Visual Recognition: Combining and Learning Features

Raquel Urtasun

TTI Chicago

Feb 16, 2012

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?
- In general there is not a single one that it's always best.

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?
- In general there is not a single one that it's always best.
- Even if it was, maybe we can perform better by unifying forces ;)

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?
- In general there is not a single one that it's always best.
- Even if it was, maybe we can perform better by unifying forces ;)

Combining information

- Stack the feature vectors
- Information fusion

Combining information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning
- Random forest

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning
- Random forest

etc

Let's look into some of this strategies.

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning
- Random forest
- etc

Let's look into some of this strategies.

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.
- No learning/training phase.

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.
- No learning/training phase.
- Similarities with ISM but now for classification.

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.
- No learning/training phase.
- Similarities with ISM but now for classification.

- Given a query image, compute all its local image descriptors d_1, \cdots, d_n .
- Search for the class C which minimizes

$$\sum_{i=1}^n ||d_i - NN_C(d_i)||^2$$

with $NN_C(d_i)$ the NN descriptor of d_i in class C.

• Requires fast NN search.

Why quantization is bad

- When densely sampled image descriptors are divided into fine bins, the bin-density follows a power-law.
- There are almost no clusters in the descriptor space.
- Therefore, any clustering to a small number of clusters (even thousands) will inevitably incur a very high quantization error.
- Informative descriptors have low database frequency, leading to high quantization error.

Image-to-Image vs. Image-to-Class distance

query image $\underline{\varrho}$

 $KL(p_o | p_1) = 17.54$ $KL(p_o | p_2) = 18.20$

 $KL(p_o | p_3) = 14.56$

Results Caltech 101

Multiple descriptors by summing weighted distances.

Impact of introducing descriptor quantization or Image-to-Image distance into NBNN (using SIFT descriptor on Caltech- 101, nlabel = 30).

	No Quant.	With Quant.
"Image-to-Class"	70.4%	50.4% (-28.4%)
"Image-to-Image"	58.4% (-17%)	-

- Very fast tools for classification, clustering and regression
- Good generalization through randomized training
- Inherently multi-class: automatic feature sharing
- Simple training / testing algorithms

Randomized Forests in Vision

[Source: Shotton et al.]

[Source: Shotton et al.]

Binary Decision Trees

Source: Shotton et al.

[Source: Shotton et al.]

- Try several lines, chosen at random
- Keep line that best separates data
 - information gain

 $v = [x, y]^T$

• Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters a, b: $f_n(v) = ax + by$
- threshold determines intercepts:
- four classes: purple, blue, red, green

Source: Shotton et al.

- Try several lines, chosen at random
- Keep line that best separates data
 - information gain

 $v = [x, y]^T$

• Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters $a, b: f_n(v) = ax + by$
- threshold determines intercepts:
- four classes: purple, blue, red, green

Source: Shotton et al.

- Try several lines, chosen at random
- Keep line that best separates data
 - information gain

 $\mathbf{v} = [\mathbf{x}, \mathbf{y}]^T$

• Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters a, b: f_n(v) = ax + by
- threshold determines intercepts:
- four classes: purple, blue, red, green

Source: Shotton et al.

- Try several lines, chosen at random
- Keep line that best separates data
 - information gain

 $\mathbf{v} = [\mathbf{x}, \mathbf{y}]^T$

• Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters $a, b: f_n(v) = ax + by$
- threshold determines intercepts:
- four classes: purple, blue, red, green

Source: Shotton et al.

Recursively split examples at node n: set l_n indexes labeled training examples (v_i, l_i)

• At node n, $P_n(c)$ is histogram of example labels I_i .

[Source: Shotton et al.]

- Features f(v) chosen at random from feature pool f 2 F
- Thresholds t chosen in range $t \in (\min_i f(\mathbf{v}_i), \max_i f(\mathbf{v}_i))$
- Choose f and t to maximize gain in information $\Delta E = -\frac{|I_l|}{|I_r|}E(I_l) - \frac{|I_r|}{|I_r|}E(I_r)$

Entropy E calculated from histogram of labels in I

[Source: Shotton et al.]
How many features and thresholds to try?

- just one = extremely randomized
- $\bullet~{\rm few} \rightarrow {\rm fast}$ training, may under-fit, maybe too deep
- $\bullet \mbox{ many} \rightarrow \mbox{slower training, may over-fit}$

When to stop growing the tree?

- maximum depth
- minimum entropy gain
- pruning

[Source: Shotton et al.]

```
TreeNode LearnDT(I)
  repeat featureTests times
     let f = RndFeature()
     let r = EvaluateFeatureResponses(I, f)
     repeat threshTests times
        let t = RndThreshold(r)
        let (I_l, I_r) = Split(I, r, t)
        let gain = InfoGain(I_l, I_r)
        if gain is best then remember f, t, I l, I r
     end
  end
  if best gain is sufficient
     return SplitNode(f, t, LearnDT(I_1), LearnDT(I_r))
  else
     return LeafNode(HistogramExamples(I))
  end
end
```

[Source: Shotton et al.]

