Human Motion Analysis
 Lecture 8: Shape and pose

Raquel Urtasun

TTI Chicago

May 3, 2010

Materials used for this lecture

- B. Allen, B. Curless and Z. Popovic. Articulated Body Deformation from Range Scan Data, , ACM SIGGRAPH 2002.
- B. Allen, B. Curless and Z. Popovic. The space of human body shapes: reconstruction and parameterization from range scans, ACM SIGGRAPH 2003.
- D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers. SCAPE: Shape Completion and Animation of People, ACM SIGGRAPH 2004.
- R. Urtasun, PhD. Thesis, Chapters 4, 5 and 6.
- Some slides provided by Luca Ballan.

Contents of today's lecture?

We will look into generative approaches to pose estimation. We will focus on:

- shape priors
- pose priors

The problem of human pose estimation

- The goal is given an image \mathbf{I} to estimate the 3D location and orientation of the body parts \mathbf{y}.

Pose estimation

- Generative approaches: focus on modeling

$$
p(\phi \mid \mathbf{I})=\frac{p(\mathbf{I} \mid \phi) p(\phi)}{p(\mathbf{I})}
$$

- Discriminative approaches: focus on modeling directly

$$
p(\phi \mid \mathbf{I})
$$

Today we will talk about generative approaches.
Later in the class we will cover discriminative approaches.

Generative approaches

Generative approach models

$$
p(\phi \mid \mathbf{I})=\frac{p(\mathbf{I} \mid \phi) p(\phi)}{p(\mathbf{I})}
$$

Types of generative approaches:

- Bayesian approaches: focus on approximating $p(\phi \mid \mathrm{I})$, usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of $p(\phi \mid \mathbf{I})$.

Generative approaches

Generative approach models

$$
p(\phi \mid \mathbf{I})=\frac{p(\mathbf{I} \mid \phi) p(\phi)}{p(\mathbf{I})}
$$

Types of generative approaches:

- Bayesian approaches: focus on approximating $p(\phi \mid \mathbf{I})$, usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of $p(\phi \mid \mathbf{I})$.

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I} \mid \phi)$
- Priors: $p(\phi)$

Generative approaches

Generative approach models

$$
p(\phi \mid \mathbf{I})=\frac{p(\mathbf{I} \mid \phi) p(\phi)}{p(\mathbf{I})}
$$

Types of generative approaches:

- Bayesian approaches: focus on approximating $p(\phi \mid \mathbf{I})$, usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of $p(\phi \mid \mathbf{I})$.
Common to all of them is the need to model
- Image likelihood: $p(\mathbf{I} \mid \phi)$
- Priors: $p(\phi)$

In general $p(\mathbb{I})$ is assumed constant and ignored. The different trackers then depend on the different modeling choices and optimization procedures.

Generative approaches

Generative approach models

$$
p(\phi \mid \mathbf{I})=\frac{p(\mathbf{I} \mid \phi) p(\phi)}{p(\mathbf{I})}
$$

Types of generative approaches:

- Bayesian approaches: focus on approximating $p(\phi \mid \mathbf{I})$, usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of $p(\phi \mid \mathbf{I})$.
Common to all of them is the need to model
- Image likelihood: $p(\mathbf{I} \mid \phi)$
- Priors: $p(\phi)$

In general $p(\mathbf{I})$ is assumed constant and ignored. The different trackers then depend on the different modeling choices and optimization procedures.

In the next lectures we will look at ...

Priors: $p(\phi)$

- Joint limits
- Shape priors
- Pose priors
- Dynamical priors
- Physics

Likelihood models: p(I| ϕ)

- Monocular tracking: 2D-3D correspondences, silhouettes, edges, template matching, etc.
- Multi-view tracking: stereo, visual hull, etc.

In the next lectures we will look at ...

Priors: $p(\phi)$

- Joint limits
- Shape priors
- Pose priors
- Dynamical priors
- Physics

Likelihood models: $p(\mathbf{I} \mid \phi)$

- Monocular tracking: 2D-3D correspondences, silhouettes, edges, template matching, etc.
- Multi-view tracking: stereo, visual hull, etc.

Note that I have defined ϕ as a general quantity, not just the pose.

In the next lectures we will look at ...

Priors: $p(\phi)$

- Joint limits
- Shape priors
- Pose priors
- Dynamical priors
- Physics

Likelihood models: $p(\mathbf{I} \mid \phi)$

- Monocular tracking: 2D-3D correspondences, silhouettes, edges, template matching, etc.
- Multi-view tracking: stereo, visual hull, etc.

Note that I have defined ϕ as a general quantity, not just the pose.

