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Materials used for this lecture

This lecture is based on Zhe Chen’s paper ”Bayesian Filtering: From
Kalman Filters to Particle Filters, and Beyond”.

I would like to thank David Fleet for his slides on the subject.

To know more about sampling look at David MaKay’s book
”Information Theory, Inference, and Learning Algorithms”, Cambridge
University Press (2003).
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Contents of today’s lecture?

We will look into

Stochastic Filtering Theory: Kalman filtering (1940’s by Wiener and
Kolmogorov).

Bayesian Theory and Bayesian Filtering (Bayes, 1763 and rediscover
by Laplace)

Monte Carlo methods and Monte Carlo Filtering (Buffon 1777,
modern version in the 1940’s in physics and 1950’s in statistics)
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Monte Carlo approaches

Monte Carlo techniques are stochastic sampling approaches aiming to
tackle complex systems that are analytically intractable.

Sequential Monte Carlo allows on-line estimation by combining Monte
Carlo sampling methods with Bayesian inference.

Particle filter: sequential Monte Carlo used for parameter estimation and
state estimation.

Particle filter uses a number of independent random variables called
particles, sampled directly from the state space, to represent the
posterior probability
and update the posterior by involving the new observations;
the particle system is properly located, weighted, and propagated
recursively according to the Bayesian rule.

Particle filters is not the only way to tackle Bayesian filtering, e.g.,
differential geometry, variational methods, conjugate methods.
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A few words on Particle Filters

Kalman filtering is a special case of Bayesian filtering with linear,
quadratic and Gaussian assumptions (LQG).

We will look into the more general case of non-linear, non-Gaussian
and non-stationary distributions.

Generally for non-linear filtering no exact solution can be computed,
hence we rely on numerical approximation methods.

We will focus on sequential Monte Carlo (i.e., particle filter)
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Notation

y — the observations
x — the state

N — number of samples
yn:0 — observations up to time n

xn:0 — state up to time n

x
(i)
n — i-th sample at time n
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Concept of sampling

The true distribution P(x) can be approximated by an empirical distribution

P̂(x) =
1

N

N∑
i=1

δ(x− x(i))

where
∫

X
dP̂(x) =

∫
X

p̂(x)dx = 1

Figure: Sample approximation to the density of prob. distribution (Chen 03)
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Some useful definitions

Definition

Filtering is an operation that involves the extraction of information about
a quantity of interest at time t by using data measured up to and
including t.

Definition

Prediction derives information about what the quantity of interest will be
at time t + τ in the future (τ > 0) by using data measured up to and
including time t.

Definition

Smoothing derives information about what the quantity of interest at
time t ′ < t by using data measured up to and including time t (i.e., in the
interval [0, t]).
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Stochastic filtering problem

The generic stochastic filtering problem

ẋt = f(t, xt ,ut ,wt) (state equation)

yt = g(t, xt ,ut , vt) (measurement equation)

where ut is the system input vector, xt the state vector, yt the observations,
wt and vt are the process noise and the measurement noise, and f and g are
functions which are potentially time varying.

Figure: A graphical model of the state space model (Chen 03)
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Simplified model: discrete case

The generic stochastic filtering problem

ẋt = f(t, xt ,ut ,wt) (state equation)

yt = g(t, xt ,ut , vt) (measurement equation)

In practice we are interested in the discrete simplified case

xn+1 = f(xn,wn)

yn = g(xn, vn)
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The generic stochastic filtering problem

ẋt = f(t, xt ,ut ,wt) (state equation)

yt = g(t, xt ,ut , vt) (measurement equation)

In practice we are interested in the discrete simplified case

xn+1 = f(xn,wn)

yn = g(xn, vn)

Figure: Careful today change of notation: z is now x and x is now y.
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Simplified model: discrete case

The generic stochastic filtering problem

ẋt = f(t, xt ,ut ,wt) (state equation)

yt = g(t, xt ,ut , vt) (measurement equation)

In practice we are interested in the discrete simplified case

xn+1 = f(xn,wn)

yn = g(xn, vn)

This equations are characterized by the state transition probability
p(xn+1|xn), and the likelihood p(yn|xn).
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Stochastic filtering is an inverse problem

Given yn:0, provided f and g are known, one needs to find the best
estimate x̂n.

This is an inverse problem: Find the inputs sequentially with a
mapping function which yields the output data.

This is an ill-posed problem since the inverse learning problem is
one-to-many: the mapping from output to input is generally
non-unique.