A forests of trees

[Source: Shotton et al.]

[Source: Shotton et al.]

Learning

- Divide training examples into T subsets I_t μ I
 - improves generalization
 - reduces memory requirements & training time
- Train each decision tree t on subset ${\rm I}_{\rm t}$
 - same decision tree learning as before
- Multi-core friendly
 - Subsets can be chosen at random or hand-picked
 - Subsets can have overlap (and usually do)
 - Can enforce subsets of *images* (not just examples)
 - Could also divide the feature pool into subsets

[Source: Shotton et al.]

[Source: Shotton et al.]

Classification

• Trees can be trained for

- classification, regression, or clustering

• Change the object function

- information gain for classification: $I = H(S) - \sum_{i=1}^{2} \frac{|S_i|}{|S|} H(S_i)$ measure of distribution purity

[Source: Shotton et al.]

Regression

- Real-valued output y
- Object function: maximize $Err(S) \sum_{i=1}^{2} \frac{|S_i|}{|S|} Err(S_i)$

$$Err(S) = \sum_{j \in S} (y_j - y(x_j))^2$$

e.g. linear model y = ax+b, Or just constant model

[Source: Shotton et al.]

Clustering

- Output is cluster membership
- Option 1 minimize imbalance: $B = |\log|S_1| \log|S_2|$ [Moosmann *et al.* 06]
- Option 2 maximize Gaussian likelihood:

$$T = |\Lambda_S| - \sum_{i=1}^2 \frac{|S_i|}{|S|} |\Lambda_{S_i}|$$

measure of cluster tightness (maximizing a function of info gain for Gaussian distributions)

[Source: Shotton et al.]

Clustering example [Moosmann et al. 06]

- Visual words good for e.g. matching, recognition but *k*-means clustering very slow
- Randomized forests for clustering descriptors
 - e.g. SIFT, texton filter-banks, etc.
- Leaf nodes in forest are clusters
 - concatenate histograms from trees in forest

Visual Recognition

[Sivic *et al.* 03] [Csurka *et al.* 04]

Clustering example [Moosmann et al. 06]

[Source: Shotton et al.]

Raquel Urtasun (TTI-C)

Feb 16, 2012 28 / 84

Applications: keypoint detection [LePetit 06]

• Wide-baseline matching as classification problem

- Extract prominent key-points in training images
- Forest classifies
 - patches -> keypoints
- Features
 - pixel comparisons

• Augmented training set

- gives robustness to patch scaling, translation, rotation

[Source: Shotton et al.]

Fast Keypoint Recognition

[Source: Shotton et al.]

Object Recognition Pipeline

[Source: Shotton et al.]

Object Recognition Pipeline

Semantic Texton Forest (STF)

- decision forest for clustering & classification
- tree nodes have learned object category associations

classification algorithm

SVM, decision forest, boosting

[Source: Shotton et al.]

Example Semantic Texton Forest

[Source: Shotton et al.]

MSRC Dataset Results

building	grass	tree	cow	sheep	sky	airplane	water	face	car	at
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	Å

[Source: Shotton et al.]

$$P(c|I, \mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I, \mathbf{x}) .$$
 (2)

Training. Each tree is trained on a different set of randomly synthesized images. A random subset of 2000 example pixels from each image is chosen to ensure a roughly even distribution across body parts. Each tree is trained using the following algorithm [20]:

- 1. Randomly propose a set of splitting candidates $\phi = (\theta, \tau)$ (feature parameters θ and thresholds τ).
- 2. Partition the set of examples $Q = \{(I, \mathbf{x})\}$ into left and right subsets by each ϕ :

$$Q_{\mathbf{l}}(\phi) = \{ (I, \mathbf{x}) \mid f_{\theta}(I, \mathbf{x}) < \tau \}$$
(3)

$$Q_{\mathbf{r}}(\phi) = Q \setminus Q_{\mathbf{l}}(\phi) \tag{4}$$

3. Compute the ϕ giving the largest gain in information:

$$\phi^* = \underset{\phi}{\operatorname{argmax}} G(\phi)$$
 (5)

$$G(\phi) = H(Q) - \sum_{s \in \{l, r\}} \frac{|Q_s(\phi)|}{|Q|} H(Q_s(\phi)) (6)$$

where Shannon entropy H(Q) is computed on the normalized histogram of body part labels $l_I(\mathbf{x})$ for all $(I, \mathbf{x}) \in Q$.

 If the largest gain G(φ^{*}) is sufficient, and the depth in the tree is below a maximum, then recurse for left and right subsets Q₁(φ^{*}) and Q_r(φ^{*}).

Microsoft Kinect

Learning Representations

- Sparse coding
- Deep architectures
- Topic models

Image Classification using BoW

BoW+SPM: the architecture

- Nonlinear SVM is not scalable
- VQ coding may be too coarse
- Average pooling is not optimal
- Why not learn the whole thing?

