf{X}} = {\{\hat{\mathbf{x}}_{k,:}\}}_{k=1}^M$.
- Saves computation compute the mapping M times instead of MN

• Mapping points to higher dimensions is easy.

Figure: One dimensional Gaussian mapped to two dimensions.

• Mapping points to higher dimensions is easy.

Figure: Two dimensional Gaussian mapped to three dimensions.

Sample approximation to log likelihood:

$$\log p(\mathbf{Y}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log \frac{1}{M} \sum_{k=1}^{M} p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \bar{\mathbf{x}}_{k,:}\right)$$

so we have

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}\right) = \sum_{k=1}^{M} \frac{p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{k,:}\right)}{\sum_{m=1}^{M} p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{m,:}\right)} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{k,:}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}\right) = \sum_{k=1}^{M} \hat{\pi}_{i,k} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}, \hat{\mathbf{x}}_{k,:}\right)$$

Note: $\hat{\pi}_{i,k}$ look a bit like the posterior over component k for data point i.

• Use gradient based optimisation to find the mapping.

Generative Topographic Mapping

- Generative Topographic Mapping (GTM) (Bishop et al., 1998a)
- Key idea: Lay points out on a grid.
 - Constrained mixture of Gaussians.

Figure: One dimensional Gaussian mapped to two dimensions.

• Prior distribution is a mixture model in a latent space.

$$p(\mathbf{X}) = \prod_{i=1}^{N} p(\mathbf{x}_{i,:})$$

$$p(\mathbf{x}_{i,:}) = \frac{1}{M} \sum_{k=1}^{M} \delta(\mathbf{x}_{i,:} - \hat{\mathbf{x}}_{k,:})$$

• The $\hat{\mathbf{x}}_{k,:}$ are laid out on a regular grid.

• Likelihood is a Gaussian with non-linear mapping from latent space to data space for the mean

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j(\mathbf{x}_{i,:}; \boldsymbol{\theta}, l), \sigma^2\right)$$

In the original paper (Bishop et al., 1998b) an RBF network was suggested,

Mapping distribution

• The distribution in data space is

$$p(\mathbf{y}| heta) = rac{1}{M}\sum_{m=1}^M p(\mathbf{y}|\mathbf{x}_k, heta)$$

and the log-likelihood becomes

$$\mathcal{L}(heta) = \sum_{n=1}^{N} \log\left(rac{1}{M}\sum_{k=1}^{M} p(\mathbf{y}|\hat{\mathbf{x}}_k, heta)
ight)$$

Mapping and E-Step

• Likelihood is a Gaussian with non-linear mapping from latent space to data space for the mean

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j(\mathbf{x}_{i,:}; \boldsymbol{\theta}, l), \sigma^2\right)$$

In the original paper (Bishop et al., 1998b) an RBF network was suggested,

• In the E-step, posterior distribution over k is given by

$$\hat{\pi}_{i,k} = \frac{\prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j\left(\hat{\mathbf{x}}_k; \boldsymbol{\theta}, l\right), \sigma^2\right)}{\sum_{m=1}^{M} \prod_{j=1}^{D} \mathcal{N}\left(y_{i,j} | f_j\left(\hat{\mathbf{x}}_m; \boldsymbol{\theta}, l\right), \sigma^2\right)}$$

sometimes called the "responsibility of component k for data point i".

Likelihood Optimisation

• We then maximise the lower bound on the log likelihood,

$$\log p\left(\mathbf{y}_{i,:}|\boldsymbol{\theta}\right) \geq \left\langle \log p\left(\mathbf{y}_{i,:}, \hat{\mathbf{x}}_{k,:}|\boldsymbol{\theta}\right)\right\rangle_{q(k)} - \left\langle \log q\left(k\right)\right\rangle_{q(k)},$$

• Free energy part of bound

$$\langle \log p(\mathbf{y}_{i,:}, \hat{\mathbf{x}}_{k,:} | \boldsymbol{\theta}) \rangle = \sum_{k=1}^{M} \hat{\pi}_{i,k} \log p(\mathbf{y}_{i,:} | \hat{\mathbf{x}}_{k,:}, \boldsymbol{\theta}) + \text{const}$$

• When optimising parameters in EM, we ignore dependence of $\hat{\pi}_{i,k}$ on parameters. So we have

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}}\left\langle \log p\left(\mathbf{y}_{i,:}, \hat{\mathbf{x}}_{k,:} | \boldsymbol{\theta}\right) \right\rangle = \sum_{k=1}^{M} \hat{\pi}_{i,k} \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \log p\left(\mathbf{y}_{i,:} | \hat{\mathbf{x}}_{k,:}, \boldsymbol{\theta}\right)$$

which is very similar to density network result!

