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Materials used for this lecture

This lecture is based chapter 13 of C. Bishop book ”Pattern Recognition
and Machine Learning”.

I recommend this book if you want to buy a book with a Bayesian view of
pattern recognition and machine learning.
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Contents of today’s lecture?

We will look into the most popular dynamical models

Introduction on Markov models

Hidden Markov Models (HMMs)

Linear Dynamical Systems (LDS)
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Notation

X — the set of observations
Z — the set of hidden variables

N— number of data points
K — number of possible values for a discrete variable
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Dealing with time series data

Before we have assume that the data points are i.i.d, independent and
identically distributed

p(X) = p(x1, · · · , xn) =
N∏

i=1

p(xi )

This is a poor assumption to describe sequential data.

Stationary sequential distribution arrises when the data evolves in
time, but the distribution from which is generated remains the same.

Non-stationary sequential distribution arrises when the data and the
distribution from which is generated changes.

We focus on the stationary case.
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The Markov assuption

We would like to predict the next value of a time series given
observations of the previous values.

It is a reasonable assumption to expect that recent observations are
likely to be more informative than older observations when predicting
the future.

The complexity of considering all previous observations will grow
unbounded as the system evolves, since the number of observations
increases!

This leads us to consider Markov models that are independent of all
but the most recent observations.
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Markov models we will see today

Although these models are tractable, they are also very limited.

We will see today how by incorporating hidden states, this model can
be quite flexible while still tractable, leading to state space models.

In particular we will focus on:

hidden Markov models (HMMs) that have discrete latent variables,
and in linear dynamical systems, in which the latent variables are
Gaussian.
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Markov models

The easiest way to treat data is to assume i.i.d

p(X) = p(x1, · · · , xn) =
N∏

i=1

p(xi )

This will fail to exploit sequential patterns of the data, such as
observations close in time

Figure: i.i.d. assumption (Bishop, Springer 2007)
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Example of correlations: speech

Figure: Temporal correlations in speech (Bishop, Springer 2007)
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First order Markov model

We can use the product rule to write without loss of generality

p(x1, · · · , xN) =
N∏

n=1

p(xn|x1, · · · , xn−1)
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First order Markov model

We can use the product rule to write without loss of generality

p(x1, · · · , xN) =
N∏

n=1

p(xn|x1, · · · , xn−1)

The First-order Markov model assumes that an observation is independent
of all but the last observation

p(xn|xn−1, · · · , x1) = p(xn|xn−1)

so that

p(x1, · · · , xN) = p(x1)
N∏

i=2

p(xn|xn−1)

Figure: First-order Markov model (Bishop, Springer 2007)
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The First-order Markov model assumes that an observation is independent
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so that

p(x1, · · · , xN) = p(x1)
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In most applications, p(xn|xn−1) is constraint to be equal (stationary time
series). This is then called homogeneous Markov chain.

For example, if p(xn|xn−1) depends on some parameters, then the
parameters will be fixed for all the series.
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Second-order Markov model

Although more flexible than i.i.d., the first-order Markov model is still quite
restrictive.

One way to incorporate more complex behaviors is by using higher-order
Markov chains.

A second order Markov chain

p(x1, · · · , xN) = p(x1)p(x2|x1)
N∏

i=3

p(xn|xn−1, xn−2)

Figure: Second-order Markov model (Bishop, Springer 2007)
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Higher-order Markov model

This can be easily extended to M-th order Markov models, where the
conditional depends on M variables.

However, the number of parameters is much larger. Supposing the
observations are discrete variables with K possible values, then

The number of parameters for the M-th order is KM−1(K − 1)
For a first-order Markov model is only K (K − 1). We have (K − 1)
since they are probabilities, so they have to sum up to 1.

The number of parameters grows exponentially with the order of the Markov
chain!
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Continuous variables

For continuous variables, we can use linear-Gaussian conditional
distributions in which each node has a Gaussian distribution whose
mean is a linear function of its parents. This is autoregressive or AR
model

An alternative approach is to use a parametric model for
p(xn|xn−1, · · · , xn−M), such as a neural network. This is called
Tapped delay line.

The number of parameters can then be much smaller than in a
completely general model.

But this can model only a restricted family of conditional distributions
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Introducing latent variables

A way to relax the Markov assumption and allow a richer type of models is
to introduce latent variables

For each observation xn, we introduce a corresponding latent variable zn of
arbitrary dimension.