Definition

A problem is well-posed if it satisfies: existence, uniqueness and stability.
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Intractable Bayesian problems

Normalization: Given the prior p(x) and the likelihood p(y|x), the
posterior p(x|y) is obtained by dividing by the normalization factor
p(y)

p(x|y) =
p(y|x)p(x)∫

X p(y|x)p(x)dx

Marginalization: Given the joint posterior, the marginal posterior

p(x|y) =

∫
Z

p(x, z|y)dz

Expectation

Ep(x|y)[f (x)] =

∫
X

f (x)p(x|y)dy
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Recursive Bayesian estimation I

Let p(xn|yn:0) be the conditional pdf of xn

p(xn|yn:0) =
p(yn:0|xn)p(xn)

p(yn:0)

=
p(yn, yn−1:0|xn)p(xn)

p(yn, yn−1:0)

=
p(yn|yn−1:0, xn)p(yn−1:0|xn)p(xn)

p(yn|yn−1:0)p(yn−1:0)

=
p(yn|yn−1:0, xn)p(xn|yn−1:0)p(yn−1:0)p(xn)

p(yn|yn−1:0)p(yn−1:0)p(xn)

=
p(yn|xn)p(xn|yn−1:0)

p(yn|yn−1:0)
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Recursive Bayesian estimation II

The posterior densisty is described with three terms

p(xn|yn:0) =
p(yn|xn)p(xn|yn−1:0)

p(yn|yn−1:0)

Prior: defines the knowledge of the model

p(xn|yn−1:0) =

∫
p(xn|xn−1)p(xn−1|yn−1:0)dxn−1

Likelihood: p(yn|xn) determines the measurement noise model

Evidence: which involves

p(yn|yn−1:0) =

∫
p(yn|xn)p(xn|yn−1:0)dxn

We need to define a criteria for optimal filtering
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Criteria for optimal filtering I

An optimal filter is ”optimal” under a particular criteria

Minimum mean-squared error (MMSE): defined in terms of prediction or
filtering error

E [||xn − x̂n||22|yn:0] =

∫
||xn − x̂n||22p(xn|yn:0)dxn

which is aimed to find the conditional mean

x̂n = E [xn|yn:0] =

∫
xnp(xn|yn:0)dxn

Maximum a posteriori (MAP): It is aimed to find the mode of posterior
probability p(xn|yn:0)

Maximum likelihood (ML): which reduces to a special case of MAP where
the prior is neglected.

Minimax: which is to find the median of posterior p(xn|yn:0).
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Criteria for optimal filtering II

MMSE: finds the mean

MAP: finds the mode

Minimax: finds the median

Figure: (left) Three optimal criteria that seek different solutions for a skewed
unimodal distribution (right) MAP is misleading for the multimodal distribution
(Chen 03)
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Criteria for optimal filtering III

An optimal filter is ”optimal” under a particular criteria

Minimum conditional inaccuracy: defined as

Ep(x,y)[− log p̂(x|y)] =

∫
p(x, y) log

1

p̂(x|y)
dxdy

Minimum conditional KL divergence

KL(p||p̂) =

∫
p(x, y) log

p(x, y)

p̂(x|y)p(x)
dxdy

where the KL is a measure of divergence between distributions such that
0 ≤ KL(p||p̂) ≤ 1. The KL is 0 only when the distributions are the same.
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Criteria for optimal filtering IV

An optimal filter is ”optimal” under a particular criteria

Minimum free energy: It is a lower bound of maximum log-likelihood,
which is aimed to minimize

F(Q; P) ≡ EQ(x)[− log P(x|y)]

= EQ(x)[log
Q(x)

P(x|y)
]− EQ(x)[log Q(x)]

= KL(Q||P)− H(Q)

This minimization can be done using (EM) algorithm

Q(xn+1) ← argmax
Q

F(Q; P)

xn+1 ← argmax
x

F(Q; P)
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Which criteria to choose?

All these criteria are valid for state and parameter estimation

MMSE requires the computation of the prior, likelihood and evidence.

MAP requires the computation of the prior and likelihood, but not the
denominator (integration) and thereby more computational inexpensive;

MAP estimate has a drawback especially in a high-dimensional space. High
probability density does not imply high probability mass.

A narrow spike with very small width (support) can have a very high density,
but the actual probability of estimated state belonging to it is small.

Hence, the width of the mode is more important than its height in the
high-dimensional case.

The last three criteria are all ML oriented. They are very related.