Interpretation of posterior is slightly different.

Raquel Urtasun (TTI-C)

demStickDnet1

Figure: Stick man data visualised with the GTM using an RBF network with 10×10 points in the grid.

demStickDnet2

Figure: Stick man data visualised with the GTM using an RBF network with 20×20 points in the grid.

Bubblewrap Effect

Figure: The manifold is more like bubblewrap than a piece of paper.

Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 1 standard deviations apart.

Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 2 standard deviations apart.

Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 4 standard deviations apart.

Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 8 standard deviations apart.

Figure: As Gaussians become further apart the posterior probability becomes more abrupt. 16 standard deviations apart.

- GTM and Density Networks have the same origin. (Bishop et al. 1996; McKay, 1995).
- In original Density Networks paper MacKay suggested Importance Sampling (MacKay, 1995).
- Early work on GTM also used importance sampling.
- Main innovation in GTM was to lay points out on a grid (inspired by Self Organizing Maps (Kohnonen, 2001).

- We have explored two point based approaches to dimensionality reduction.
- Approaches seem to generalise well even when dimensions of data is greater than number of points.
- Both approaches are difficult to extend to higher dimensional latent spaces
 - number of samples/centres required increases exponentially with dimension.
- Next we will explore a different probabilistic interpretation of PCA and extend that to non-linear models.

Probabilistic PCA

- We have seen that PCA has a probabilistic interpretation (Tipping and Bishop, 1999b).
- It is difficult to 'non-linearise' directly.
- GTM and Density Networks are an attempt to do so.

- There is an alternative probabilistic interpretation of PCA (Lawrence, 2005) .
- This interpretation can be made non-linear.
- The result is non-linear probabilistic PCA.

- Define *linear-Gaussian relationship* between latent variables and data.
 - **Novel** Latent variable approach:

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

- Define *linear-Gaussian relationship* between latent variables and data.
 - **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, **W**.

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

- Define *linear-Gaussian* relationship between latent variables and data.
 - Novel Latent variable approach:
 - Define Gaussian prior over *parameters*, **W**.
 - Integrate out *parameters*.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} | \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)$$

$$p\left(\mathbf{W}\right) = \prod_{i=1}^{D} \mathcal{N}\left(\mathbf{w}_{i,:} | \mathbf{0}, \mathbf{I}\right)$$

- Define *linear-Gaussian relationship* between latent variables and data.
 - **Novel** Latent variable approach:
 - Define Gaussian prior over *parameters*, W.
 - Integrate out parameters.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} | \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)$$

$$p(\mathbf{W}) = \prod_{i=1}^{D} \mathcal{N}(\mathbf{w}_{i,:}|\mathbf{0},\mathbf{I})$$

$$p\left(\mathbf{Y}|\mathbf{X}\right) = \prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}\right)$$

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

$$p\left(\mathbf{Y}|\mathbf{X}\right) = \prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0},\mathbf{K}\right), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{X}\right) = -\frac{D}{2}\log |\mathbf{K}| - \frac{1}{2}\mathrm{tr}\left(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\right) + \mathrm{const}$$

If \mathbf{U}'_{q} are first q principal eigenvectors of $D^{-1}\mathbf{Y}\mathbf{Y}^{\mathrm{T}}$ and the corresponding eigenvalues are Λ_{q} ,

$$\mathbf{X} = \mathbf{U}'_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L} = (\Lambda_{q} - \sigma^{2} \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}\right), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{W}\right) = -\frac{N}{2}\log |\mathbf{C}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{C}^{-1}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\right) + \operatorname{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $N^{-1}\mathbf{Y}^{\mathrm{T}}\mathbf{Y}$ and the corresponding eigenvalues are Λ_q ,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L} = (\Lambda_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where R is an arbitrary rotation matrix.

