Human Motion Analysis Lecture 9: Image likelihood

Raquel Urtasun

TTI Chicago

May 6, 2010

- Slides about pictorial structures adapted from Daniel Huttenlocher's slides.
- See references when ever cited in the slides.

We will look into generative approaches to pose estimation. We will focus on:

image likelihoods

The problem of human pose estimation

• The goal is given an image I to estimate the 3D location and orientation of the body parts **y**.

• Generative approaches: focus on modeling

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

• Discriminative approaches: focus on modeling directly

$\mathit{p}(\phi|\mathbf{I})$

Today we will talk about generative approaches. Later in the class we will cover discriminative approaches.

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I}|\phi)$
- Priors: $p(\phi)$

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I}|\phi)$
- Priors: $p(\phi)$

In general p(I) is assumed constant and ignored. The different trackers then depend on the different modeling choices and optimization procedures.

Generative approach models

$$p(\phi|\mathbf{I}) = rac{p(\mathbf{I}|\phi)p(\phi)}{p(\mathbf{I})}$$

Types of generative approaches:

- Bayesian approaches: focus on approximating p(φ|I), usually via sampling (e.g., particle filter).
- Optimization or energy-based techniques: focus on computing the MAP or ML estimate of p(φ|I).

Common to all of them is the need to model

- Image likelihood: $p(\mathbf{I}|\phi)$
- Priors: $p(\phi)$

In general $p(\mathbf{I})$ is assumed constant and ignored. The different trackers then depend on the different modeling choices and optimization procedures.

Priors: $p(\phi)$

- Joint limits
- Shape priors
- Pose priors
- Dynamical priors
- Physics

Likelihood models: $p(\mathbf{I}|\phi)$

- Monocular tracking: 2D-3D correspondences, silhouettes, edges, template matching, etc.
- Multi-view tracking: stereo, visual hull, etc.

Note that I have defined ϕ as a general quantity, not just the pose.

2D tracking

Pictorial structures

3D tracking

- Silhouettes
- Skeleton
- Edges
- 2D to 3D correspondences
- Optical flow

Pictorial structures

- Local models of **appearance** with non-local geometric or **spatial** constraints
 - Image patches describing color, texture, etc
 - 2D spatial relations between pairs of patches
- Simultaneous use of appearance and spatial information since simple part models alone too non-distinctive

Figure: Pictorial structures (Felzenszwalb and Huttenlocher 04)

- Pictorial structures date from early 1970s
- Practical recognition algorithms proved difficult.
- Purely geometric models widely used through early 1990s based on combinatorial matching to image features.
- Appearance based models also developed: Templates or patches of image, lose geometry.
- Other part-based models, but not seen in the class.

The pictorial structure is represented by the following variables:

- Set of parts $V = \{v_1, \dots, v_n\}$ and $\mathbf{L} = (\mathbf{I}_1, \dots, \mathbf{I}_n)$ specifies the configuration of the parts.
- $\mathbf{A} = (\mathbf{a}_1, \cdots, \mathbf{a}_n)$ are appearance parameters.
- The relation between parts is a **Random field**.
- The edges $e_{i,j} \in \mathcal{E}$ represent the connexion between different neighboring parts, which express the explicit dependencies.
- The connection parameters $\mathbf{C} = \{\mathbf{c}_{i,j} | \ \forall e_{i,j} \in \mathcal{E}\}$

Learning and Inference in pictorial structures

- The model is defined as $\mathcal{M} = (\mathbf{A}, \mathbf{E}, \mathbf{C})$.
- Learning the model \mathcal{M} is performed from labeled example images I_1, \dots, I_m and configurations L_1, \dots, L_m .
- Typically a parametric form of **A** and **C** is employed.
 - e.g., \mathbf{a}_i constant color rectangle: learn the average color and variation.
 - e.g., **c**_{*i*,*j*}: relative translation of parts: learn the average position and variation.
- Inference: Find most likely location L for the parts in I, or multiple highly likely locations.
- Inference is done by evaluating the image likelihood: how likely it is that model is present.
- The state is $\phi = \mathbf{L}$.

