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Materials used for this lecture

B. Allen, B. Curless and Z. Popovic. Articulated Body Deformation from
Range Scan Data, , ACM SIGGRAPH 2002.

B. Allen, B. Curless and Z. Popovic. The space of human body shapes:
reconstruction and parameterization from range scans, ACM SIGGRAPH
2003.

D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers. SCAPE: Shape
Completion and Animation of People, ACM SIGGRAPH 2004.

R. Urtasun, PhD. Thesis, Chapters 4, 5 and 6.

Some slides provided by Luca Ballan.
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Contents of today’s lecture?

We will look into generative approaches to pose estimation. We will focus
on:

shape priors

pose priors
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The problem of human pose estimation

The goal is given an image I to estimate the 3D location and orientation of
the body parts y.
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Pose estimation

Generative approaches: focus on modeling

p(φ|I) =
p(I|φ)p(φ)

p(I)

Discriminative approaches: focus on modeling directly

p(φ|I)

Today we will talk about generative approaches.
Later in the class we will cover discriminative approaches.
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Generative approaches

Generative approach models

p(φ|I) =
p(I|φ)p(φ)

p(I)

Types of generative approaches:

Bayesian approaches: focus on approximating p(φ|I), usually via sampling
(e.g., particle filter).

Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(φ|I).

Common to all of them is the need to model

Image likelihood: p(I|φ)

Priors: p(φ)

In general p(I) is assumed constant and ignored. The different trackers then

depend on the different modeling choices and optimization procedures.
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In the next lectures we will look at ...

Priors: p(φ)

Joint limits

Shape priors

Pose priors

Dynamical priors

Physics

Likelihood models: p(I|φ)

Monocular tracking: 2D-3D correspondences, silhouettes, edges,
template matching, etc.

Multi-view tracking: stereo, visual hull, etc.

Note that I have defined φ as a general quantity, not just the pose.
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Shape representations
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Likelihood vs shape
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Shape representations cover in the class

Skeleton

Simple primitives: cylinders, cones, truncated cones, ellipsoids

Superquadrics

Implicit surfaces

Scan mesh

Allen et al. models

SCAPE model

Raquel Urtasun (TTI-C) Shape and pose May 3, 2010 10 / 72



Skeleton representation

Human body as a kinematic tree, where joints are connected by
segments of fix length.

Simplest representation.
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Simple primitives I

A cylinder can be expressed as(x

a

)2

+
(y

a

)2

= 1

An elliptic cylinder can be expressed as(x

a

)2

+
(y

b

)2

= 1
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Simple primitives II

A cone is a three-dimensional geometric shape that tapers smoothly from a
flat, usually circular base to a point called the apex or vertex

A cone with its apex cut off by a plane parallel to its base is called a
truncated cone or frustum.

Figure: (Left) Right circular cone. (Center) Oblique circular cone. (Right)
frustum.
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Simple primitives III

An ellipsoid is a type of quadric surface that is a higher dimensional
analogue of an ellipse

x2

a2
+

y2

b2
+

z2

c2
= 1

If the axis are not aligned, it’s represented as xAxT = 1
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Superquadrics

Superquadrics are a family of geometric shapes defined by formulas
that resemble those of elipsoids and other quadrics, except that the
squaring operations are replaced by arbitrary powers.

|x |r

a
+
|y |s

b
+
|z |t

c
≤ 1

with r , s, t ∈ <+, and a, b, c ∈ <.

The superquadrics include many shapes that resemble cubes,
octahedra, cylinders, lozenges and spindles, with rounded or sharp
corners.

Superellipsoids are a special case when r = s = t.
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Superquadrics II
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Superquadrics representing humans

Figure: humans represented using superquadrics (Sminchisescu03)
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Implicit surfaces

The skin metaball surface S is a generalized algebraic surface that is defined
as a level set of the summation over n 3D densities of primitives

F (x , y , z) =
n∑

i=1

fi (x , y , z) with fi (x , y , z) = exp(−2di (x , y , z))

with di the distance to the i-th primitive.