We can then assume that the latent variables form a Markov chain

Figure: State space model (Bishop, Springer 2007)

This satisfies the conditional independence property of

zn+1 ⊥⊥ zn−1|zn
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State space models

The joint distribution of a state space model is

p(x1, · · · , xN , z1, · · · , zN) = p(z1)
N∏

n=2

p(zn|zn−1)
N∏

n=1

p(xn|zn)

This joint distribution can be easily seen from the following graphical model

Figure: State space model (Bishop, Springer 2007)

The observations are not independent anymore, they follow a path over z’s.

The observations do NOT satisfy the Markov property.
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Hidden Markov Models (HMMs) I

The hidden Markov model is a specific instance of the state space model in
which the latent variables are discrete

For each time step, it corresponds to mixture distribution, with component
densities given by p(x|z).

So is an extension of mixture models where each observation is not selected
independently but depends on the choice of component for the previous
observation.

The latent variables are the discrete multinomial variables zn describing
which component of the mixture is responsible for generating the
corresponding observation xn.
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Hidden Markov Models (HMMs) II

We now allow the probability distribution of zn to depend on the state of the
previous latent variable zn−1 through a conditional distribution p(zn|zn−1).

This conditional distribution corresponds to a table of numbers that we
denote by A, the elements of which are known as transition probabilities
given by

Aj,k ≡ p(zn,k = 1|zn−1,j = 1),

since they are probabilities they should satisfy

0 ≤ Aj,k ≤ 1 and ∀j ,
K∑

k=1

Aj,k = 1

The matrix A has K (K − 1) independent parameters.
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Hidden Markov Models (HMMs) III

We can write the conditional distribution as

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
zn−1,jzn,k

j,k

The initial latent node z1 has no parent, so it has a marginal distribution

p(z1|π) =
K∏

k=1

π
z1,k

k

with π the vector of probabilities such that πk ≡ p(z1,k = 1), and∑
k πk = 1,
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Transition matrix

The transition matrix is usually illustrated as

Figure: Transition matrix for the case of K = 3. Note that this is NOT a
graphical model. (Bishop, Springer 2007)
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Transition diagram

The transition diagram is usually illustrated as

Figure: Transition diagram for the case of K = 3. Note that this is NOT a
graphical model.(Bishop, Springer 2007)
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Emission probabilities

We need to specify the conditional distributions of the observed
variables p(xn|zn,φ), with φ a set of parameters that govern the
distribution.

These are known as the emission probabilities.

Because xn is observed, they consists for a given value of φ, of a
vector corresponding to the K possible states of the binary vector zn.

p(xn|zn,φ) =
K∏

k=1

p(xn|φk)zn,k

We will look only into homogeneous models that share the same
transition and emission probabilities.
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Hidden Markov Models (HMMs) IV

Given training data X, the joint probability is then

p(X,Z|θ) = p(z1|π)
N∏

n=2

p(zn|zn−1,A)
K∏

m=1

p(xm|zm,φ)

with θ the parameters of the model.

This is tractable for a set of distributions, including discrete variables,
Gaussians, mixture of Gaussians, discriminative methods, etc.
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Sampling HMMs

Sample z1 ∼ p(z1)
Sample x1 ∼ p(x1|z1)
for n = 2 to N do

Sample zn ∼ p(zn|zn−1)
Sample xn ∼ p(xn|zn)

end for
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Sampling HMMs

Figure: Ancestral sampling for generating samples from an HMM (Bishop,
Springer 2007)
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HMM variants

Left-to-right HMM: typically set Aj,k = 0 if k < j , with p(z11) = 1.

Figure: Left-to-right HMM (Bishop, Springer 2007)
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HMM variants

Left-to-right HMM: typically set Aj,k = 0 if k < j , with p(z11) = 1.

The transition matrix can be further constrain

Figure: Further constrained left-to-right HMM (Bishop, Springer 2007)
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HMM variants

Left-to-right HMM: typically set Aj,k = 0 if k < j , with p(z11) = 1.

The transition matrix can be further constrain

Figure: Further constrained left-to-right HMM (Bishop, Springer 2007)

With what type of motions would you use these models?
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Learning HMMs via Maximum likelihood

Given training data X, we can determine the parameter of an HMM via
maximum likelihood

θ∗ = arg max
∑

Z

p(X,Z|θ)

where the latent variables have been marginalized. Since they are discrete
we have a sum instead of an integral.