- The state is $\phi = \mathbf{L}$ and the model $\mathcal{M} = (\mathbf{A}, \mathbf{E}, \mathbf{C})$.
- Estimate posterior distribution $p(\phi|\mathbf{I}, \mathcal{M})$.
- Find maximum (MAP) or high values (sampling).
- Generative tracking

$$p(\phi|\mathbf{I},\mathcal{M}) \propto p(\mathbf{I}|\phi,\mathcal{M})p(\phi|\mathcal{M})$$

which is composed of likelihood $p(\mathbf{I}|\phi, \mathcal{M})$ and the prior $p(\phi|\mathcal{M})$.

- The computational difficulty depends on the posterior distribution.
- One can exploit the structure of the graph G = (V, E) which represents a Markov Random Field (MRF), each node explicitly depends on its neighbors.
- If G is a tree:
 - Natural for models of animate skeletons
 - Prior can be computed efficiently
 - Prior on relative location

$$p(\phi|\mathbf{E},\mathbf{C}) = \prod_{E} p(\mathbf{I}_i,\mathbf{I}_j|\mathbf{c}_{i,j})$$

Image likelihood is usually the product of individual likelihoods

$$p(\mathbf{I}|\phi,\mathcal{M}) = \prod_i p(\mathbf{I}|\mathbf{I}_i,\mathbf{a}_i)$$

- Good approximation when parts dont overlap.
- The form of connections is also important: space with deformation distance

$$p(\mathbf{I}_i, \mathbf{I}_j | c_{i,j}) = \mathcal{N}(T_{i,j}(\mathbf{I}_i) - T_{j,i}(\mathbf{I}_i), |0, \Sigma_{i,j})$$

is a normal distribution in a transformed space

- $T_{i,j}$ and $T_{j,i}$ capture ideal relative locations of parts and $\Sigma_{i,j}$ measures deformation.
- It's the Mahalanobis distance in transformed space (weighted squared Euclidean distance).

- Supervised learning: we are given example images I_1, \cdots, I_m with configurations L_1, \cdots, L_m .
- Obtain estimates of the model given i.i.d. samples

$$\max_{\mathcal{M}} p(\mathbf{I}_1, \cdots, \mathbf{I}_m, \mathbf{L}_1, \cdots, \mathbf{L}_m | \mathcal{M}) = \prod_k p(\mathbf{I}_k, \mathbf{L}_k | \mathcal{M})$$

Rewrite joint probability as product of appearance and dependencies separate

$$\max_{\mathcal{M}} \prod_{k} p(\mathbf{I}_{k} | \mathbf{L}_{k}, \mathbf{A}) \prod_{k} p(\mathbf{L}_{k} | \mathbf{E}, \mathbf{C})$$

- Estimating appearance $p(I_k|L_k, A)$ is typically done by ML estimation
- E.g., for constant color patch use Gaussian model, computing mean color and covariance
- Estimating dependencies $p(\mathbf{L}_k | \mathbf{E}, \mathbf{C})$
 - Estimate **C** for pairwise locations $p(\mathbf{I}_{i,k}, \mathbf{I}_{j,k} | \mathbf{c}_{i,j})$.
 - E.g., for translation compute mean offset between parts and variation in offset.
 - Best tree using **minimum spanning tree (MST) algorithm**. It computes the pairs with smallest relative spatial variation

• Each part **a**_i is a local image patch represented as response to oriented filters

- Pairs of parts constrained in terms of their relative (x, y) position in the image.
- Consider two models: 5 parts and 9 parts
 - 5 parts: eyes, tip of nose, corners of mouth
 - 9 parts: eye split into pupil, left side, right side

Learned face model

- Appearance and structure parameters learned from labeled frontal views.
- Structure captures pairs with most predictable relative location least uncertainty
- Gaussian (covariance) model captures direction of spatial variations differs per part