Shape representations

Likelihood vs shape

- 3D error function
- 3D+2D error function
- 2D error function

Shape representations cover in the class

- Skeleton
- Simple primitives: cylinders, cones, truncated cones, ellipsoids
- Superquadrics
- Implicit surfaces
- Scan mesh
- Allen et al. models
- SCAPE model

Skeleton representation

- Human body as a kinematic tree, where joints are connected by segments of fix length.
- Simplest representation.

Simple primitives I

- A cylinder can be expressed as

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{a}\right)^{2}=1
$$

- An elliptic cylinder can be expressed as

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1
$$

Simple primitives II

- A cone is a three-dimensional geometric shape that tapers smoothly from a flat, usually circular base to a point called the apex or vertex
- A cone with its apex cut off by a plane parallel to its base is called a truncated cone or frustum.

Figure: (Left) Right circular cone. (Center) Oblique circular cone. (Right) frustum.

Simple primitives III

- An ellipsoid is a type of quadric surface that is a higher dimensional analogue of an ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

- If the axis are not aligned, it's represented as $\mathbf{x} \mathbf{A} \mathbf{x}^{T}=1$

Superquadrics

- Superquadrics are a family of geometric shapes defined by formulas that resemble those of elipsoids and other quadrics, except that the squaring operations are replaced by arbitrary powers.

$$
\frac{|x|^{r}}{a}+\frac{|y|^{s}}{b}+\frac{|z|^{t}}{c} \leq 1
$$

with $r, s, t \in \Re^{+}$, and $a, b, c \in \Re$.

- The superquadrics include many shapes that resemble cubes, octahedra, cylinders, lozenges and spindles, with rounded or sharp corners.
- Superellipsoids are a special case when $r=s=t$.

Superquadrics II

Superquadrics representing humans

Figure: humans represented using superquadrics (Sminchisescu03)

Implicit surfaces

- The skin metaball surface \mathcal{S} is a generalized algebraic surface that is defined as a level set of the summation over n 3D densities of primitives

$$
F(x, y, z)=\sum_{i=1}^{n} f_{i}(x, y, z) \quad \text { with } \quad f_{i}(x, y, z)=\exp \left(-2 d_{i}(x, y, z)\right)
$$

with d_{i} the distance to the i-th primitive.

- The implicit surface is defined by the level set

$$
\mathcal{S}=\left\{[x, y, z] \in \Re^{3} \mid F(x, y, z)=L\right\}
$$

SCAN

Home-made 3D Body Scanner (< 2000 Euro)

Shape: Silhouettes + Stereo
Texture: Wavelet blending

Shape: 500k faces -> 13k faces
Texture: 6000×3500 pixels

Deformations

Split the surface in small pieces which moves rigidly attached each to only one bone

Deal with non-rigid deformation

- Skeletal Subspace Deformation
- Pose space deformation

Likelihood vs deformation

Skinning or Skeleton-Subspace Deformation (SSD)

- The position of a control vertex \mathbf{v}_{j} on the deforming surface of an articulated object lies in the subspace defined by the rigid transformations of that point

$$
\hat{\mathbf{v}}_{j}=\sum \alpha_{j, k} L_{k}\left(\mathbf{v}_{j}\right) \mathbf{v}_{j}=\sum \alpha_{j, k} L_{k}^{\delta}\left(L_{k}^{0}\right)^{-1} L_{p}^{0} \mathbf{v}_{j}
$$

where L_{p}^{0} is the transform from the surface containing \mathbf{v}_{j} to the world system, L_{k}^{0} is the transform from the stationary skeletal frame k to the world system, and L_{k}^{δ} expresses the moving skeletal frame k in the world system.

Skinning or Skeleton-Subspace Deformation (SSD)

- The position of a control vertex \mathbf{v}_{j} on the deforming surface of an articulated object lies in the subspace defined by the rigid transformations of that point

$$
\hat{\mathbf{v}}_{j}=\sum \alpha_{j, k} L_{k}\left(\mathbf{v}_{j}\right) \mathbf{v}_{j}=\sum \alpha_{j, k} L_{k}^{\delta}\left(L_{k}^{0}\right)^{-1} L_{p}^{0} \mathbf{v}_{j}
$$

where L_{p}^{0} is the transform from the surface containing \mathbf{v}_{j} to the world system, L_{k}^{0} is the transform from the stationary skeletal frame k to the world system, and L_{k}^{δ} expresses the moving skeletal frame k in the world system.

- The matrix $\alpha=\left\{\alpha_{j, k}\right\}$ is the normalized non-linear distance between the vertex j and the bone k axis

Pose space deformation (PSD)

- In SSD the deformation is restricted to the indicated subspace. Extreme in the case of twist.