The implicit surface is defined by the level set

S = {[x , y , z ] ∈ <3|F (x , y , z) = L}
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SCAN
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Deformations

Split the surface in small pieces which moves rigidly attached each to only one
bone

Deal with non-rigid deformation

Skeletal Subspace Deformation

Pose space deformation
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Likelihood vs deformation

!"#$%&'(')%

*+,-./01-"2%

*'34%5--.)'"06+2%

7+28%9:%

;;*!!!

50..0"<0=>%

7+"'+.=?%

@(0.A0#=B%

7C")+./0""=D%
!(0A0.0=D%

5-8+"=E%

FG#0"=D%

&+/-")'"-=B% :+8#=H%

:+8#=?%
58+C"(=>%

*.C//-")=E%

I#0"J+.2=>%

;C")0.+20"=H%

K8+-L0#6=B%

>*%

>*MN*%

N*%
"#$$#%&'! ;'#8-C+O+%M%!P1Q0#%R-A%

;'#8-C+O+%M%;80)-A%

;'#8-C+O+%M%26+.+-%

;'#8-C+O+%S#02'Q=T%

Raquel Urtasun (TTI-C) Shape and pose May 3, 2010 21 / 72



Skinning or Skeleton-Subspace Deformation (SSD)

The position of a control vertex vj on the deforming surface of an articulated
object lies in the subspace defined by the rigid transformations of that point

v̂j =
∑

αj,kLk(vj)vj =
∑

αj,kL
δ
k(L0

k)−1L0
pvj

where L0
p is the transform from the surface containing vj to the world

system, L0
k is the transform from the stationary skeletal frame k to the world

system, and Lδk expresses the moving skeletal frame k in the world system.
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Pose space deformation (PSD)

In SSD the deformation is restricted to the indicated subspace.
Extreme in the case of twist.

Figure: Problems of SSD (Lewis et al. 03)
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Pose space deformation (PSD)

In SSD the deformation is restricted to the indicated subspace.
Extreme in the case of twist.

SSD does not permit direct manipulation

The solution of PSD is the identification of an appropriate space for
defining deformations.

The deformation is defined as

v̄j = vj + finterp(joints, parameters)
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Comparison SSD vs PSD

Figure: Comparison of (Top) SSD with (Bottom) PSD. (Lewis et al. 03)
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Comparison SSD vs PSD

Figure: Comparison of (Left) SSD with (Right) PSD. (Lewis et al. 03)
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Articulated Body Deformations from Range Scan Data

GOAL: body parts are scanned in a set of key poses, and then animations
are generated by smoothly interpolating among these poses using scattered
data interpolation techniques.

Figure: Articulated Body Deformations from Range Scan Data (Allen et al. 02)
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Problems of Articulated Deformations from Scan Data

To create compelling animations by observation we need more than just a
single scan.

In order to establish a domain for interpolation, we must discover the pose
of each scan.

Interpolation techniques require a one-to-one correspondence between points
on the scanned surfaces, but the scanned data consists of unstructured
meshes with no such correspondence.

Range scans are frequently incomplete because of occlusions and grazing
angle views. Thus, we are faced with the challenge of filling holes in the
range data.

Due to the combinatorics of the problem, we cannot capture a human body
in every possible pose. Thus, we must blend between independently posed
scans.
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Approach of Allen et al 02

Using markers placed on the subject during range scanning, we
reconstruct the pose of each scan.

We then create a hole-filled, parameterized reconstruction at each
pose using displacement-mapped subdivision surfaces.