The Eigenvalue Problems are equivalent

• Solution for Probabilistic PCA (solves for the mapping)

$$\mathbf{Y}^{\mathrm{T}}\mathbf{Y}\mathbf{U}_{q} = \mathbf{U}_{q}\Lambda_{q}$$
 $\mathbf{W} = \mathbf{U}_{q}\mathbf{L}\mathbf{V}^{\mathrm{T}}$

• Solution for Dual Probabilistic PCA (solves for the latent positions)

$$\mathbf{Y}\mathbf{Y}^{\mathrm{T}}\mathbf{U}_{q}^{\prime}=\mathbf{U}_{q}^{\prime}\boldsymbol{\Lambda}_{q}\qquad\mathbf{X}=\mathbf{U}_{q}^{\prime}\mathbf{L}\mathbf{V}^{\mathrm{T}}$$

Equivalence is from

$$\mathbf{U}_q = \mathbf{Y}^{\mathrm{T}} \mathbf{U}_q' \Lambda_q^{-\frac{1}{2}}$$

Prior for Functions

- Probability Distribution over Functions
- Functions are infinite dimensional.
 - Prior distribution over *instantiations* of the function: finite dimensional objects.
 - Can prove by induction that GP is 'consistent'.
- Mean and Covariance Functions
- Instead of mean and covariance matrix, GP is defined by mean function and covariance function.
 - Mean function often taken to be zero or constant.
 - Covariance function must be *positive definite*.
 - Class of valid covariance functions is the same as the class of *Mercer kernels*.

Zero mean Gaussian Process

• A (zero mean) Gaussian process likelihood is of the form

$$p\left(\mathbf{y}|\mathbf{X}
ight)=N\left(\mathbf{y}|\mathbf{0},\mathbf{K}
ight),$$

where \mathbf{K} is the covariance function or *kernel*.

• The linear kernel with noise has the form

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}$$

- Priors over non-linear functions are also possible.
 - To see what functions look like, we can sample from the prior process.

demCovFuncSample

demCovFuncSample

Figure: RBF kernel with I = 10, $\alpha = 1$

Figure:

Figure: MLP kernel with $\alpha = 8$, b = 0 and w = 100

Figure: summed combination of: RBF kernel, $\alpha = 1$, l = 0.3; bias kernel, $\alpha = 1$; and white noise kernel, $\beta = 100$

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs **X** and targets **Y**.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a *posterior* distribution over functions.

demRegression

Can we determine length scales and noise levels from the data?

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathcal{T}})\right)$$

Can we determine length scales and noise levels from the data?

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?

demOptimiseKern

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Raquel Urtasun (TTI-C)

Can we determine length scales and noise levels from the data?

$$\min\left(\frac{D}{2}\ln|\mathbf{K}| + \frac{D}{2}tr(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\mathsf{T}})\right)$$

Can we determine length scales and noise levels from the data?

Can we determine length scales and noise levels from the data?

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Define *linear-Gaussian relationship* between latent variables and data.
- Novel Latent variable approach:
 - Define Gaussian prior over *parameteters*, **W**.
 - Integrate out *parameters*.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} N(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:}, \sigma^{2}\mathbf{I})$$

$$p(\mathbf{W}) = \prod_{i=1}^{D} N(\mathbf{w}_{i,:}|\mathbf{0},\mathbf{I})$$
$$p(\mathbf{Y}|\mathbf{X}) = \prod_{i=1}^{D} N(\mathbf{y}_{:,i}|\mathbf{0},\mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I})$$

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{D} N\left(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^{2}\mathbf{I}\right)$$

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{D} N(\mathbf{y}_{:,j}|\mathbf{0},\mathbf{K})$$

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}} + \sigma^2 \mathbf{I}$$

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.

This is a product of Gaussian processes with linear kernels.

- Inspection of the marginal likelihood shows ...
 - The covariance matrix is a covariance function.
 - We recognise it as the 'linear kernel'.

Replace linear kernel with non-linear kernel for non-linear model.

This is called the Gaussian Process Latent Variable Model (GPLVM)

RBF Kernel

• The RBF kernel has the form $k_{i,j} = k\left(\mathbf{x}_{i,:}, \mathbf{x}_{j,:}\right)$, where

$$k\left(\mathbf{x}_{i,:},\mathbf{x}_{j,:}\right) = \alpha \exp\left(-\frac{\left(\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right)^{\mathrm{T}}\left(\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right)}{2l^{2}}\right)$$

- No longer possible to optimise wrt X via an eigenvalue problem.
- Instead find gradients with respect to \mathbf{X}, α, I and σ^2 and optimise using gradient methods.