Figure: Problems of SSD (Lewis et al. 03)

Pose space deformation (PSD)

- In SSD the deformation is restricted to the indicated subspace. Extreme in the case of twist.
- SSD does not permit direct manipulation
- The solution of PSD is the identification of an appropriate space for defining deformations.
- The deformation is defined as

$$
\overline{\mathbf{v}_{j}}=\mathbf{v}_{j}+f_{\text {interp }}(\text { joints, parameters })
$$

Comparison SSD vs PSD

Figure: Comparison of (Top) SSD with (Bottom) PSD. (Lewis et al. 03)

Comparison SSD vs PSD

Figure: Comparison of (Left) SSD with (Right) PSD. (Lewis et al. 03)

Articulated Body Deformations from Range Scan Data

- GOAL: body parts are scanned in a set of key poses, and then animations are generated by smoothly interpolating among these poses using scattered data interpolation techniques.

Figure: Articulated Body Deformations from Range Scan Data (Allen et al. 02)

Problems of Articulated Deformations from Scan Data

- To create compelling animations by observation we need more than just a single scan.
- In order to establish a domain for interpolation, we must discover the pose of each scan.
- Interpolation techniques require a one-to-one correspondence between points on the scanned surfaces, but the scanned data consists of unstructured meshes with no such correspondence.
- Range scans are frequently incomplete because of occlusions and grazing angle views. Thus, we are faced with the challenge of filling holes in the range data.
- Due to the combinatorics of the problem, we cannot capture a human body in every possible pose. Thus, we must blend between independently posed scans.

Approach of Allen et al 02

- Using markers placed on the subject during range scanning, we reconstruct the pose of each scan.
- We then create a hole-filled, parameterized reconstruction at each pose using displacement-mapped subdivision surfaces.
- Lastly, we create shapes in new poses using scattered data interpolation and spatially varying surface blending.

Determining the pose

- A skeleton is fitted by first identifying the markers and then minimizing

$$
\min _{\mathbf{m}, \mathbf{q}, \mathbf{k}} \sum_{i=1}^{P} \sum_{j=1}^{m}\left\|\mathbf{o}_{i j}-\mathbf{c}_{j}\left(\mathbf{m}_{j}, \mathbf{q}_{i}, \mathbf{k}\right)\right\|_{2}^{2}
$$

with \mathbf{c}_{j} the estimated position of the markers, $\mathbf{o}_{i j}$ the observed position, \mathbf{m}_{j} is the local position, \mathbf{q}_{i} is the pose, and \mathbf{k} are the kinematics.

Determining deformations

- Create a subdivision surface that approximates the real surface

Figure: Displaced Subdivision Surfaces (Lee et al. 00)

Determining deformations

- Create a subdivision surface that approximates the real surface
- Displaced subdivision surfaces consist of a template subdivision surface, T, and a displacement map d that describes the final surface S by displacing the template along the normal, \mathbf{n}, to the template surface

$$
S(\mathbf{u}, \mathbf{q})=T(\mathbf{u}, \mathbf{q})+d(\mathbf{u}, \mathbf{q}) \mathbf{n}(\mathbf{u}, \mathbf{q})
$$

Figure: Displaced Subdivision Surfaces (Allen et al. 02)

Determining deformations

- Create a subdivision surface that approximates the real surface
- Displaced subdivision surfaces consist of a template subdivision surface, T, and a displacement map d that describes the final surface S by displacing the template along the normal, \mathbf{n}, to the template surface

$$
S(\mathbf{u}, \mathbf{q})=T(\mathbf{u}, \mathbf{q})+d(\mathbf{u}, \mathbf{q}) \mathbf{n}(\mathbf{u}, \mathbf{q})
$$

- Unlike standard displaced subdivision surfaces, the displacements are based on multiple example shapes

$$
d(\mathbf{u}, \mathbf{q})=\sum_{i=1}^{n} w_{i}(\mathbf{u}, \mathbf{q}) d_{i}(\mathbf{u})
$$

with $d_{i}(\mathbf{u})$ the displacement map of the i-th example, $w_{i}(\mathbf{u}, \mathbf{q})$ the scattered data interpolation weights

Determining deformations

- Create a subdivision surface that approximates the real surface
- Displaced subdivision surfaces consist of a template subdivision surface, T, and a displacement map d that describes the final surface S by displacing the template along the normal, \mathbf{n}, to the template surface

$$
S(\mathbf{u}, \mathbf{q})=T(\mathbf{u}, \mathbf{q})+d(\mathbf{u}, \mathbf{q}) \mathbf{n}(\mathbf{u}, \mathbf{q})
$$

- Unlike standard displaced subdivision surfaces, the displacements are based on multiple example shapes

$$
d(\mathbf{u}, \mathbf{q})=\sum_{i=1}^{n} w_{i}(\mathbf{u}, \mathbf{q}) d_{i}(\mathbf{u})
$$

with $d_{i}(\mathbf{u})$ the displacement map of the i-th example, $w_{i}(\mathbf{u}, \mathbf{q})$ the scattered data interpolation weights

- Hole filling in 3D and refitting.