Lastly, we create shapes in new poses using scattered data
interpolation and spatially varying surface blending.
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Determining the pose

A skeleton is fitted by first identifying the markers and then minimizing

min
m,q,k

P∑
i=1

m∑
j=1

||oij − cj(mj ,qi , k)||22

with cj the estimated position of the markers, oij the observed position, mj

is the local position, qi is the pose, and k are the kinematics.
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Determining deformations

Create a subdivision surface that approximates the real surface

Figure: Displaced Subdivision Surfaces (Lee et al. 00)
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Determining deformations

Create a subdivision surface that approximates the real surface

Displaced subdivision surfaces consist of a template subdivision surface,
T , and a displacement map d that describes the final surface S by
displacing the template along the normal, n, to the template surface

S(u,q) = T (u,q) + d(u,q)n(u,q)

Figure: Displaced Subdivision Surfaces (Allen et al. 02)
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Determining deformations

Create a subdivision surface that approximates the real surface

Displaced subdivision surfaces consist of a template subdivision surface,
T , and a displacement map d that describes the final surface S by
displacing the template along the normal, n, to the template surface

S(u,q) = T (u,q) + d(u,q)n(u,q)

Unlike standard displaced subdivision surfaces, the displacements are based
on multiple example shapes

d(u,q) =
n∑

i=1

wi (u,q)di (u)

with di (u) the displacement map of the i-th example, wi (u,q) the scattered
data interpolation weights
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Determining deformations

Create a subdivision surface that approximates the real surface

Displaced subdivision surfaces consist of a template subdivision surface,
T , and a displacement map d that describes the final surface S by
displacing the template along the normal, n, to the template surface

S(u,q) = T (u,q) + d(u,q)n(u,q)
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on multiple example shapes

d(u,q) =
n∑

i=1

wi (u,q)di (u)

with di (u) the displacement map of the i-th example, wi (u,q) the scattered
data interpolation weights

Hole filling in 3D and refitting.
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Results: Interpolation between novel poses
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Space of human body shapes (Allen et al. 03)

Use the CAESAR dataset.

Aligned the meshes to a template by using local affine
transformations of each template vertex.

Use an objective function that is the combination of smoothness,
alignment and markers that help avoid local minima.

Applications: model the space of shapes (PCA), texture transfer, etc.
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Local parameterization and matching I

Fit the template surface T to a scanned surface D, each represented with a
triangular mesh.

We assume that each vertex vi in the template can suffer an affine
transformation Ti ∈ <4×4.

This results in 12 dof per vertex.

We wish to find the set of transformations that move all points in T to T ′,
so that T ′ is close to D.
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Local parameterization and matching II

We solve for the local transformation by minT αEd + βEs + γEm

The data error Ed is defined as

Ed =
n∑

i=1

widist2(Tivi ,D)

with dist the distance between a transformed vertex Tivi and a mesh D.

The smoothness error Es is computed as

Es =
∑
i,j∈E

||Ti − Tj ||2F

where || · ||F is the Frobenious norm, and E is the set of neighboring vertices.

The marker error Em is

Em =
m∑

i=1

||Tκi vκi −mi ||22

with mi the position of the observed markers.
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Local parameterization and matching II

Figure: The data error, indicated by the red arrows. The dashed red arrows do
not contribute to the data error because the nearest point on D is a hole
boundary. The marker error penalizes distance between the marker points on the
transformed surface and on D (here v3 is associated with m0). (Allen et al. 03)
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Hole filling

Robust estimator that uses 0 weight for holes and outliers, only smoothness
is used. Use a confidence value fort he matching

The user specifies regions difficult to match, e.g., ear. The system favors the
template over those areas.
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Applications: Texture transfer

Because the parameterization is consistent we can transfer texture.

Figure: Allen et al 03
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Applications: Morphing

We can morph between any two subjects by taking linear combinations of
the vertices.

Figure: Allen et al 03
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Applications: Shape matching

Shape model is created using PCA.

The basis are used to fit new shape.