Raquel Urtasun (TTI-C) Bayesian Filtering March 29, 2010 19 / 69



Bayesian filtering

The criterion of optimality used for Bayesian filtering is the Bayes risk of
MMSE

E [||xn − x̂n||22|yn:0] =

∫
||xn − x̂n||22p(xn|yn:0)dxn

Bayesian filtering is optimal in a sense that it seeks the posterior distribution
which integrates and uses all of available information expressed by
probabilities

As time proceeds, one needs infinite computing power and unlimited
memory to calculate the optimal solution, except in some special cases (e.g.
linear Gaussian).

In general we can only seek a suboptimal or locally optimal solution.
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Kalman filter revisited

In practice we are interested in the discrete simplified case

xn+1 = f(xn,wn)

yn = g(xn, vn)

When the dynamic system is linear Gaussian this reduces to

xn+1 = Fn+1,nxn + wn

yn = Gnxn + vn

with Fn+1,n the transition matrix, and Gn the measurement matrix.

This is the Kalman filter, and we saw that by propagating sufficient
statistics (i.e., mean and covariance) we can solve the system analytically.

In the general case it is not tractable, and we will rely on approximations.
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Kalman filter: Forward equations I

We start by defining the messages

α̂(zn) = N (zn|µn,Vn)

Using the HMM recursion formulas for continuous variables we have

cnα̂(zn) = p(xn|zn)

∫
α̂(zn−1)p(zn|zn−1)dzn−1

Substituting the conditionals we have

cnN (zn|µn, Vn) = N (xn|Czn, Σ)

Z
N (zn−1|µn−1, Vn−1)N (zn|Axn−1, Γ)dzn−1

= N (xn|Czn, Σ)N (zn|Aµn−1, Pn−1)

Here we assume that µn−1, and Vn−1 are known, and we have defined

Pn−1 = AVn−1AT + Γ
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Kalman filter: Forward equations II

Given the values of µn−1, Vn−1 and the new observation xn, we can
evaluate the Gaussian marginal for zn having mean µn and covariance Vn as
well as the normalization coefficient cn

µn = Aµn−1 + Kn(xn − CAµn−1)

Vn = (I−KnC)Pn−1

cn = N (xn|CAµn−1,CPn−1CT + Σ)

where the Kalman gain matrix is defined as

Kn = Pn−1CT (CPn−1CT + Σ)−1

The initial conditions are given by

µ1 = µ0 + K1(x1 − Cµ0) V1 = (I−K1C)V0

c1 = N (x1|Cµ0,CV0CT + Σ) K1 = V0CT (CV0CT + Σ)−1

Interpretation is making prediction and doing corrections with Kn.

The likelihood can be computed as p(X) =
∏N

n=1 cn.
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Optimum non-linear filters

The use of Kalman filtering is limited by the ubiquitous nonlinearity
and non-Gaussianity of physical world.

The nonlinear filtering consists in finding p(x|yn:0).

The number of variables is infinite, but not all of them are of equal
importance.

Global approach: one attempts to solve a PDE instead of an ODE
in linear case. Numerical approximation techniques are needed to
solve the equation.

Local approach: finite sum approximation (e.g. Gaussian sum filter),
linearization techniques (i.e. EKF) or numerical approximations (e.g.,
particle filter) are usually used.
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Extended Kalman filter (EKF)

Recall the equations of motion

xn+1 = f(xn,wn)

yn = g(xn, vn)

These equations are linearized in the EKF

F̂n+1,n =
df(x)

dx

∣∣∣∣
x=x̂n

, Ĝn+1,n =
dg(x)

dx

∣∣∣∣
x=x̂n|n−1

Then the conventional Kalman filter can be employed.

Because EKF always approximates the posterior p(xn|yn:0) as a Gaussian,
provides poor performance when the true posterior is non-Gaussian (e.g.
heavily skewed or multimodal).

A more general solution is to rely on numerical approximations.
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Numerical approximations

Monte-carlo sampling approximation (i.e., particle filter)

Gaussian/Laplace approximation

Iterative quadrature

Multi-grid method and point-mass approximation

Moment approximation

Gaussian sum approximation

Deterministic sampling approximation
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Monte Carlo sampling

It’s brute force technique that provided that one can drawn i.i.d. samples
{x(1) · · · xN} from probability distribution P(x) so that∫

X

f (x)dP(x) ≈ 1

N

N∑
i=1

f
(

x(i)
)

= f̂N

for which E [f̂N ] = E [f ] and Var[f̂N ] = 1
N Var[f ] = σ2

N

By the Kolmogorov Strong Law of Large Numbers (under some mild
regularity conditions), f̂N (x) converges to E [f (x)] with high probability.

The convergence rate is assessed by the Central Limit Theorem
√

N
(

f̂N − E [f ]
)
∼ N (0, σ2)

where σ2 is the variance of f (x). The error rate is of order O(N−1/2).