Results: Interpolation between novel poses

Space of human body shapes (Allen et al. 03)

- Use the CAESAR dataset.

- Aligned the meshes to a template by using local affine transformations of each template vertex.
- Use an objective function that is the combination of smoothness, alignment and markers that help avoid local minima.
- Applications: model the space of shapes (PCA), texture transfer, etc.

Local parameterization and matching I

- Fit the template surface \mathcal{T} to a scanned surface \mathcal{D}, each represented with a triangular mesh.
- We assume that each vertex \mathbf{v}_{i} in the template can suffer an affine transformation $\mathbf{T}_{i} \in \Re^{4 \times 4}$.
- This results in 12 dof per vertex.
- We wish to find the set of transformations that move all points in \mathcal{T} to \mathcal{T}^{\prime}, so that \mathcal{T}^{\prime} is close to \mathcal{D}.

Local parameterization and matching II

- We solve for the local transformation by $\min _{\boldsymbol{T}} \alpha E_{d}+\beta E_{s}+\gamma E_{m}$
- The data error E_{d} is defined as

$$
E_{d}=\sum_{i=1}^{n} w_{i} \operatorname{dist}^{2}\left(\mathbf{T}_{i} \mathbf{v}_{i}, \mathcal{D}\right)
$$

with dist the distance between a transformed vertex $\mathbf{T}_{i} \mathbf{v}_{i}$ and a mesh \mathcal{D}.

- The smoothness error E_{s} is computed as

$$
E_{s}=\sum_{i, j \in \mathcal{E}}\left\|\mathbf{T}_{i}-\mathbf{T}_{j}\right\|_{F}^{2}
$$

where $\|\cdot\|_{F}$ is the Frobenious norm, and \mathcal{E} is the set of neighboring vertices.

- The marker error E_{m} is

$$
E_{m}=\sum_{i=1}^{m}\left\|\mathbf{T}_{\kappa_{i}} \boldsymbol{v}_{\kappa_{i}}-\mathbf{m}_{i}\right\|_{2}^{2}
$$

with \mathbf{m}_{i} the position of the observed markers.

Local parameterization and matching II

Figure: The data error, indicated by the red arrows. The dashed red arrows do not contribute to the data error because the nearest point on \mathcal{D} is a hole boundary. The marker error penalizes distance between the marker points on the transformed surface and on \mathcal{D} (here \mathbf{v}_{3} is associated with m_{0}). (Allen et al. 03)

Hole filling

- Robust estimator that uses 0 weight for holes and outliers, only smoothness is used. Use a confidence value fort he matching
- The user specifies regions difficult to match, e.g., ear. The system favors the template over those areas.

Applications: Texture transfer

- Because the parameterization is consistent we can transfer texture.

Figure: Allen et al 03

Applications: Morphing

- We can morph between any two subjects by taking linear combinations of the vertices.

Figure: Allen et al 03

Applications: Shape matching

- Shape model is created using PCA.
- The basis are used to fit new shape.

Figure: A scanned mesh that was not included in the data set previously, and does not resemble any of the other scans. (b) A surface match using PCA weights and no marker data.
(c) Using (b) as a template surface, we get a good match to the surface using our original method without markers. (d) Next, we demonstrate using very sparse data; in this case, only the 74 marker points. (e) A surface match using PCA weights and no surface data (Allen et al 03)

Applications: Skeleton transfer

- Manually create a skeleton and skinning for one character, and automatically transfer the skeleton

Figure: Allen et al 03

Applications: Feature based synthesis

- Principal component analysis helps to characterize the space of human body variation, but it does not provide a direct way to explore the range of bodies with intuitive controls, such as height, weight, age, and sex.
- We relate several variables simultaneously by learning a linear mapping between the controls and the PCA weight.

$$
\mathbf{M}\left[f_{1}, \cdots, f_{l}, 1\right]^{T}=\mathbf{p}
$$

with f_{i} are feature values of an individual, and \mathbf{p} are the corresponding PCA weights.

- Assembling all the feature together and solving the linear system we have

$$
\mathbf{M}=\mathbf{P F}^{\dagger}
$$

with \mathbf{F}^{\dagger} the pseudoinverse of \mathbf{F}.

- By adding $\Delta \mathbf{p}=\mathbf{M} \Delta \mathbf{f}$ to the PCA weights of that individual, we can edit their features, e.g., making them gain or lose weight.