Swiss roll: Initialisation I

'Swiss Roll'

Figure: The 'Swiss Roll' data set is data in three dimensions that is inherently two dimensional.

Quality of solution is Initialisation Dependent

Figure: *Left:* Swiss roll solution initialised by PCA. *Right:* Swiss roll solution initialised by Isomap.

Stick Man

demStick1

Figure: The latent space for the stick man motion capture data.

Non smooth latent spaces can be avoided by:

- Constrain the forward-mapping: using back-constraints
- Combine graph-based methods and non-linear latent variable models
- Use better optimization schemes that are less prone to get stuck in local minima
- Marginalize the latent space

Multi-Dimensional Scaling with a Mapping

• Lowe and Tipping (1997) made latent positions a function of the data.

$$x_{ij} = f_j\left(\mathbf{y}_i; \mathbf{w}\right)$$

- Function was either multi-layer perceptron or a radial basis function network.
- Their motivation was different from ours:
 - They wanted to add the advantages of a true mapping to multi-dimensional scaling.
Back Constraints

- We can use the same idea to force the GP-LVM to respect local distances (Lawrence and Quinonero Candela, 2006).
- By constraining each **x**_i to be a 'smooth' mapping from **y**_i local distances can be respected.
- This works because in the GP-LVM we maximise wrt latent variables, we don't integrate out.
- Can use any 'smooth' function:
 - Neural network.
 - 2 RBF Network.
 - Sernel based mapping.

Computing Gradients

• GP-LVM normally proceeds by optimising

$$L(\mathbf{X}) = \log p(\mathbf{Y}|\mathbf{X})$$

with respect to **X** using $\frac{dL}{dX}$.

• The back constraints are of the form

$$x_{ij} = f_j(\mathbf{y}_{i,:}; \mathbf{B})$$

where **B** are parameters.

• We can compute $\frac{dL}{dB}$ via chain rule and optimise parameters of mapping.

Motion Capture Results

demStick1 and demStick3

Figure: The latent space for the motion capture data with (*right*) and without (*left*) dynamics. The dynamics us a Gaussian process with an RBF kernel.

Stick Man Results

demStickResults

Projection into data space from four points in the latent space. The inclination of the runner changes becoming more upright.

- It is useful to use prior knowledge when additional information is available, e.g., cyclic motions, smoothness.
- We design priors over the latent space that incorporate the prior knowledge.
- Our prior is based on the Locally Linear Embedding (LLE) [Roweis, 01] cost function

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \lambda \sum_{i=1}^{N} \sum_{q=1}^{d} ||\mathbf{x}_{i,q} - \sum_{j \in \eta_{i}} w_{ij,q} \mathbf{x}_{j,q}||^{2}$$

with $\mathbf{x}_{i,q}$ the *q*-th dimension of \mathbf{x}_i .

- We define the weights to reflect the prior knowledge.
- This is the Locally Linear GPLVM (LL-GPLVM) (Urtasun et al., 2008)

- It is useful to use prior knowledge when additional information is available, e.g., cyclic motions, smoothness.
- We design priors over the latent space that incorporate the prior knowledge.
- Our prior is based on the Locally Linear Embedding (LLE) [Roweis, 01] cost function

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \lambda \sum_{i=1}^{N} \sum_{q=1}^{d} ||\mathbf{x}_{i,q} - \sum_{j \in \eta_{i}} w_{ij,q} \mathbf{x}_{j,q}||^{2}$$

with $\mathbf{x}_{i,q}$ the *q*-th dimension of \mathbf{x}_i .

- We define the weights to reflect the prior knowledge.
- This is the Locally Linear GPLVM (LL-GPLVM) (Urtasun et al., 2008)

Generate animations by sampling

- We learn style-content separation models using the following sources of prior knowledge (Urtasun et al. 2008)
 - smoothness: points close in observation space should be close in latent space.
 - cyclic structure: points with similar phase should be close.
 - transitions: points where a transition could happen should be close in the latent space.

Figure: Topologies

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) \; .$$

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T})$$

 Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathcal{T}}) \; .$$

 Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

• This is even worst if the dimensionality of the latent space is small.