An important property is that the estimation accuracy is independent of the
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Fundamental problems of Monte Carlo estimation

Monte carlo methods approximate∫
X

f (x)dP(x) ≈ 1

N

N∑
i=1

f
(

x(i)
)

= f̂N

There are two fundamental problems:

How to drawn samples from a probability distribution P(x)?

How to estimate the expectation of a function w.r.t. the distribution
or density, i.e., E [f (x)] =

∫
f (x)dP(x)?
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Important properties of an estimator

Consistency: An estimator is consistent if the estimator converges to the
true value with high probability as the number of observations approaches
infinity

Unbiasedness: An estimator is unbiased if its expected value is equal to the
true value.

Efficiency: An estimator is efficient if it produces the smallest error
covariance matrix among all unbiased estimators.

Robustness: An estimator is robust if it is insensitive to the gross
measurement errors and the uncertainties of the model.

Minimal variance
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Types of Monte Carlo sampling

Importance sampling (IS)

Rejection sampling

Sequential importance sampling

Sampling-importance resampling

Stratified sampling

Markov chain Monte Carlo (MCMC): Metropolis-Hastings and Gibbs
sampling

Hybrid Monte Carlo (HMC)

Quasi-Monte Carlo (QMC)
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Importance Sampling I

Sample the distribution in the region of importance in order to achieve
computational efficiency.

This is important for the high-dimensional space where the data is sparse,
and the region of interest where the target lies in is relatively small.

The idea is to choose a proposal distribution q(x) in place of the true
probability distribution p(x), which is hard-to-sample.∫

f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx
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and the region of interest where the target lies in is relatively small.

The idea is to choose a proposal distribution q(x) in place of the true
probability distribution p(x), which is hard-to-sample.∫

f (x)p(x)dx =

∫
f (x)

p(x)

q(x)
q(x)dx

Monte Carlo importance sampling uses N independent samples drawn from
q(x) to approximate

f̂ =
1

N

N∑
i=1

W (x(i))f (x(i))

where W (x(i)) = p(x(i))/q(x(i)) are called the importance weights.
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Importance Sampling II

If the normalizing factor of p(x) is not known, the importance weights can
be only evaluated up to a normalizing constant.

To ensure that we importance weights are normalized

f̂ =
N∑

i=1

W̃ (x(i))f (x(i)) with W̃ (x(i)) =
W (x(i))∑N

i=1 W (x(i))

The variance of the estimate is given by

Var[f̂ ] =
1

N
Var[f (x)W (x)] =

1

N
Var[f (x)

p(x)

q(x)
]

=
1

N

∫ (
f (x)p(x)

q(x)

)2

dx− (E [f (x)])2

N

The variance can be reduced when q(x) is chosen to

match the shape of p(x) so as to approximate the true variance
match the shape of |f (x)|p(x) so as to further reduce the true variance

The estimator is biased but consistent
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Remarks on importance sampling

It provides an elegant way to reduce the variance of the estimator (possibly
even less than the true variance)

it can be used when encountering the difficulty to sample from the true
probability distribution directly.

The proposal distribution q(x) should have a heavy tail so as to be
insensitive to the outliers.

If q(·) is not close to p(·), the weights are very uneven, thus many samples
are almost useless because of their negligible contributions.

In a high-dimensional space, the importance sampling estimate is likely
dominated by a few samples with large importance weights.

Importance sampler can be mixed with Gibbs sampling or
Metropolis-Hastings algorithm to produce more efficient techniques
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Rejection sampling

Rejection sampling is useful when we know (pointwise) the upper bound of
underlying distribution or density.

Assume there exists a known constant C <∞ such that p(x) < Cq(x) for
every x ∈ X , the sampling

for n = 1 to N do
Sample u ∼ U(0, 1)
Sample x ∼ q(x)

if u >
p(x)

Cq(x)
then

Repeat sampling
end if

end for
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Rejection sampling

Rejection sampling is useful when we know (pointwise) the upper bound of
underlying distribution or density.

Assume there exists a known constant C <∞ such that p(x) < Cq(x) for
every x ∈ X , the sampling

The acceptance probability for a random variable is inversely proportional to
the constant C .

The choice of C is critical:

if C � the samples are not reliable because of low rejection rate
if C � inefficient sampling since the acceptance rate will be low

If the prior p(x) is used as q(x), and the likelihood p(y|x) ≤ C and C is
known, then

p(x|y) =
p(y|x)p(x)

p(y)
≤ Cq(x)

p(y)
≡ C ′q(x)

and the acceptance rate for sample x is p(x|y)
C ′q(x) = p(y|x)

C
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Remarks on rejection sampling

The draws obtained from rejection sampling are exact.