Applications: Feature based synthesis

Figure: The left part of this figure demonstrates feature-based synthesis, where an individual is created with the required height and weight. On the right, we demonstrate feature-based editing. The outlined figure is one of the original subjects, after being parameterized into our system. The gray figures demonstrate a change in height and/or weight. Allen et al 03

Video

SCAPE model

- SCAPE: Shape Completion and Animation for PEople (Angelov et al. 04).
- A data driven approach for building two models: pose and shape.
- The models of shape and pose can be combined to produce 3D surface models with realistic muscle deformations of different people in different poses.
- The pose deformation component of our model is acquired from a set of dense 3D scans of a single person in multiple poses.
- Deformation is decoupled into rigid (skeleton) and non-rigid components (e.g., flexing of the muscles).
- The deformation is local and only depends on adjacent body parts, and thus remains low-dimensional.

SCAPE model

- SCAPE: Shape Completion and Animation for PEople (Angelov et al. 04).
- A data driven approach for building two models: pose and shape.
- The models of shape and pose can be combined to produce 3D surface models with realistic muscle deformations of different people in different poses.
- The pose deformation component of our model is acquired from a set of dense 3D scans of a single person in multiple poses.
- Deformation is decoupled into rigid (skeleton) and non-rigid components (e.g., flexing of the muscles).
- The deformation is local and only depends on adjacent body parts, and thus remains low-dimensional.
- The shape variation is acquired from a set of 3D scans of different people in different poses.
- This shape variation is represented in terms of PCA, and it does not model deformations due to pose.

SCAPE model

- SCAPE: Shape Completion and Animation for PEople (Angelov et al. 04).
- A data driven approach for building two models: pose and shape.
- The models of shape and pose can be combined to produce 3D surface models with realistic muscle deformations of different people in different poses.
- The pose deformation component of our model is acquired from a set of dense 3D scans of a single person in multiple poses.
- Deformation is decoupled into rigid (skeleton) and non-rigid components (e.g., flexing of the muscles).
- The deformation is local and only depends on adjacent body parts, and thus remains low-dimensional.
- The shape variation is acquired from a set of 3D scans of different people in different poses.
- This shape variation is represented in terms of PCA, and it does not model deformations due to pose.

SCAPE acquisition pipeline

- 2 datasets are generated: 70 poses of a particular subject for the pose, and $37+8$ people for the shape.
- The meshes are hole-filled
- One of the meshes in the pose data is selected as template mesh.
- To put the mesh into correspondences a small number of markers (4-10) are hand specified.
- An algorithm of Correlated Correspondences which minimizes deformation and matches similar-looking surface regions is used to create additional correspondences (140-200).
- These makers are used to bring the mesh into correspondences.

SCAPE acquisition pipeline

- 2 datasets are generated: 70 poses of a particular subject for the pose, and $37+8$ people for the shape.
- The meshes are hole-filled
- One of the meshes in the pose data is selected as template mesh.
- To put the mesh into correspondences a small number of markers (4-10) are hand specified.
- An algorithm of Correlated Correspondences which minimizes deformation and matches similar-looking surface regions is used to create additional correspondences (140-200).
- These makers are used to bring the mesh into correspondences.
- A skeleton is recovered using the fact that vertices of the same skeleton are spatially contiguous, and have similar motions across scans.
- The location of the rigid parts and the articulated skeleton is recovered.

SCAPE acquisition pipeline

- 2 datasets are generated: 70 poses of a particular subject for the pose, and $37+8$ people for the shape.
- The meshes are hole-filled
- One of the meshes in the pose data is selected as template mesh.
- To put the mesh into correspondences a small number of markers (4-10) are hand specified.
- An algorithm of Correlated Correspondences which minimizes deformation and matches similar-looking surface regions is used to create additional correspondences (140-200).
- These makers are used to bring the mesh into correspondences.
- A skeleton is recovered using the fact that vertices of the same skeleton are spatially contiguous, and have similar motions across scans.
- The location of the rigid parts and the articulated skeleton is recovered.

SCAPE acquisition pipeline

Figure: Angelov et al. 04

SCAPE local parameterization

- Let triangle $\mathbf{p}_{k}=\left[x_{k, 1}, x_{k, 2}, x_{k, 3}\right]$. Deformations are apply to local coordinates of the triangle $\hat{v}_{k, j}=x_{k, j}-x_{k, 1}$.
- Every triangle can have a linear transformation $\mathbf{Q}_{k}^{i} \in \Re^{3 \times 3}$, which induces a non-rigid pose deformation, and a rotation \mathbf{R}_{l}^{i}, which is constant for all the points that belong to body part l.