• It relies on the optimization of a non-convex function

$$\mathcal{L} = rac{D}{2} \ln |\mathbf{K}| + rac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathcal{T}}) \; .$$

• Even with the right dimensionality, they can result in poor representations if initialized far from the optimum.

- This is even worst if the dimensionality of the latent space is small.
- As a consequence this models have only been applied to small databases of a single activity.

Rank priors

• No distortion is introduced by an initialization step; the latent coordinates are initialized to be the original observations

$$\mathbf{X}_{init} = \mathbf{Y}$$

- We introduce a prior over the latent space that encourages latent spaces to be low dimensional.
- Our method is able to estimate the latent space and its dimensionality (Geiger et al., 2009).

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of **XX**^T.
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.
- We relax the rank minimization and define a prior that encourages sparsity of the eigenvalues, such that:

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{T}) + \alpha \sum_{i=1}^{D} \phi(s_{i})$$

with s_i the eigenvalues of $\bar{\mathbf{X}}\bar{\mathbf{X}}^T$, $\bar{\mathbf{X}}$ the zero-mean \mathbf{X} , and ϕ is a function that encourages sparsity.

- We want to encourage latent space that are low-dimensional.
- Dimensionality can be measure by the rank of XX^{T} .
- We would like to penalize the rank, but the rank is a discrete function. The optimization would have to solve a complex combinatorial problem.
- We relax the rank minimization and define a prior that encourages sparsity of the eigenvalues, such that:

$$\mathcal{L} = \frac{D}{2} \ln |\mathbf{K}| + \frac{D}{2} tr(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathsf{T}}) + \alpha \sum_{i=1}^{D} \phi(\mathbf{s}_i)$$

with s_i the eigenvalues of $\bar{\mathbf{X}}\bar{\mathbf{X}}^T$, $\bar{\mathbf{X}}$ the zero-mean \mathbf{X} , and ϕ is a function that encourages sparsity.

• Common choice for sparseness is the power family

$$\phi(s_i,p) = |s_i|^p$$

- p = 1 is a Laplace prior (i.e., L1 norm), which is linear.
- However, our objective function is non-convex. We use a penalty that drives faster to zero the small singular values

$$\phi(s_i) = \log(1 + \beta s_i) \; .$$

• Common choice for sparseness is the power family

$$\phi(s_i,p) = |s_i|^p$$

p = 1 is a Laplace prior (i.e., L1 norm), which is linear.

• However, our objective function is non-convex. We use a penalty that drives faster to zero the small singular values

$$\phi(s_i) = \log(1 + \beta s_i) \; .$$

• Minimizing the negative log posterior results in a reduction of the energy of the spectrum. We prevent this by optimizing instead

min
$$\mathcal{L}$$
 s.t. $\forall i \ s_i \geq 0$, $E(\mathbf{Y}) - E(\mathbf{X}) = 0$,

with the energy $E(\mathbf{X}) = \sum_{i} s_{i}^{2}$.

• Finally, we choose the dimensionality to be

$$Q = \operatorname{argmax}_{i} \frac{s_{i}}{s_{i+1} + \epsilon}$$

where $\epsilon \ll 1$, and $s_1 \ge s_2 \ge \cdots \ge s_D$

• Minimizing the negative log posterior results in a reduction of the energy of the spectrum. We prevent this by optimizing instead

min
$$\mathcal{L}$$
 s.t. $\forall i \ s_i \geq 0$, $E(\mathbf{Y}) - E(\mathbf{X}) = 0$,

with the energy $E(\mathbf{X}) = \sum_{i} s_{i}^{2}$.

• Finally, we choose the dimensionality to be

$$Q = \operatorname{argmax}_{i} \frac{s_{i}}{s_{i+1} + \epsilon}$$

where $\epsilon \ll 1$, and $s_1 \ge s_2 \ge \cdots \ge s_D$

Results on mocap

Figure: Running (top) and walking (bottom) models from mocap data. Different subjects are depicted in different colors. Unlike with the GPLVM, the latent coordinates using rank priors are very smooth.

Stacking Gaussian Processes (Lawrence et al., 2007)

- The input space of the GP is governed by another GP.
- By stacking GPs we can consider more complex hierarchies.
- Ideally we should marginalise latent spaces
 - In practice we seek MAP solutions.