The naive summation sums over KN tems as the number of operations
grows exponentially with the length of the chain.

Expectation-maximization (EM) is typically used to learn the HMM.
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Expectation-Maximization (EM)

At iteration i :

E-step: Find the posterior distribution over the latent variables
p(Z|X,θ(i)) with fixed parameters θ(i).

M-step: Maximize the expectation of the logarithm of the complete
data likelihood with respect to the parameters

θ(i+1) = arg max
∑

Z

p(Z|X,θ(i)) log p(X,Z|θ)︸ ︷︷ ︸
Q(θ,θ(i))

Let’s look at the M-step, assuming we know p(Z|X,θ(i)).
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Closer look to the M-step I

Let’s define γ(zn) the marginal posterior distribution of zn, and ξ(zn−1, zn)
the joint posterior probability of two consecutive latent variables

γ(zn) = p(zn|X,θ(i))

ξ(zn−1, zn) = p(zn−1, zn|X,θ(i))

γ(zn) is a table of K non-negative values, and ξ(zn−1, zn) a table of K × K
non-negative numbers.

Let’s also define γ(zn,k) the probability of zn,k = 1, and ξ(zn−1,j , zn,k) the
probability of the transition for j to k symbol occurs at time n

γ(zn,k) = E [zn,k ] =
∑

z

γ(z)zn,k

ξ(zn−1,j , zn,k) = E [zn−1,j , zn,k ] =
∑

z

ξ(zn−1,j , zn,k)zn−1,jzn,k
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Closer look to the M-step II

We can now redefine Q(θ,θ(i)) as

Q(θ,θ(i)) =
K∑

k=1

γ(zn,k) log πk +
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , zn,k) log Aj,k

+
N∑

n=1

K∑
k=1

γ(zn,k) log p(xn|φk)

where θ = {π,A,φ}.

In the E-step, we compute γ(zn,k) and ξ(zn−1,j , zn,k).

In the M-step we maximize with respect to θ. This yields close form for

πk =
γ(z1,k)∑K
j=1 γ(z1,j)

Aj,k =

∑N
n=2 ξ(zn−1,j , zn,k)∑K

l=1

∑N
n=2 ξ(zn−1,j , zn,l)
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Closer look to the M-step III

Maximizing with respect to φ depends on the distribution assumed for
p(x|φk).

The objective decouples in a sum of each φk , so they can be maximized
independently.

If the emission densities are Gaussian, p(x|φk) = N (x|µk ,Σk)

µk =

∑N
n=1 γ(zn,k)xn∑N
n=1 γ(zn,k)

Σk =

∑N
n=1 γ(zn,k)(xn − µk)(xn − µk)T∑N

n=1 γ(zn,k)

If the emission densities are discrete multinomial then

p(x|z) =
D∏

i=1

K∏
k=1

µxi zk

i,k µi,k =

∑N
n=1 γ(zn,k)xn,i∑N

n=1 γ(zn,k)

with p(x|z) the conditional distribution of the observations.
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Expectation-Maximization (EM)

At iteration i :

E-step: Find the posterior distribution over the latent variables
p(Z|X,θ(i)) with fixed parameters θ(i).

M-step: Maximize the expectation of the logarithm of the complete
data likelihood with respect to the parameters

θ(i+1) = arg max
∑

Z

p(Z|X,θ(i)) log p(X,Z|θ)︸ ︷︷ ︸
Q(θ,θ(i))

Let’s look at the E-step.
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Closer look to the E-step I

The forward-backward algorithm or Baum-Welch algorithm is an
efficient way to evaluate γ(zn,k) and ξ(zn−1,j , zn,k) were we use the
fact that the graphical model of an HMM is a tree.

Note that the posterior distributions of the latent variables is
independent of the form of the emission density p(x|z).