SCAPE pose deformation

- The local deformation matrices are learned by solving

$$
\min _{\mathbf{Q}_{1}^{i}, \cdots, \mathbf{Q}_{P}^{i}}=\sum_{k} \sum_{j=2}^{3}\left\|\mathbf{R}_{l(k)}^{i} \mathbf{Q}_{k}^{i} \hat{v}_{j, k}-v_{j, k}^{i}\right\|_{2}^{2}+\alpha \sum_{j, k \in \mathcal{E}} \delta_{l(j), l(k)}\left\|\mathbf{Q}_{j}^{i}-\mathbf{Q}_{k}^{i}\right\|_{2}^{2}
$$

- The pose deformation model is learned by learning a linear regressor from the difference of twist of the two adjacent joints to the transformation matrices \mathbf{Q}_{k}^{i}.
- Given the \mathbf{R}_{l}^{i} and the transformations \mathbf{Q}_{k}^{i} obtained from the regressor, a mesh can be synthesized by solving

$$
\min _{\mathbf{y}_{1}, \cdots \mathbf{y}_{m}} \sum_{k} \sum_{j=2}^{3}\left\|\mathbf{R}_{l(k)}^{i} \mathbf{Q}_{k}^{i} \hat{v}_{j, k}-\left(y_{j, k}-y_{1, k}\right)\right\|_{2}^{2}
$$

with \mathbf{y}_{j} the j-th point in the mesh.

Poses modeled with SCAPE

Figure: Examples of poses captured with Angelov et al. 04

Modeling body shape deformations

- The body shape deformation is modeled using an additional deformation matrix \mathbf{S}_{k}^{i} such that a vertex can be computed as

$$
v_{j, k}^{i}=\mathbf{R}_{l(k)}^{i} \mathbf{S}_{k}^{i} \mathbf{Q}_{k}^{i} \hat{v}_{j, k}
$$

- The deformations are learned by minimizing

$$
\min _{S^{i}} \sum_{k} \sum_{j=2}^{3}\left\|\mathbf{R}_{l(k)}^{i} \mathbf{S}_{k}^{i} \mathbf{Q}_{k}^{i} \hat{v}_{j, k}-v_{j, k}^{i}\right\|_{2}^{2}+\gamma \sum_{j, k \in \mathcal{E}} \delta_{l(j), l(k)}\left\|\mathbf{S}_{j}^{i}-\mathbf{S}_{k}^{i}\right\|_{2}^{2}
$$

- A model of shape deformations $\mathbf{S}^{i} \in \Re^{9 \times N}$ is learned using PCA, such that

$$
\mathbf{S}^{i}=\mathbf{U} \boldsymbol{\beta}^{i}+\boldsymbol{\mu}
$$

- Recall that in the pose deformation model \mathbf{R}^{i} and \mathbf{Q}_{k}^{i} have already been estimated.

Shapes modeled with SCAPE

Figure: Examples of shapes captured with Angelov et al. 04

Deformation transfer

- Given the rotations \mathbf{R} and the coefficients $\boldsymbol{\beta}$, we can solve for a mesh

$$
\min _{\mathbf{y}_{1}, \cdots, \mathbf{y}_{m}} \sum_{k} \sum_{j=2}^{3}\left\|\mathbf{R}_{/(k)} \mathbf{S}_{k}(\beta) \mathbf{Q}_{k}(\mathbf{R}) \hat{v}_{j, k}-\left(y_{j, k}-y_{1, k}\right)\right\|_{2}^{2}
$$

Applications: Shape completion

Applications: animation from mocap

a)

b)
c)

Video

Generative tracking

Priors: $p(\phi)$

- Joint limits
- Shape priors
- Pose priors
- Dynamical priors
- Physics

Pose priors

Briefly described pose priors based on dimensionality reduction

- Linear priors: PCA
- Non linear priors: GPLVM

Briefly described motion priors

- Non linear models: GPDM
- Spatio-temporal linear models

Linear pose priors: PCA

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear pose priors: PCA

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.

- Latent variable model approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

Linear pose priors: PCA

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.

- Latent variable model approach:
- Define Gaussian prior

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$ over latent space, \mathbf{X}.

Linear pose priors: PCA

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data.

- X are 'nuisance' variables.
- Latent variable model approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out nuisance

$$
p(\mathbf{X})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
$$

latent variables.

Linear pose priors: PCA

Probabilistic PCA

- Linear-Gaussian relationship between latent variables and data.
- X are 'nuisance' variables.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)
$$

- Latent variable model approach:
- Define Gaussian prior over latent space, \mathbf{X}.
- Integrate out nuisance

$$
p(\mathbf{X})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{x}_{i, i} \mid \mathbf{0}, \mathbf{I}\right)
$$

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
$$ latent variables.

Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{W} \mathbf{W}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
$$

Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\mathrm{T}}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\mathrm{T}} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $N^{-1} \mathbf{Y}^{\mathrm{T}} \mathbf{Y}$ and the corresponding eigenvalues are Λ_{q},

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L}=\left(\Lambda_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Linear Pose priors: PCA

Two ways to construct the prior

- Assume a deterministic mapping: use the mean prediction and optimize directly in the latent space

$$
\mathbf{y} \approx \mathbf{W} \mathbf{x}=\mathbf{U}_{q} \mathbf{L R}^{T} \mathbf{x}
$$

In the generative tracking, the state is then $\phi=\mathbf{x}$. The latent space is typically called the PCA weights.