Example: Generic Person Model

- Each part represented as rectangle with fixed width, varying length: Learn average and variation.
- Connections approximate revolute joints: joint location, relative position, orientation, foreshortening.
- Learned 10 part model: All parameters learned including joint locations

Figure: Pictorial structures learned for a human (Felzenszwalb and Huttenlocher 04)

- \bullet Given model ${\cal M}$ and image I, seek good configuration L.
- This can be done by MAP estimation $\max_{\mathbf{L}} p(\mathbf{L}|\mathbf{I}, \mathcal{M})$ or by sampling.
- Brute force solutions intractable: With *n* parts and *s* possible discrete locations per part, $\mathcal{O}(s^n)$.

Bayesian formulation of recognition II

• However, we can use the graph structure (MRF) such that

$$\max_{\mathbf{L}} p(\mathbf{L}|\mathbf{I}, \mathcal{M}) = \max_{\mathbf{L}} \prod_{v} p(\mathbf{I}|\mathbf{I}_{i}, \mathbf{a}_{i}) \prod_{E} p(\mathbf{I}_{i}, \mathbf{I}_{j}|\mathbf{c}_{i,j})$$

• Taking logarithms we have

$$\min_{\mathbf{L}} -\log p(\mathbf{L}|\mathbf{I}, \mathcal{M}) = \min_{\mathbf{L}} \sum_{v} m_j(\mathbf{I}_j) + \sum_{E} d_{i,j}(\mathbf{I}_i, \mathbf{I}_j)$$

• Typically dynamic programming is used to solve this efficiently by recursively computing

$$B_j(\mathbf{I}_i) = \min_{\mathbf{I}_j} \left(m_j(\mathbf{I}_j) + d_{i,j}(\mathbf{I}_i, \mathbf{I}_j) + \sum_{C_j} B_c(\mathbf{I}_j) \right)$$

where C_j are the children of node j

• The running time is now $\mathcal{O}(ns^2)$ for *n* parts and *s* locations.

- Generic model of frontal view
 - Using learned 5- and 9-part models
 - Local oriented filters for parts
 - Relatively small spatial variation in part locations
 - Similar overall size and orientation of face
- MAP estimation to find best match
 - $\bullet\,$ Posterior estimate of configuration L is accurate because parts do not overlap
 - Consider all possible locations in image
 - Very efficient: runs in real time

Examples of detections

Figure: Examples of detected faces (Felzenszwalb and Huttenlocher 04)

- Frontal view models
 - Generic model using binary rectangles for parts match to "difference image".
 - Specific model using color rectangles for parts: match to original image.
- Sampling posterior to find good matches: posterior estimate of L can be high for several configurations due to overlap of parts.
 - Generate good possible matches as hypotheses:locations with $p(\mathbf{L}|\mathbf{I}, \mathcal{M})$ is large.
 - Validate using another technique: here using Chamfer distance, a correlation like measure.
 - Use best of 200 samples search over all locations runs in under minute.

Samples from the posterior

Figure: Examples of posterior samples (Felzenszwalb and Huttenlocher 04)

Recognizing people with clutter

Figure: Examples of detected humans (Felzenszwalb and Huttenlocher 04)

Raquel Urtasun (TTI-C)

Recognizing a variety of poses

Figure: Examples of detected poses (Felzenszwalb and Huttenlocher 04)

Model of specific person

Figure: Examples of detected humans (Felzenszwalb and Huttenlocher 04)

Raquel Urtasun (TTI-C)

Extensions of pictorial structures

- (Ramanan 06) model them with Conditional Random Fields (CRFs), casting of visual inference as an iterative parsing process, where one sequentially learns better and better features tuned to a particular image.
- Hallucinate occlusions

Figure: Pictorial structures with CRFs (Ramanan 06)

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 31 / 60

Learning appearance model

Figure: Learning pictorial structures (Ramanan 06)