Figure: A scanned mesh that was not included in the data set previously, and does not
resemble any of the other scans. (b) A surface match using PCA weights and no marker data.
(c) Using (b) as a template surface, we get a good match to the surface using our original
method without markers. (d) Next, we demonstrate using very sparse data; in this case, only the
74 marker points. (e) A surface match using PCA weights and no surface data (Allen et al 03)
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Applications: Skeleton transfer

Manually create a skeleton and skinning for one character, and automatically
transfer the skeleton

Figure: Allen et al 03
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Applications: Feature based synthesis

Principal component analysis helps to characterize the space of human body
variation, but it does not provide a direct way to explore the range of bodies
with intuitive controls, such as height, weight, age, and sex.

We relate several variables simultaneously by learning a linear mapping
between the controls and the PCA weight.

M[f1, · · · , fl , 1]T = p

with fi are feature values of an individual, and p are the corresponding PCA
weights.

Assembling all the feature together and solving the linear system we have

M = PF†

with F† the pseudoinverse of F.

By adding ∆p = M∆f to the PCA weights of that individual, we can edit
their features, e.g., making them gain or lose weight.
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Applications: Feature based synthesis

Figure: The left part of this figure demonstrates feature-based synthesis, where an individual is
created with the required height and weight. On the right, we demonstrate feature-based
editing. The outlined figure is one of the original subjects, after being parameterized into our
system. The gray figures demonstrate a change in height and/or weight. Allen et al 03
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Video
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SCAPE model

SCAPE: Shape Completion and Animation for PEople (Angelov et al. 04).

A data driven approach for building two models: pose and shape.

The models of shape and pose can be combined to produce 3D surface
models with realistic muscle deformations of different people in different
poses.

The pose deformation component of our model is acquired from a set of
dense 3D scans of a single person in multiple poses.

Deformation is decoupled into rigid (skeleton) and non-rigid components
(e.g., flexing of the muscles).

The deformation is local and only depends on adjacent body parts, and thus
remains low-dimensional.

The shape variation is acquired from a set of 3D scans of different people
in different poses.

This shape variation is represented in terms of PCA, and it does not model
deformations due to pose.
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SCAPE acquisition pipeline

2 datasets are generated: 70 poses of a particular subject for the pose, and
37 + 8 people for the shape.

The meshes are hole-filled

One of the meshes in the pose data is selected as template mesh.

To put the mesh into correspondences a small number of markers (4-10) are
hand specified.

An algorithm of Correlated Correspondences which minimizes deformation
and matches similar-looking surface regions is used to create additional
correspondences (140-200).

These makers are used to bring the mesh into correspondences.

A skeleton is recovered using the fact that vertices of the same skeleton are
spatially contiguous, and have similar motions across scans.

The location of the rigid parts and the articulated skeleton is recovered.
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To put the mesh into correspondences a small number of markers (4-10) are
hand specified.

An algorithm of Correlated Correspondences which minimizes deformation
and matches similar-looking surface regions is used to create additional
correspondences (140-200).

These makers are used to bring the mesh into correspondences.

A skeleton is recovered using the fact that vertices of the same skeleton are
spatially contiguous, and have similar motions across scans.

The location of the rigid parts and the articulated skeleton is recovered.
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SCAPE acquisition pipeline

Figure: Angelov et al. 04
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SCAPE local parameterization

Let triangle pk = [xk,1, xk,2, xk,3]. Deformations are apply to local
coordinates of the triangle v̂k,j = xk,j − xk,1.

Every triangle can have a linear transformation Qi
k ∈ <3×3, which induces a

non-rigid pose deformation, and a rotation Ri
l , which is constant for all the

points that belong to body part l .
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SCAPE pose deformation

The local deformation matrices are learned by solving

min
Qi

1,··· ,Qi
P

=
∑

k

3∑
j=2

||Ri
l(k)Q

i
k v̂j,k − v i

j,k ||22 + α
∑

j,k∈E

δl(j),l(k)||Qi
j −Qi

k ||22

The pose deformation model is learned by learning a linear regressor from
the difference of twist of the two adjacent joints to the transformation
matrices Qi

k .