All we require is the values of the quantities p(xn|zn) for each value
of zn for every n. This can be pre-computed and stored.
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Closer look to the E-step II

Recall that γ(zn,k) is the probability of having the k-th component be 1.
Using Bayes rule we can compute

γ(zn,k) = p(zn|x1, · · · , xN) =
α(zn)β(zn)

p(X)

where we have defined

α(zn) ≡ p(x1, · · · , xn, zn) β(zn) ≡ p(xn+1, · · · , xN |zn)

α(zn) and β(zn) are represented as a table of K numbers.
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Closer look to the E-step III

We can work out a recursion rule

α(zn) = p(x1, · · · , xN , zn)

= p(x1, · · · , xn|zn)p(zn)

= p(xn|zn)p(x1, · · · , xn−1|zn)p(zn)

= p(xn|zn)
∑
zn−1

p(x1, · · · , xn−1, zn−1, zn)

= p(xn|zn)
∑
zn−1

p(x1, · · · , xn−1, zn−1)p(zn|zn−1)

= p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1)

The initial condition is given by

α(z1) = p(x1, z1) = p(z1)p(x1|z1) =
K∏

k=1

[πkp(x1|φk)]z1,k

The computational complexity of the recursion is O(K 2N).
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Forward recursion

Figure: Illustration of the forward recursion for K = 3 (Bishop, Springer 2007)
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Closer look to the E-step IV

We can similarly work out a recursion rule

β(zn) = p(xn+1, · · · , xN |zn)

=
∑
zn+1

p(xn+1, · · · , xN , zn+1|zn)

=
∑
zn+1

p(xn+1, · · · , xN |zn+1)p(zn+1|zn)

=
∑
zn+1

p(xn+2, · · · , xN |zn+1)p(xn+1|zn+1)p(zn+1|zn)

=
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

This is a backward message passing algorithm that evaluates β(zn) in terms
of β(zn+1)

The starting condition is β(zN) = 1 for all settings of zN .
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Backward recursion

Figure: Illustration of the backward recursion for K = 3 (Bishop, Springer 2007)
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Closer look to the E-step V

We can use these quantities to compute the partition function

p(X) =
∑

zn

α(zn)β(zn)

Recall that

γ(zn) = p(zn|x1, · · · , xN) =
α(zn)β(zn)

p(X)

Next we consider the evaluation of ξ(zn−1, zn) which can be written as

ξ(zn−1, zn) = p(zn−1, zn|X)

=
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)

I have omitted the derivations, see (Bishop, chapter 13).
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EM for learning Gaussian-distribuited HMMs

E-STEP:
Forward pass:
α(z1) =

QK
k=1[πkp(x1|φk )]z1,k

for n = 2 to N do
α(zn) = p(xn|zn)

P
zn−1

α(zn−1)p(zn|zn−1)

end for
Backward pass:
β(z1) = 1 for all settings of zn

for n = N − 1 to 1 do
β(zn) =

P
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

end for
p(X) =

P
zn
α(zn)β(zn)

for n = 1 to N do
γ(zn) = p(zn|x1, · · · , xN) = α(zn)β(zn)

p(X)

end for
for n = 2 to N do
ξ(zn−1, zn) =

α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)

end for
M-STEP:

πk =
γ(z1,k )PK
j=1 γ(z1,j )

and Aj,k =
PN

n=2 ξ(zn−1,j ,zn,k )PK
l=1

PN
n=2 ξ(zn−1,j ,zn,l )

µk =
PN

n=1 γ(zn,k )xnPN
n=1 γ(zn,k )

and Σk =
PN

n=1 γ(zn,k )(xn−µk )(xn−µk )TPN
n=1 γ(zn,k )
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EM for learning Multinomial-distribuited HMMs

E-STEP:
Forward pass:
α(z1) =

QK
k=1[πkp(x1|φk )]z1,k

for n = 2 to N do
α(zn) = p(xn|zn)

P
zn−1

α(zn−1)p(zn|zn−1)

end for
Backward pass:
β(z1) = 1 for all settings of zn

for n = N − 1 to 1 do
β(zn) =

P
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

end for
p(X) =

P
zn
α(zn)β(zn)

for n = 1 to N do
γ(zn) = p(zn|x1, · · · , xN) = α(zn)β(zn)

p(X)

end for
for n = 2 to N do
ξ(zn−1, zn) =

α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)

end for
M-STEP:

πk =
γ(z1,k )PK
j=1 γ(z1,j )

and Aj,k =
PN

n=2 ξ(zn−1,j ,zn,k )PK
l=1

PN
n=2 ξ(zn−1,j ,zn,l )

µi,k =
PN

n=1 γ(zn,k )xn,iPN
n=1 γ(zn,k )
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Computing the predictive distribution

We have observed X ≡ [x1, · · · , xN ], and we want to predict xN+1

p(xN+1|X) =
∑
zN+1

p(xN+1, zN+1|X)

=
1

p(X)

∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN)α(zN)

I have omitted the derivations, see (Bishop, chapter 13).