- Create a density model in the pose space (Salzmann et al. 10)

$$
-\log p(\mathbf{y})=\left\|\mathbf{y} \mathbf{U}_{q} \mathbf{L}^{-1 / 2}\right\|_{2}^{2}
$$

the state then becomes $\phi=\mathbf{y}$.

Non linear pose models: GPLVM

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable

approach:

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i, i} \mid \mathbf{W} \mathbf{x}_{i_{i,},}, \sigma^{2} \mathbf{I}\right)
$$

Non linear pose models: GPLVM

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:
- Define Gaussian prior
over parameters, W.

$$
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{l}\right)
$$

Non linear pose models: GPLVM

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.

- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.
- Integrate out parameters.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W}) & =\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W}) & =\prod_{i=1}^{D} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)
\end{aligned}
$$

Non linear pose models: GPLVM

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:
- Define Gaussian prior over parameters, W.
- Integrate out parameters.

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{W} \mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right) \\
p(\mathbf{W})=\prod_{i=1}^{D} \mathcal{N}\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right) \\
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma^{2} \mathbf{l}\right)
\end{gathered}
$$

Non linear pose models: GPLVM

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

Non linear pose models: GPLVM

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{D} \mathcal{N}\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right), \quad \mathbf{K}=\mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{X})=-\frac{D}{2} \log |\mathbf{K}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}^{-1} \mathbf{Y} \mathbf{Y}^{\mathrm{T}}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q}^{\prime} are first q principal eigenvectors of $D^{-1} \mathbf{Y} \mathbf{Y}^{\mathrm{T}}$ and the corresponding eigenvalues are Λ_{q},

$$
\mathbf{X}=\mathbf{U}^{\prime}{ }_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L}=\left(\Lambda_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Non linear pose models: GPLVM

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

$$
\begin{gathered}
p(\mathbf{Y} \mid \mathbf{W})=\prod_{i=1}^{N} \mathcal{N}\left(\mathbf{y}_{i,:} \mid \mathbf{0}, \mathbf{C}\right), \quad \mathbf{C}=\mathbf{W} \mathbf{W}^{\mathrm{T}}+\sigma^{2} \mathbf{I} \\
\log p(\mathbf{Y} \mid \mathbf{W})=-\frac{N}{2} \log |\mathbf{C}|-\frac{1}{2} \operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{Y}^{\mathrm{T}} \mathbf{Y}\right)+\text { const. }
\end{gathered}
$$

If \mathbf{U}_{q} are first q principal eigenvectors of $N^{-1} \mathbf{Y}^{\mathrm{T}} \mathbf{Y}$ and the corresponding eigenvalues are Λ_{q},

$$
\mathbf{W}=\mathbf{U}_{q} \mathbf{L} \mathbf{R}^{\mathrm{T}}, \quad \mathbf{L}=\left(\Lambda_{q}-\sigma^{2} \mathbf{I}\right)^{\frac{1}{2}}
$$

where \mathbf{R} is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

- Solution for Probabilistic PCA (solves for the mapping)

$$
\mathbf{Y}^{\mathrm{T}} \mathbf{Y} \mathbf{U}_{q}=\mathbf{U}_{q} \Lambda_{q} \quad \mathbf{W}=\mathbf{U}_{q} \mathbf{L V}^{\mathrm{T}}
$$

- Solution for Dual Probabilistic PCA (solves for the latent positions)

$$
\mathbf{Y} \mathbf{Y}^{\mathrm{T}} \mathbf{U}_{q}^{\prime}=\mathbf{U}_{q}^{\prime} \Lambda_{q} \quad \mathbf{X}=\mathbf{U}_{q}^{\prime} \mathbf{L V}^{\mathrm{T}}
$$

- Equivalence is from

$$
\mathbf{U}_{q}=\mathbf{Y}^{\mathrm{T}} \mathbf{U}_{q}^{\prime} \Lambda_{q}^{-\frac{1}{2}}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:
- Define Gaussian prior over parameteters, W.

$$
\begin{aligned}
& p(\mathbf{Y} \mid \mathbf{X}, \mathbf{W})=\prod_{i=1}^{n} N\left(\mathbf{y}_{i,:} \mid \mathbf{W}_{\left.\mathbf{x}_{i,:}, \sigma^{2} \mathbf{I}\right)}^{p(\mathbf{W})=\prod_{i=1}^{D} N\left(\mathbf{w}_{i,:} \mid \mathbf{0}, \mathbf{I}\right)}\right. \\
& p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{D} N\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X} \mathbf{x}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
\end{aligned}
$$

- Integrate out parameters.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{D} N\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{X X}^{\mathrm{T}}+\sigma^{2} \mathbf{I}\right)
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...

- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.

$$
\begin{aligned}
p(\mathbf{Y} \mid \mathbf{X}) & =\prod_{j=1}^{D} N\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right) \\
\mathbf{K} & =\mathbf{X X}^{\mathrm{T}}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the
'linear kernel'.

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{D} N\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right)
$$

$$
\mathbf{K}=\mathbf{X} \mathbf{X}^{\mathrm{T}}+\sigma^{2} \mathbf{I}
$$

This is a product of Gaussian processes with linear kernels.

Non-Linear Latent Variable Model

Dual Probabilistic PCA

- Inspection of the marginal likelihood shows ...
- The covariance matrix is a covariance function.
- We recognise it as the 'linear kernel'.

$$
p(\mathbf{Y} \mid \mathbf{X})=\prod_{j=1}^{D} N\left(\mathbf{y}_{:, j} \mid \mathbf{0}, \mathbf{K}\right)
$$

Non linear pose models: GPLVM

Two ways to construct the prior

- Assume a deterministic mapping: use the mean prediction and optimize directly in the latent space

$$
\mathbf{y} \approx \mu=\mathbf{Y}^{\top} \mathbf{K}^{-1} \mathbf{k}_{*}(\mathbf{x})
$$

In the generative tracking, the state is then $\phi=\mathbf{x}$.

- Use the full probabilistic model

$$
-\log p(\mathbf{y} \mid \mathbf{x})=\frac{\|\mathbf{y}-\boldsymbol{\mu}\|_{2}^{2}}{2 \sigma^{2}(\mathbf{x})}+\frac{d}{2} \log \left(\sigma^{2}(\mathbf{x})\right)
$$

the state then becomes $\phi=[\mathbf{x}, \mathbf{y}]$, with

$$
\sigma^{2}(\mathbf{x})=k_{*, *}-\mathbf{k}_{*} \mathbf{K}^{-1} \mathbf{k}_{*}
$$

Non linear motion priors: GPDM

- We now how an additional prior over dynamics

$$
-\log p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)=\frac{\left\|\mathbf{x}_{t}-\hat{\boldsymbol{\mu}}\right\|_{2}^{2}}{2 \hat{\sigma}^{2}(\mathbf{x})}+\frac{d}{2} \log \left(\hat{\sigma}^{2}(\mathbf{x})\right)
$$

with

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}\left(\mathbf{x}_{t}, \mathbf{x}_{t-1}\right) & =\mathbf{X}_{\text {out }}^{T} \hat{\mathbf{K}}^{-1} \hat{\mathbf{k}}_{*} \\
\hat{\sigma}\left(\mathbf{x}_{t-1}\right) & =\hat{\mathbf{k}}_{*, *}-\hat{\mathbf{k}}_{*} \hat{\mathbf{K}}^{-1} \hat{\mathbf{k}}_{*}
\end{aligned}
$$

where $\hat{\mathbf{K}}$ is computed from $\mathbf{X}_{\text {in }}$.

Linear motion priors: spatio-temporal PCA

- Given a set of training sequences, if we can dynamic time warp them and set a canonical sampling (M samples), we can produce a set of examples

$$
\mathbf{Y}_{i}=\left[\mathbf{y}_{1}, \cdots, \mathbf{y}_{M}\right]
$$

with $\mathbf{Y}_{i} \in \Re^{D \cdot M}$

Spatio-temporal eigenvectors

- We can then learn from N spatio-temporal examples a linear PCA model by creating a matrix

$$
\mathbf{Y}=\left[\mathbf{Y}_{1}, \cdots, \mathbf{Y}_{N}\right]
$$

with $\mathbf{Y} \in \Re^{N \times D \cdot M}$, where the basis are spatio-temporal.

Spatio-temporal single motion latent space

Figure: Spatio-temporal latent space for (left) walking, (right) running (Urtasun et al. 04)

Spatio-temporal multiple motion latent space

Figure: Spatio-temporal latent space for multiple motions (Urtasun et al. 04)

Motion priors

- Assume a deterministic mapping, and solve for a set of poses at the same time.

$$
\mathbf{y}_{*} \approx \mathbf{U L R}^{T} \mathbf{x}
$$

- Constant style: assume a single latent variable is enough to model the style

$$
\phi=\left[\mathbf{x}, \mathbf{t}_{1}, \cdots, \mathbf{t}_{P}\right]
$$

where P is the length of the new motion, and t_{i} represents the phase of the motion at the i-th frame.

- Varying style: The style is changing, e.g., there is a transition from walking to running. The state is then augmented by

$$
\phi=\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{P}, \mathbf{t}_{1}, \cdots, \mathbf{t}_{P}\right]
$$

More?

- We learn how to create shape and motion priors.
- If you want to learn more, look at the additional material.
- Otherwise, do the research project on this topic!
- Next week we will look into image likelihoods and physics