Given the Ri
l and the transformations Qi

k obtained from the regressor, a
mesh can be synthesized by solving

min
y1,···ym

∑
k

3∑
j=2

||Ri
l(k)Q

i
k v̂j,k − (yj,k − y1,k)||22

with yj the j-th point in the mesh.
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Poses modeled with SCAPE

Figure: Examples of poses captured with Angelov et al. 04
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Modeling body shape deformations

The body shape deformation is modeled using an additional deformation
matrix Si

k such that a vertex can be computed as

v i
j,k = Ri

l(k)S
i
kQ

i
k v̂j,k

The deformations are learned by minimizing

min
S i

∑
k

3∑
j=2

||Ri
l(k)S

i
kQ

i
k v̂j,k − v i

j,k ||22 + γ
∑

j,k∈E

δl(j),l(k)||Si
j − Si

k ||22

A model of shape deformations Si ∈ <9×N is learned using PCA, such that

Si = Uβi + µ

Recall that in the pose deformation model Ri and Qi
k have already been

estimated.
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Shapes modeled with SCAPE

Figure: Examples of shapes captured with Angelov et al. 04
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Deformation transfer

Given the rotations R and the coefficients β, we can solve for a mesh

min
y1,···ym

∑
k

3∑
j=2

||Rl(k)Sk(β)Qk(R)v̂j,k − (yj,k − y1,k)||22
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Applications: Shape completion
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Applications: animation from mocap
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Video
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Media File (video/mp4)



Generative tracking

Priors: p(φ)

Joint limits

Shape priors

Pose priors

Dynamical priors

Physics
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Pose priors

Briefly described pose priors based on dimensionality reduction

Linear priors: PCA

Non linear priors: GPLVM

Briefly described motion priors

Non linear models: GPDM

Spatio-temporal linear models
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Linear pose priors: PCA

Probabilistic PCA

Linear-Gaussian
relationship between
latent variables and data.

X are ‘nuisance’ variables.

Latent variable model
approach:

Define Gaussian prior
over latent space, X.
Integrate out nuisance
latent variables.

X W

Y

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Probabilistic PCA

Linear-Gaussian
relationship between
latent variables and data.

X are ‘nuisance’ variables.

Latent variable model
approach:

Define Gaussian prior
over latent space, X.
Integrate out nuisance
latent variables.

X W

Y

p (Y|X,W) =
NY
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`
yi,:|Wxi,:, σ

2I
´

p (X) =
NY

i=1
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`
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´
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Linear pose priors: PCA

Probabilistic PCA

Linear-Gaussian
relationship between
latent variables and data.

X are ‘nuisance’ variables.

Latent variable model
approach:

Define Gaussian prior
over latent space, X.
Integrate out nuisance
latent variables.

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (X) =
NY

i=1

N
`
xi,:|0, I

´

p (Y|W) =
NY

i=1

N
“
yi,:|0,WWT + σ2I

”
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

X W

Y

p (Y|W) =
NY

i=1

N
“
yi,:|0,WWT + σ2I

”
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)

p (Y|W) =
DY

j=1

N
`
yi,:|0,C

´
, C = WWT + σ2I

log p (Y|W) = −
N

2
log |C| −

1

2
tr
“
C−1YTY

”
+ const.

If Uq are first q principal eigenvectors of N−1YTY and the corresponding eigenvalues are Λq ,

W = UqLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.
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Linear Pose priors: PCA

Two ways to construct the prior

Assume a deterministic mapping: use the mean prediction and optimize
directly in the latent space

y ≈Wx = UqLRTx

In the generative tracking, the state is then φ = x. The latent space is
typically called the PCA weights.

Create a density model in the pose space (Salzmann et al. 10)

− log p(y) = ||yUqL
−1/2||22

the state then becomes φ = y.
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Non linear pose models : GPLVM

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
NY

i=1

N
`
yi,:|Wxi,:, σ

2I
´
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Non linear pose models : GPLVM

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:
Define Gaussian prior
over parameters, W.
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parameters.
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NY
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`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY
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p (Y|X) =
DY
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Non linear pose models : GPLVM

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

W

Y

X

p (Y|X) =
DY

j=1

N
“
y:,j |0,XXT + σ2I

”
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Non linear pose models : GPLVM

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004)

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´
, K = XXT + σ2I

log p (Y|X) = −
D

2
log |K| −

1

2
tr
“
K−1YYT

”
+ const.