The recursion can be computed by running the forward α recursion, and
then computing the summations over zN+1 and zN .

This is required for example to generate motions from an HMM.

In practice, we work with a scaling version of α for all the algorithms

α̂(zn) =
α(zn)

p(x1, · · · , xn)

Raquel Urtasun (TTI-C) Dynamics March 22, 2010 41 / 67



Computing the predictive distribution

We have observed X ≡ [x1, · · · , xN ], and we want to predict xN+1

p(xN+1|X) =
∑
zN+1

p(xN+1, zN+1|X)

=
1

p(X)

∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN)α(zN)

I have omitted the derivations, see (Bishop, chapter 13).

The recursion can be computed by running the forward α recursion, and
then computing the summations over zN+1 and zN .

This is required for example to generate motions from an HMM.

In practice, we work with a scaling version of α for all the algorithms

α̂(zn) =
α(zn)

p(x1, · · · , xn)

Raquel Urtasun (TTI-C) Dynamics March 22, 2010 41 / 67



Computing the most probable sequence of hidden states

This can be solved efficiently with the Vitterbi algorithm because the HMM
is a tree, by computing the recursion

ω(zn+1) = max
z1,··· ,zn

p(x1, · · · , xn, z1, · · · , zn)

= log p(xn+1|zn+1) + max
zn

{log p(zn+1|zn) + ω(zn)}

with the initial value

ω(z1) = log p(z1) + log p(x1|z1).

Once we compute the value of the joint distribution for the most probable
path X,Z, we back-track to obtain the path of latent variables. This is done
by just keeping track of the maximum at every step kmax

n .

This can be also used to compute the best D paths.

The computational cost only grows linearly with the length of the chain.
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Computing the most probable sequence of hidden states

Figure: Illustration of the Vitterbi algorithm for K = 3 (Bishop, Springer 2007)
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HMM

Figure: Hidden Markov model (Bishop, Springer 2007)
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Extensions of HMMs: autoregresive models

Figure: Autoregresive hidden Markov model (Bishop, Springer 2007)
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Extensions of HMMs: input-outputs models

Figure: Autoregresive hidden Markov model (Bishop, Springer 2007)
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Extensions of HMMs: factorial models

Figure: Autoregresive hidden Markov model (Bishop, Springer 2007)
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Motivation of linear dynamical systems (LDS)

Suppose we wish to measure the value of an unknown quantity z using a
noisy measurement x such that

z = x + η

with η some zero-mean noise.

Given a single measurement, the best is to assume that z = x.

We can improve our estimate with multiple measurements, and z = 1
N

∑
i xi .

Now assume z changes over time. Given x1, · · · , xN we wish to obtain
z1, · · · , zN .

A better solution than averaging is to take into account only a few recent
measurements xN−L, · · · , xN .

If the z varies fast, then take L very small, otherwise, bigger values of L.

We could do even better by doing a weighted average, but how?
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Linear dynamical systems (LDS)

Extension of HMMs to continuous latent variables.

The joint distribution of a state space model is

p(x1, · · · , xN , z1, · · · , zN) = p(z1)
N∏

n=2

p(zn|zn−1)
N∏

n=1

p(xn|zn)

We will consider here the linear-Gaussian state space model, so that the
latent variables z, as well as the observations x, have Gaussian distributions.

This is a generalization of the latent variable models (e.g., PPCA), where
the latent variables are not independent, but they follow a Markov chain.
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Definition of linear dynamical systems

We assume that the observations and latent variables can be expressed as

zn = Azn−1 + wn

xn = Czn + vn

given the initial conditions z1 = µ0 + u, where the noise distributions are
zero-noise Guassians

w ∼ N (w|0,Γ) v ∼ N (v|0,Σ) u ∼ N (u|0,V0)

The probabilistic model is

p(zn|zn−1) = N (zn|Azn−1,Γ) p(xn|zn) = N (xn|Czn,Σ)

with initial conditions p(z1) = N (z1|µ0,V0).

The parameters of the model are θ = {A,Γ,C,Σ,µ0,V0}. They can be
obtained by maximum likelihood via an EM algorithm.
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Inference in LDS

We want to find the marginal distributions for the latent variables
condition on a sequence of observations.

We also want to given a sequence of observations x1, · · · , xn−1,
predict the next latent variable zn, and the next observation xn.