The prerequisite of rejection sampling is the prior knowledge of
constant C , which is sometimes unavailable.

It usually takes a long time to get the samples when the ratio
p(x)/Cq(x) is close to zero
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Sequential Importance Sampling I

A good proposal distribution is essential to the efficiency of importance
sampling...

... but it is usually difficult to find a good proposal distribution especially in
a high-dimensional space.

A natural way to alleviate this problem is to construct the proposal
distribution sequentially, this is sequential importance sampling.

if the proposal distribution is chosen in a factorized form

q(xn:0|yn:0) = q(x0)
n∏

t=1

q(xt |xt−1:0, yt:0)

then the importance sampling can be performed recursively.
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Sequential Importance Sampling II

According to the telescope law of probability, we have

p(xn:0) = p(x0)p(x1|x0) · · · p(xn|x0, · · · , xn−1)

q(xn:0) = q0(x0)q1(x1|x0) · · · qn(xn|x0, · · · , xn−1)

The weights can be recursively calculated as

Wn(xn:0) =
p(xn:0)

q(xn:0)
= Wn−1(xn:0)

p(xn|xn−1:0)

qn(xn|xn−1:0)
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Remarks on Sequential Importance Sampling

The advantage of SIS is that it doesnt rely on the underlying Markov chain.

Many i.i.d. replicates are run to create an importance sampler, which
consequently improves the efficiency.

The disadvantage of SIS is that the importance weights may have large
variances, resulting in inaccurate estimate.

The variance of the importance weights increases over time, weight
degeneracy problem, after a few iterations of algorithm, only few or one of
W (x(i)) will be nonzero.

We will see now that in order to cope with this situation, resampling step is
suggested to be used after weight normalization.
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Sampling Importance Resampling (SIR)

The idea is to evaluate the properties of an estimator through the empirical
cumulative distribution function (cdf) of the samples instead of the true cdf.

The resampling step is aimed to eliminate the samples with small
importance weights and duplicate the samples with big weights.

Sample N random samples {x(i)}N
i=1 from q(x)

for i = 1, · · · , N do

W (i) ∝ p(x(i))

q(x(i))

end for
for i = 1, · · · , N do

Normalize weights W̃ (x(i)) = W (x(i))PN
i=1 W (x(i))

end for
Resample with replacement N times from the discrete set {x(i)}N

i=1, where the probability of

resampling from each x(i) is proportional to W̃ (x(i)).
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Remarks on Sampling Importance Resampling

Resampling can be taken at every step or only taken if regarded necessary.

Deterministic: resampling is taken at every k time step (usually
k = 1).
Dynamic: resampling is taken only when the variance of the
importance weights is over the threshold.

The particles and associated importance weights {x(i), W̃ (i)} are replaced by
the new samples with equal importance weights (i.e. W̃ (i) = 1/N).

Resampling is important because

if importance weights are uneven distributed, propagating the trivial
weights through the dynamic system is a waste of computing power;
when the importance weights are skewed, resampling can provide
chances for selecting important samples and rejuvenate the sampler

Resampling does not necessarily improve the current state estimate because
it also introduces extra Monte Carlo variation.

There are many types of resampling methods.
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Gibbs sampling

It’s a particular type of Markov Chain Monte Carlo (MCMC) sampling.

The Gibbs sampler uses the concept of alternating (marginal) conditional
sampling.

Given an Nx -dimensional state vector x = [x1, x2, · · · , xNx ]T , we are
interested in drawing the samples from the marginal density in the case
where joint density is inaccessible or hard to sample.

Since the conditional density to be sampled is low dimensional, the Gibbs
sampler is a nice solution to estimation of hierarchical or structured
probabilistic model.

Draw a sample from x0 ∼ p(x0).
for n = 1 to M do

for i = 1 to Nx do
Draw a sample xi,n ∼ p(xn|x1,n, · · · , xi−1,n, xi,n−1, · · · , xNx ,n−1)

end for
end for
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Illustration of Gibbs sampling

Figure: Gibbs sampling in a two-dimensional space (Chen 03). Left: Starting
from state xn, x1 is sampled from the conditional pdf p(x1|x2,n−1). Middle: A
sample is drawn from the conditional pdf p(x2|x1,n). Right: Four-step iterations
in the probability space (contour).
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Other sampling strategies

Stratified sampling: distribute the samples evenly (or unevenly
according to their respective variance) to the subregions dividing the
whole space.

Stratified sampling works very well and is efficient in a not-too-high
dimension space.