Two Correlated Subjects

Figure: Hierarchical model of two subjects

We would like to marginalize the latent coordinates

$$p(\mathbf{Y}_1, \mathbf{Y}_2) = \int p(\mathbf{Y}_1 | \mathbf{X}_1) \int p(Y_2 | \mathbf{X}_2) \int p(\mathbf{X}_1, \mathbf{X}_2 | \mathbf{X}_3) d\mathbf{X}_3 d\mathbf{X}_2 \mathbf{X}_1$$

with GP likelihoods

Two Correlated Subjects

Figure: Hierarchical model of two subjects

Instead do MAP estimation

 $\max\left(\log p(\mathbf{Y}_1|\mathbf{X}_1) + \log p(\mathbf{Y}_2|\mathbf{X}_2) + \log p(\mathbf{X}_1,\mathbf{X}_2|\mathbf{X}_3)\right)$

with GP likelihoods

Raquel Urtasun (TTI-C)

Two Correlated Subjects

demHighFive1

Figure: Hierarchical model of a 'high five'.

Raquel Urtasun (TTI-C)

Decomposition of Body

Figure: Decomposition of a subject.

Single Subject Run/Walk

demRunWalk1

Figure: Hierarchical model of a walk and a run.

Mixture of local models

- For complex data, the manifolds are usually non-linear.
- However, we can characterize these manifolds as locally linear.
- To a good approximation, they can be represented by collections of simpler models, each of which describes a locally linear neighborhood.
- An example of this is a mixture of factor analyzers.

Figure: Mixture of local models

 $\begin{array}{l} \textbf{y-} \text{ observation} \\ \textbf{s-} \text{ discrete variable, with } \textbf{s} \in \{1,2,\cdots,S\} \\ \textbf{x}_{\textbf{s}}\text{--} \text{ latent representation of the } \textbf{s}\text{-th component} \end{array}$

• The model is parameterized with a joint distribution

$$p(\mathbf{y}, s, \mathbf{x}_s) = p(\mathbf{y}|s, \mathbf{x}_s)p(\mathbf{x}_s|s)p(s)$$

• The local models are Factor Analyzers

$$p(\mathbf{y}|s, \mathbf{x}_s) = |2\pi\Psi_s|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}[\mathbf{y} - \mu_s - \Lambda_s \mathbf{x}_s]\Psi_s^{-1}[\mathbf{y} - \mu_s - \Lambda_s \mathbf{x}_s]^{\mathsf{T}}\right\}$$

- The marginal distribution $p(\mathbf{y})$ is a mixture of Gaussians.
- This model can be learned using Expectation Maximization (EM) (Ghahramani et al., 1996)

Coordinated mixture of factor analyzers

- The coordinates of neighboring clusters should be similar.
- $\bullet\,$ This is achieved by introducing additional variables ${\bf g}$ that ensure the coordination

Figure: (Left) Mixture of FA. (right) Coordinated mixture of FA

• Assume a deterministic relationship between local and global variables

$$p(\mathbf{g}|s,\mathbf{x}_s) = \delta(\mathbf{g} - \mathbf{A}_s \mathbf{x}_s - \kappa_s)$$

- We assume that the global coordinates and the data are independent given the mixture component and it's local coodinates **x**_s
- Introduce additional constraints such that local neighborhood agree on global componets.
- This is achieved by assuring that $p(\mathbf{g}|\mathbf{y}_n)$ is unimodal.

• In particular, (Roweis et al., 01) introduced a regularizer that encourage global conssitency

$$\Phi = \sum_{n} \log p(\mathbf{y}_n) - \lambda \sum_{n,s} \int q(\mathbf{g}, s | \mathbf{y}_n) \log \frac{q(\mathbf{g}, s | \mathbf{y}_n)}{p(\mathbf{g}, s | \mathbf{y}_n)}$$

with q a unimodal family of distributions.

- The regularizer is the sum of Kullback-Leibler (KL) divergences.
- The model is learned using EM.

Why not coordination at the end?

• Noise makes it difficult to coordinate at the end.

Figure: Problem with late coordination

- If you want to learn more, look at the additional material.
- Otherwise, do the research project on this topic!
- Next week we will do dynamical models.
- Let's do some exercises now!