Note that because the linear dynamical system is a linear-Gaussian
model, the joint distribution over all latent variables and observations
is a Gaussian.

The equations look like the ones for HMMs but we will have
integrations instead of summations since the variables are now
continuous.
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Kalman filter: Forward equations I

We start by defining the messages

α̂(zn) = N (zn|µn,Vn)

Using the HMM recursion formulas for continuous variables we have

cnα̂(zn) = p(xn|zn)

∫
α̂(zn−1)p(zn|zn−1)dzn−1

Substituting the conditionals we have

cnN (zn|µn,Vn) = N (xn|Czn,Σ)

Z
N (zn−1|µn−1,Vn−1)N (zn|Axn−1, Γ)dzn−1

= N (xn|Czn,Σ)N (zn|Aµn−1,Pn−1)

Here we assume that µn−1, and Vn−1 are known, and we have defined

Pn−1 = AVn−1AT + Γ
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Kalman filter: Forward equations II

Given the values of µn−1, Vn−1 and the new observation xn, we can
evaluate the Gaussian marginal for zn having mean µn and covariance Vn as
well as the normalization coefficient cn

µn = Aµn−1 + Kn(xn − CAµn−1)

Vn = (I−KnC)Pn−1

cn = N (xn|CAµn−1,CPn−1CT + Σ)

where the Kalman gain matrix is defined as

Kn = Pn−1CT (CPn−1CT + Σ)−1

The initial conditions are given by

µ1 = µ0 + K1(x1 − Cµ0) V1 = (I−K1C)V0

c1 = N (x1|Cµ0,CV0CT + Σ) K1 = V0CT (CV0CT + Σ)−1

Interpretation is making prediction and doing corrections with Kn.

The likelihood can be computed as p(X) =
∏N

n=1 cn.
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Kalman filter: Forward equations III

If the measurement noise is small compared to the rate at which z is
evolving, then the posterior distribution for zn depends only on the
current measurement xn.

If zn is evolving slowly relative to the observation noise level, then the
posterior mean for zn is obtained by averaging all of the
measurements obtained up to that time.

One of the most important applications of the Kalman filter is to
tracking.

Used for real-time prediction.
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Kalman filer example

Figure: Tracking using a Kalman filter (Bishop, Springer 2007). Blue points
indicate true positions at successive times, the green points are noisy
measurements of the positions, and the red crosses indicates the means of the
inferred posterior distributions.
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Kalman smoother: Backward equations I

In the Kalman filter equations we have seen how to compute the
posterior marginal of a node zn given observations x1, · · · , xn.

We now look into finding the marginal for a node zn given all
observations x1, · · · , xN .

For temporal data, this means the inclusion of future as well as past
observations.

This cannot be used for real-time prediction, but it is crucial for
learning the parameters.

As in the HMM, this can be done by propagating messages from node
xN to node x1, and combining this information with the forward
message passing step used to compute α̂(zn)
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Kalman smoother: Backward equations II

The backward recursion is typically formulated in terms of

γ(zn) = α̂(zn)β̂(zn) = N (zn|µ̂n, V̂n)

We write the backward recursion for continuous variables as

cn+1β̂(zn+1) =

∫
β̂(zn+1)p(xn+1|zn+1)p(zn+1|zn)dzn+1

Multiplying both sides by α̂(zn) and substituting yields

µ̂n = µn + Jn(µ̂n+1 − AµN)

V̂n = Vn + Jn(V̂n+1 − Pn)JT
n

where we have defined
Jn = VnAT (Pn)−1

The forward pass has to be done before so that we know µn and Vn.
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Kalman smoother: Backward equations III

The other quantity necessary for the EM algorithm is the pairwise
posterior marginals

ξ(zn−1, zn) = (cn)−1α̂(zn−1)p(xn|zn)p(zn|zn−1)β̂(zn)

which is going to be a Gaussian with mean given with components
γ(zn−1) and γ(zn) and covariance

cov [zn, zn−1] = Jn−1V̂n
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Learning the LDS I

We have considered the inference problem where θ = {A,Γ,C,Σ,µ0,V0}
were assumed to be known.

As in the HMM, we learn these parameters by maximum likelihood on an
EM framework.