Hybrid Monte Carlo: Metropolis method which uses gradient
information to reduce random walk behavior.

This is good since the gradient direction might indicate the way to find
the state with a higher probability.
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Numerical approximations

Monte-carlo sampling approximation (i.e., particle filter)

Gaussian/Laplace approximation

Iterative quadrature

Multi-grid method and point-mass approximation

Moment approximation

Gaussian sum approximation

Deterministic sampling approximation
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Gauss/Laplace approximation

Gaussian approximation is the simplest method to approximate the
numerical integration problem because of its analytic tractability.

By assuming the posterior as Gaussian, the nonlinear filtering can be taken
with the EKF method.

Laplace approximation method is to approximate the integral of a function∫
f (x)dx by fitting a Gaussian at the maximum x̂ of f (x), and further

compute the volume∫
f (x)dx ≈ (2π)Nx/2f (x̂)| − 55 log f (x)|−1/2

The covariance of the fitted Gaussian is determined by the Hessian matrix of
log f (x) at x̂.

It is also used to approximate the posterior distribution with a Gaussian
centered a the MAP estimate.

Works for the unimodal distributions but produces a poor approximation
result for multimodal distributions, especially in high-dimensional spaces.
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Iterative Quadrature

Numerical approximation method, which was widely used in computer
graphics and physics.

A finite integral is approximated by a weighted sum of samples of the
integrand based on some quadrature formula∫ b

a

f (x)p(x)dx ≈
m∑

k=1

ck f (xk )

where p(x) is treated as a weighting function, and xk is the quadrature
point.

The values xk are determined by the weighting function p(x) in the interval
[a, b].

This method can produce a good approximation if the nonlinear function is
smooth.
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Muti-grid Method and Point-Mass Approximation

If the state is discrete and finite (or it can be discretized and approximated
as finite), grid-based methods can provide a good solution and optimal way
to update the filtered density p(xn|yn:0).

If the state space is continuous, we can always discretize the state space into
Nz discrete cell states, then a grid-based method can be further used to
approximate the posterior density.

The disadvantage of grid-based method is that it requires the state space
cannot be partitioned unevenly to give a great resolution to the state with
high density.

In the point-mass method uses a simple rectangular grid. The density is
assumed to be represented by a set of point masses which carry the
information about the data.
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Moment Approximation

Moment approximation is targeted at approximating the moments of the
density, including mean, covariance, and higher order moments.

We can empirically use the sample moment to approximate the true
moment, namely

mk = E [xk ] =

∫
X

xk p(x)dx =
1

N

N∑
i=1

|x(i)|k

where mk denotes the k-th order moment and x(i) are the samples from true
distribution.

The computation cost of these approaches are rather prohibitive, especially
in highdimensional space.
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Gaussian Sum Approximation

Gaussian sum approximation uses a weighted sum of Gaussian densities to
approximate the posterior density (the so-called Gaussian mixture model):

p(x) =
m∑

j=1

cjN (x̂f ,Σf )

where the weighting coefficients cj > 0, and
∑m

j=1 cj = 1

Any non-Gaussian density can be approximated to some accurate degree by
a sufficiently large number of Gaussian mixture densities.

A mixture of Gaussians admits tractable solution by calculating individual
first and second order moments.

Gaussian sum filter, essentially uses this idea and runs a bank of EKFs in
parallel to obtain the suboptimal estimate.
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Illustration of numerical approximations

Figure: Illustration of non-Gaussian distribution approximation (Chen 03): (a) true distribution;
(b) Gaussian approximation; (c) Gaussian sum approximation; (d) histogram approximation; (e)
Riemannian sum (step function) approximation; (f) Monte Carlo sampling approximation.
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What have we seen?

We have seen up to now

Filtering equations

Monte Carlo sampling

Other numerical approximation methods

What’s next?

Particle filters
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Particle filter: Sequential Monte Carlo estimation

Now we now how to do numerical approximations. Let’s use it!

Sequential Monte Carlo estimation is a type of recursive Bayesian filter
based on Monte Carlo simulation. It is also called bootstrap filter.

The state space is partitioned as many parts, in which the particles are filled
according to some probability measure. The higher probability, the denser
the particles are concentrated.

The particle system evolves along the time according to the state equation,
with evolving pdf determined by the FPK equation.

Since the pdf can be approximated by the point-mass histogram, by random
sampling of the state space, we get a number of particles representing the
evolving pdf.