Monocular tracking

2D tracking

Pictorial structures

3D tracking

- Silhouettes
- Skeleton
- Edges
- 2D to 3D correspondences
- Optical flow

For 3D tracking we represent the likelihood in terms of error functions

 $-\log p(\mathbf{I}|\phi) = E$

with E a combination of error functions

Monocular tracking

2D tracking

Pictorial structures

3D tracking

- Silhouettes
- Skeleton
- Edges
- 2D to 3D correspondences
- Optical flow

For 3D tracking we represent the likelihood in terms of error functions

 $-\log p(\mathbf{I}|\phi) = E$

with E a combination of error functions

- Silhouettes are typically obtained from background substraction
- Two types of likelihood function
 - Area of overlap
 - Fit the inside of the silhouette: distance transform

Figure: Silhouettes (Sminchisescu et al 02)

• Maximize the model to image silhouette area of overlap

$$E_{align} = \frac{1}{2\sigma_{alig}^2} f(\sum_{t \in V_t} (S_a - S_g)^2)$$

where S_g is the area of the target silhouette, and S_a is the area of the silhouette of the projected surface. f since otherwise we would like to maximize.

• Pushes the model inside the image silhouette

$$E_{dist} = \frac{1}{2\sigma_{dist}^2} \sum_{i} e_{s_i}(r_i(x), S_g)$$

where *i* ranges over all projected model nodes, and e_{s_i} is the distance from a predicted model point $r_i(x)$ to a given silhouette S_g .

• e_{s_i} can be estimated by computing the distance transform D of the silhouette S_g and evaluating it in the points i

$$e_{s_i}(r_i(x), S_g) = D(r_i(x))$$

Distance transform

• One typical example is to define

$$d(\mathbf{x}, \mathbf{P}) = \min_{y \in \mathbf{P}} ||\mathbf{x} - \mathbf{y}||_2^2$$

where P is a set of points.

Figure: Distance transform from silhouettes (Felzenszwalb et al 04)

Figure: Distance transform from silhouettes (Sminchisescu et al 02)

Influence of both silhouette terms

Figure: Model estimation based on various silhouette terms original images (a,e), initial models (b,f), silhouette attraction term only (c,g), silhouette attraction and area overlap terms (d,h)(Sminchisescu et al 02)

Skeleton

• Represent directly the projection of the skeleton into the image by evaluating the new distance transform.

$$E_{skel} = \frac{1}{2\sigma_{skel}^2} \sum_i D(r_i(x))$$

Figure: Skeleton representation (Sminchisescu et al 02)

Raquel Urtasun (TTI-C)

Edges

- Minimize the distance of the projected edges to the image edges.
- Do the search incrementally

• More robust to miss-alignements by using a distance transform

Figure: Edge distance transform (Felzenszwalb et al 04)

2D to 3D correspondences

• Minimize the distance between the projection of the 3D model and the tracked 2D points.

$$E_{2D} = rac{1}{2\sigma_{2D}^2} \sum_{j=1}^J ||\mathbf{m}_j - P(p_j(\phi))||_2^2$$

with m_j the *j*-th 2D tracked point, and $P(\mathbf{p}_j(\phi))$ the projection of a 3D point \mathbf{p}_j which is a function of the state ϕ .

Figure: 2D to 3D correspondences (Urtasun et al. 06)

Raquel Urtasun (TTI-C)

Image Likelihood

An alternative error function

- An alternative parameterization is in 3D using the line of sight: Plucker lines
- This can be used for 2D to 3D correspondences or for silhouettes

Figure: 2D to 3D correspondences and edges (Ilic et al. 07)

Raquel Urtasun (TTI-C)