As before we look into the i-th iteration. In the E-step we run the inference
algorithm to compute the posterior p(Z|X,θ(i)), so that

E [zn] = µ̂n

E [znzT
n−1] = Jn−1V̂n + µ̂nµ̂

T
n−1

E [znzT
n ] = V̂n + µ̂nµ̂

T
n

The complete-data log likelihood is

log p(X,Z,θ) = log p(z1|µ0,V0) +
∑N

n=2 log p(zn|zn−1,A,Γ)

+
∑N

n=1 log p(xn|zn,C,Σ)
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Learning the LDS II

We now take the expectation with respect to the posterior distribution
p(Z|X,θ(i))

Q(θ,θ(i)) = EZ|θ(i) [log p(X,Z|θ)]

In the M-step we maximize Q(θ,θ(i)) with respect to
θ = {A,Γ,C,Σ,µ0,V0}.

Let’s compute this with respect to every set of parameters.

First consider µ0 and V0, computing the expectation with respect to Z

Q(θ,θ(i)) = −1

2
log |V0| − EZ|θ(i)

[
1

2
(z1 − µ0)T V−1

0 (z1 − µ0)

]
+ const

We use the maximum likelihood of a Gaussian to get

µ
(i+1)
0 = E [z1] V

(i+1)
0 = E [z1zT

1 ]− E [z1]E [zT
1 ]
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Learning the LDS III

Similarly we optimize over A and Γ by maximizing

Q(θ,θ(i)) = −
N − 1

2
log |Γ| − EZ|θ(i)

"
1

2

NX
n=2

(zn − Azn−1)
T Γ−1(zn − Azn−1)

#
+ const

which yields

A(i+1) =

(
N∑

n=2

E [znzT
n−1]

)(
N∑

n=2

E [zn−1zT
n−1]

)−1

Γ(i+1) =
1

N − 1

N∑
n=2

{E [znzT
n ]− A(i+1)E [zn−1zT

n ]

−E [znzT
n−1]A(i+1) + A(i+1)E [zn−1zT

n−1](A(i+1))T}

Note that A(i+1) has to be evaluated before computing Γ(i+1).
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Learning the LDS IV

Finally in order to compute the new values of C and Σ we maximize

Q(θ,θ(i)) = −N

2
log |Σ| − EZ|θ(i)

[
1

2

N∑
n=1

(xn − Czn)T )Σ−1(xn − Czn)

]
+ const

which gives

C(i+1) =

(
N∑

n=1

E [zT
n ]

)(
N∑

n=1

E [znzT
n ]

)−1

Σ(i+1) =
1

N

N∑
n=1

{xnxT
n − C(i+1)E [zn]xT

n

−xnE [zT
n ]C(i+1) + C(i+1)E [znzT

n ]C(i+1)}

Note that what all this distributions have in common is that they are
Gaussian, so we can compute their mean and covariance in closed form.
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Non-linear dynamics

The same trick as for Probabilistic PCA can be applied to latent variable
models with Markov chain assumptions

The mapping from latent space to high dimensional space as

yi,: = Wψ(xi,:) + ηi,:, where ηi,: ∼ N
(
0, σ2I

)
.

We can augment the model with ARMA dynamics. This is called the
Gaussian process dynamical model (GPDM) (Wang et al., 05).

xt+1,: = Pφ(xt:t−τ,:) + γ i,:, where γi,: ∼ N
(
0, σ2

d I
)
.

with the dynamics model as a Gaussian process.

X

Y

X1 

Y1 

X2 

Y2 

X3 

Y3 

XT 

YT 

… 

GPLVM GPDM
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Stick Man Data

N = 55 frames of motion capture.

xyz locations of 34 points on the
body.

D = 102 dimensional data.

“Run 1” available from http:
//accad.osu.edu/research/
mocap/mocap_data.htm.

Changing

Angle

of Run
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urtasun_cvpr06_tracking.avi
Media File (video/avi)

http://accad.osu.edu/research/mocap/mocap_data.htm
http://accad.osu.edu/research/mocap/mocap_data.htm
http://accad.osu.edu/research/mocap/mocap_data.htm


Motion Capture Results

Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (right) based on an RBF kernel.
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Learning and sampling

Model learned from 6 walking subjects,1 gait cycle each, on treadmill at
same speed with a 20 DOF joint parameterization (no global pose)

Figure: Density
Figure: Randomly generated
trajectories
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walk_manifold.mp4
Media File (video/mp4)


walk_dyn.mp4
Media File (video/mp4)



More?

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will do particle filters and image likelihoods.

Let’s do some exercises now!
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