However, since the posterior density model is unknown or hard to sample, we
would rather choose another distribution for the sake of efficient sampling.
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Sequential Monte Carlo estimation I

The posterior distribution or density is empirically represented by a weighted
sum of N samples drawn from the posterior distribution

p(xn|yn:0) ≈ 1

N

N∑
i=1

δ(xn − x(i)
n ) ≡ p̂(xn|yn:0)

where x
(i)
n are assumed to be i.i.d. drawn from p(xn|yn:0).

By this approximation, we can estimate the mean of a nonlinear function

E [f (xn)] ≈
∫

f (xn)p̂(xn|yn:0)dxn

=
1

N

N∑
i=1

∫
f (xn)δ(xn − x(i)

n )dxn

=
1

N

N∑
i=1

f (x(i)
n ) ≡ f̂N (x)
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p(xn|yn:0) ≈ 1

N

N∑
i=1

δ(xn − x(i)
n ) ≡ p̂(xn|yn:0)

where x
(i)
n are assumed to be i.i.d. drawn from p(xn|yn:0).

By this approximation, we can estimate the mean of a nonlinear function

E [f (xn)] ≈
∫

f (xn)p̂(xn|yn:0)dxn

=
1

N

N∑
i=1

∫
f (xn)δ(xn − x(i)

n )dxn

=
1

N

N∑
i=1

f (x(i)
n ) ≡ f̂N (x)
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Sequential Monte Carlo estimation II

It is usually impossible to sample from the true posterior, it is common to
sample from the so-called proposal distribution q(xn|yn:0). Let’s define

Wn(xn) =
p(yn:0|xn)p(xn)

q(xn|yn:0)

We can then write

E [f (xn)] =

∫
f (xn)

p(xn|yn:0)

q(xn|yn:0)
q(xn|yn:0)dxn

=

∫
f (xn)

Wn(xn)

p(yn:0)
q(xn|yn:0)dxn

=

∫
f (xn)Wn(xn)q(xn|yn:0)dxn∫

p(yn:0|xn)p(xn)dxn

=

∫
f (xn)Wn(xn)q(xn|yn:0)dxn∫

Wn(xn)q(xn|yn:0)dxn

=
Eq(xn|yn:0)[Wn(xn)f (xn)]

Eq(xn|yn:0)[Wn(xn)]
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Sequential Monte Carlo estimation III

We have written

E [f (xn)] =
Eq(xn|yn:0)[Wn(xn)f (xn)]

Eq(xn|yn:0)[Wn(xn)]

By drawing the i.i.d. samples {x(i)
n } from q(xn|yn:0), we can approximate

E [f (xn)] ≈
1
N

∑N
i=1 Wn(x

(i)
n )f (x

(i)
n )

1
N

∑N
i=1 Wn(x

(i)
n )

=
N∑

i=1

W̃ (x(i)
n )f (x(i)

n ) ≡ f̂ (x)

where the normalized weights are defined as

W̃ (x(i)
n ) =

Wn(x
(i)
n )∑N

i=1 Wn(x
(i)
n )
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Sequential Monte Carlo estimation IV

Suppose now that the proposal distribution factorizes

q(xn:0|yn:0) = q(x0)
n∏

t=1

q(xt |xt−1:0, yt:0)

As before the posterior can be written as

p(xn:0|yn:0) = p(xn−1:0|yn−1:0)
p(yn|xn)p(xn|yn−1:0)

p(yn|yn−1:0)

We can then create a recursive rule to update the weights

W (i)
n =

p(x
(i)
n:0|yn:0)

q(x
(i)
n:0|yn:0)

∝
p(yn|x(i)

n )p(x
(i)
n |x(i)

n−1)p(x
(i)
n−1:0|yn−1:0)

q(x
(i)
n |x(i)

n−1:0, yn:0)q(x
(i)
n−1:0|yn−1:0)

= W
(i)
n−1

p(yn|x(i)
n )p(x

(i)
n |x(i)

n−1)

q(x
(i)
n |x(i)

n−1:0, yn:0)
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Types of filters

Depending on the type of sampling use we have different types of filters

Sequential Importance sampling (SIS) filter

SIR filter

Auxiliary particle filter (APF)

Rejection particle filter

MCMC particle filter

etc.
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Sequential Importance sampling (SIS) filter I

We are more interested in the current filtered estimate p(xn|yn:0) than
p(xn:0|yn:0).

Let’s assume that q(x
(i)
n |x(i)

n−1:0, yn:0) = q(x
(i)
n |x(i)

n−1:0, yn) then we can write

W (i)
n = W

(i)
n−1

p(yn|x(i)
n )p(x

(i)
n |x(i)

n−1)

q(x
(i)
n |x(i)

n−1:0, yn)

The problem of the SIS filter is that the distribution of the importance
weights becomes more and more skewed as time increases.