If U′q are first q principal eigenvectors of D−1YYT and the corresponding eigenvalues are Λq ,

X = U′qLRT, L =
`
Λq − σ2I

´ 1
2

where R is an arbitrary rotation matrix.

Raquel Urtasun (TTI-C) Shape and pose May 3, 2010 62 / 72



Non linear pose models : GPLVM

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999b)
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
Solution for Probabilistic PCA (solves for the mapping)

YTYUq = UqΛq W = UqLV
T

Solution for Dual Probabilistic PCA (solves for the latent positions)

YYTU′q = U′qΛq X = U′qLV
T

Equivalence is from

Uq = YTU′qΛ
− 1

2
q
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

Define Gaussian prior
over parameteters, W.
Integrate out
parameters.

W

Y

X

p (Y|X,W) =
nY

i=1

N
`
yi,:|Wxi,:, σ

2I
´

p (W) =
DY

i=1

N
`
wi,:|0, I

´

p (Y|X) =
DY

j=1

N
“
y:,j |0,XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.

We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
“
y:,j |0,XXT + σ2I

”
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´

K = XXT + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

The covariance matrix
is a covariance
function.
We recognise it as the
‘linear kernel’.

W

Y

X

p (Y|X) =
DY

j=1

N
`
y:,j |0,K

´
K =?

Replace linear kernel with non-linear

kernel for non-linear model.

This is called the Gaussian Process Latent Variable Model (GPLVM)
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Non linear pose models : GPLVM

Two ways to construct the prior

Assume a deterministic mapping: use the mean prediction and
optimize directly in the latent space

y ≈ µ = YTK−1k∗(x)

In the generative tracking, the state is then φ = x.

Use the full probabilistic model

− log p(y|x) =
||y − µ||22

2σ2(x)
+

d

2
log(σ2(x))

the state then becomes φ = [x, y], with

σ2(x) = k∗,∗ − k∗K
−1k∗
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Non linear motion priors: GPDM

We now how an additional prior over dynamics

− log p(xt |xt−1) =
||xt − µ̂||22

2σ̂2(x)
+

d

2
log(σ̂2(x))

with

µ̂(xt , xt−1) = XT
outK̂

−1k̂∗

σ̂( xt−1) = k̂∗,∗ − k̂∗K̂
−1k̂∗

where K̂ is computed from Xin.
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Linear motion priors: spatio-temporal PCA

Given a set of training sequences, if we can dynamic time warp them and set
a canonical sampling (M samples), we can produce a set of examples

Yi = [y1, · · · , yM ]

with Yi ∈ <D·M
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Spatio-temporal eigenvectors

We can then learn from N spatio-temporal examples a linear PCA model by
creating a matrix

Y = [Y1, · · · ,YN ]

with Y ∈ <N×D·M , where the basis are spatio-temporal.
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Spatio-temporal single motion latent space

Figure: Spatio-temporal latent space for (left) walking, (right) running (Urtasun
et al. 04)
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Spatio-temporal multiple motion latent space

Figure: Spatio-temporal latent space for multiple motions (Urtasun et al. 04)
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Motion priors

Assume a deterministic mapping, and solve for a set of poses at the
same time.

y∗ ≈ ULRTx

Constant style: assume a single latent variable is enough to model
the style

φ = [x, t1, · · · , tP ]

where P is the length of the new motion, and ti represents the phase
of the motion at the i-th frame.

Varying style: The style is changing, e.g., there is a transition from
walking to running. The state is then augmented by

φ = [x1, · · · , xP , t1, · · · , tP ]
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More?

We learn how to create shape and motion priors.

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will look into image likelihoods and physics
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