Optical flow I

- **Optical flow** is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between the camera and the scene.
- Optical flow methods try to calculate the motion between two image frames which are taken at times t and t + δt at every voxel position
- Assuming small movements and doing a Taylor expansion of first order

$$I(x + \delta x, y + \delta y, t + \delta_t) \approx I(x, y, t) + \frac{\partial I}{\partial x} \partial x + \frac{\partial I}{\partial y} \partial y + \frac{\partial I}{\partial t} \partial t$$

• From these equations it follows that

$$\frac{\partial \mathbf{I}}{\partial x}v_x + \frac{\partial \mathbf{I}}{\partial y}v_y + \frac{\partial \mathbf{I}}{\partial t} = 0$$

with $v_x = \frac{\delta x}{\delta t}$ and $v_y = \frac{\delta y}{\delta t}$ the components of the optical flow.

• This is usually written as

$$\nabla \mathbf{I}^T \mathbf{v} = -\mathbf{I}_t$$

Optical flow II

• Build 2D to 3D correspondences between consecutive frames

$$E_{flow} = rac{1}{2\sigma_{flow}^2} \sum_i ||\mathbf{v}_i - \mathbf{d}(\phi)||_2^2$$

where \mathbf{v}_i is an estimate of the flow, and **d** relates the point in the model at the previous instance with the new time instance.

Figure: Optical flow

- Monocular likelihoods independent for every camera
- Stereo
- Shape from silhouettes
- 3D to 3D correspondences
- Shape from shadows

Stereo

- Stereo: shape from motion between two views
- It requires camera calibration for the internal parameters and correspondences

Figure: Estimation depth with stereo (Grauman)

• The stereo reconstruction error can be computed as

$$m{\textit{E}_{stereo}} = rac{1}{2\sigma_{stereo}^2} \textit{dist}(\mathcal{M}, \mathbf{S})$$

where \boldsymbol{S} is the stereo cloud and $\mathcal M$ is the 3D model.

Figure: Skeleton fitting to stereo data (Plaenkers et al 03)

Shape from silhouettes

- The **visual hull** is the volume created by shape-from-silhouette 3D reconstruction.
- It assumes the foreground object in an image can be separated from the background, and segmented into a silhouette.
- The silhouette defines a back-projected generalized cone that contains the actual object. This cone is called a silhouette cone.

Figure: Visual hull

- The **visual hull** is the volume created by shape-from-silhouette 3D reconstruction.
- It assumes the foreground object in an image can be separated from the background, and segmented into a silhouette.
- The silhouette defines a back-projected generalized cone that contains the actual object. This cone is called a silhouette cone.
- The visual hull error can be computed as

$$E_{hull} = rac{1}{2\sigma_{hull}^2} dist(\mathcal{M},\mathbf{H})$$

with ${\cal M}$ the shape representation of the 3D model and ${\boldsymbol H}$ the visual hull.

Problems of Shape from silhouettes

- Require a 3D reconstruction step \rightarrow time consuming
- Fail when silhouette information is used with only few cameras

Figure: Ballan et al 08

3D to 3D correspondences

• The error function will simply be

$$E_{3D} = \frac{1}{2\sigma_{3D}^2} \sum_i^M ||\mathbf{m}_i - \mathbf{p}_i(\boldsymbol{\phi})||_2^2$$

where \mathbf{m}_i and \mathbf{p}_i are two points in correspondence.

Figure: 3D to 3D correspondences (Stark and Hilton 05 and 07)

Shape from shadows

• Create an additional camera by detecting the shadow under strong illumination conditions

Figure: 3D from shadows (Balan et al 07)

Raquel Urtasun (TTI-C)

Image Likelihood

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 54 / 60

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 55 / 60

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 56 / 60

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 57 / 60

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 58 / 60

Raquel Urtasun (TTI-C)

Image Likelihood

May 6, 2010 59 / 60

- Multi-view tracking in control environments is more or less solve
- More complex interactions between multiple subjects
- Outdoor environments are still challenging
- Monocular tracking is unsolved
- If you want to learn more, look at the additional material.
- Otherwise, do the research project on this topic!
- Next week we will look into physical priors