After some iterations, only very few particles have non-zero importance
weights. This is often called weight degeneracy or sample
impoverishment.
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Sequential Importance sampling (SIS) filter II

A solution is to multiply the particles with high normalized importance
weights, and discard the particles with low normalized importance weights,
which can be be done in the resampling step.

A suggested measure for degeneracy is the so-called effective sample size

Neff =
N

Eq(·|yn:0)[(W̃ (xn:0))2]
≤ N

In practice this cannot be computed, so we approximate

Neff ≈
1∑N

i=1(W̃ (xn:0))2

When Neff is below a threshold P, then resampling is performed.

Neff can be also used to combine rejection and importance sampling
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SIS particle filter with resampling

for n = 0, · · · , T do
for i = 1, · · · , N do

Draw samples x
(i)
n ∼ q(xn|x(i)

n−1:0, yn:0)

Set x
(i)
n:0 = {x(i)

n−1:0, x
(i)
n }

end for
for i = 1, · · · , N do

Calculate weights W
(i)
n = W

(i)
n−1

p(yn|x
(i)
n )p(x

(i)
n |x

(i)
n−1)

q(x
(i)
n |x

(i)
n−1:0,yn)

end for
for i = 1, · · · , N do

Normalize the weights W̃ (x(i)) = W (x(i))PN
i=1 W (x(i))

end for
Compute N̂eff = 1PN

i=1(W̃ (xn:0))2

if N̂eff < P then

Generate new {x(j)
n } by resampling with replacement N times from {x(i)

n:0} with

probability P(x
(j)
n:0 = x

(i)
n:0) = W̃

(i)
n:0.

Reset the weights W̃
(i)
n = 1

N
end if

end for
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Bootstrap/SIR filter

The key idea of SIR filter is to introduce the resampling step as in the
SIR sampling.

Resampling does not really prevent the weight degeneracy problem, it
just saves further calculation time by discarding the particles
associated with insignificant weights.

It artificially concealing the impoverishment by replacing the high
important weights with many replicates of particles, thereby
introducing high correlation between particles.
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SIR filter using transition prior as proposal distribution

for i = 1, · · · , N do

Sample x
(i)
0 ∼ p(x0)

Compute W
(i)
0 = 1

N
end for
for n = 0, · · · , T do

for i = 1, · · · , N do

Importance sampling x̂
(i)
n ∼ p(xn|x(i)

n−1)
end for
Set x̂

(i)
n:0 = {x(i)

n−1:0, x̂
(i)
n }

for i = 1, · · · , N do

Weight update W
(i)
n = p(yn|x̂(i)

n )
end for
for i = 1, · · · , N do

Normalize weights W̃ (x(i)) = W (x(i))PN
i=1 W (x(i))

end for
Resampling: Generate N new particles x

(i)
n from the set {x̂(i)

n } according to W̃
(i)
n .

end for
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Illustration of a generic particle filter

Figure: Particle filter with importance sampling and resampling (Chen 03)
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Remarks on SIS and SIR filters

In the SIR filter the resampling is always performed.

In the SIS filter, importance weights are calculated sequentially, resampling
is only taken whenever needed; SIS filter is less computationally expensive.

The choice of proposal distributions in SIS and SIR filters plays an crucial
role in their final performance.

Normally the posterior estimate (and its relevant statistics) should be
calculated before resampling.

In the resampling stage, the new importance weights of the surviving
particles are not necessarily reset to 1/N, but rather more clever strategies.

To alleviate the sample degeneracy in SIS filter, we can change

Wn = W α
n−1

p(yn|x(i)
n )p(x

(i)
n |x(i)

n−1)

q(x
(i)
n |x(i)

n−1:0, yn)

where 0 < α < 1 is the annealing factor that controls the impact of previous
importance weights.
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Popular CONDENSATION

Figure: CONDENSATION

Raquel Urtasun (TTI-C) Bayesian Filtering March 29, 2010 65 / 69


anim.mp4
Media File (video/mp4)



Popular CONDENSATION

Figure: Head tracking Figure: Leaf tracking
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dancemv.mp4
Media File (video/mp4)


leafmv.mp4
Media File (video/mp4)



Popular CONDENSATION

Figure: Hand tracking Figure: Hand drawing
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hand.mp4
Media File (video/mp4)


iccv98.mp4
Media File (video/mp4)



Popular CONDENSATION

Figure: Hand tracking Figure: Interactive applications
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imp.mp4
Media File (video/mp4)


drawing.mp4
Media File (video/mp4)



More?

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will do human pose estimation

Let’s do some exercises now!
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