Sparse Architecture

- $\bullet\,$ Nonlinear SVM is not scalable \rightarrow Scalable linear classifier
- $\bullet~$ VQ coding may be too coarse \rightarrow Better coding methods
- $\bullet\,$ Average pooling is not optimal $\rightarrow\,$ Better pooling methods
- $\bullet\,$ Why not learn the whole \to Deep learning

Feature learning problem

- Given a 14×14 image patch x, can represent it using 196 real numbers.
- Problem: Can we find a learn a better representation for this?

• Given a set of images, learn a better way to represent image than pixels.

[Source: A. Ng]

- Sparse coding [Olshausen & Field,1996]
- Input: Images $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ (each in $\Re^{n \times n}$)
- Learn: Dictionary of bases φ₁, · · · , φ_k (also ℜ^{n×n}), so that each input x can be approximately decomposed as:

$$x pprox \sum_{j=1}^k a_j \phi_j$$

such that the a_i 's are mostly zero, i.e., sparse

Sparse Coding Illustration

More examples

- Method hypothesizes that edge-like patches are the most basic elements of a scene, and represents an image in terms of the edges that appear in it.
- Use to obtain a more compact, higher-level representation of the scene than pixels.

- Input: Images $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ (each in $\Re^{n \times n}$)
- Obtain dictionary elements and weights by

$$\min_{a,\phi} \sum_{i=1}^{m} \left(||x^{(i)} - \sum_{j=1}^{k} a_{j}^{(i)} \phi_{j}||_{2}^{2} + \lambda \underbrace{\sum_{j=1}^{k} |a_{j}^{(i)}|_{1}}_{sparsity} \right)$$

- Alternating minimization with respect to ϕ_j 's and a's.
- The second is harder, the first one is closed form.

Fast algorithms

- Solving for *a* is expensive.
- Simple algorithm that works well
 - Repeatedly guess sign (+, or 0) of each of the a_i 's.
 - Solve for a_i 's in closed form. Refine guess for signs.
- Other algorithms such as projective gradient descent, stochastic subgradient descent, etc

[Source: A. Ng]

Recap of sparse coding for feature learning

Training:

- Input: Images $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ (each in $\Re^{n \times n}$)
- Learn: Dictionary of bases ϕ_1, \cdots, ϕ_k (also $\Re^{n \times n}$),

$$\min_{\mathbf{a},\phi} \sum_{i=1}^{m} \left(||x^{(i)} - \sum_{j=1}^{k} \mathbf{a}_{j}^{(i)} \phi_{j}||^{2} + \lambda \sum_{j=1}^{k} |\mathbf{a}_{j}^{(i)}| \right)$$

Test time:

- Input: novel $x^{(1)}, x^{(2)}, \cdots, x^{(m)}$ and learned ϕ_1, \cdots, ϕ_k .
- Solve for the representation a_1, \cdots, a_k for each example

$$\min_{a} \sum_{i=1}^{m} \left(||x - \sum_{j=1}^{k} a_{j} \phi_{j}||^{2} + \lambda \sum_{j=1}^{k} |a_{j}| \right)$$

- Much better than pixel representation, but still not competitive with SIFT, etc.
- Three ways to make it competitive:
 - Combine this with SIFT.
 - Advanced versions of sparse coding, e.g., LCC.
 - Deep learning.

Sparse Classification

K-means vs sparse coding

[Source: A. Ng]

Raquel Urtasun (TTI-C)

Why sparse coding helps classification?

- The coding is a nonlinear feature mapping
- Represent data in a higher dimensional space
- Sparsity makes prominent patterns more distinctive

- Each basis is a direction or a topic.
- Sparsity: each datum is a linear combination of only a few bases.
- Applicable to image denoising, inpainting, and super-resolution.

Both figures adapted from CVPR10 tutorial by F. Bach, J. Mairal, J. Ponce and G. Sapiro

A geometric view to sparse coding

- Each basis is somewhat like a pseudo data point anchor point
- Sparsity: each datum is a sparse combination of neighbor anchors.
- The coding scheme explores the manifold structure of data

Influence of Sparsity

 When SC achieves the best classification accuracy, the learned bases are like digits – each basis has a clear local class association.

Raquel Urtasun (TTI-C)

Visual Recognition

Feb 16, 2012 58 / 84

The image classification setting for analysis

• Learning an image classifier is a matter of learning nonlinear functions on patches

Nonlinear learning via local coding

• We assume $x_i \approx \sum_{j=1}^k a_{i,j}\phi_j$ and thus

$$f(x_i) = \sum_{j=1}^k a_{i,j} f(\phi_j)$$

How to learn the non-linear function

- (Learning the dictionary ϕ_1, \cdots, ϕ_k from unlabeled data
- 2 Use the dictionary to encode data $x_i \rightarrow a_{i,1}, \cdots, a_{i,k}$

Stimate the parameters

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_m) \end{bmatrix} \approx \begin{bmatrix} a_{1,1} & a_{1,2} \dots & a_{1,k} \\ a_{2,1} & a_{2,2} \dots & a_{2,k} \\ a_{m,1} & a_{m,2} \dots & a_{m,k} \end{bmatrix} \times \begin{bmatrix} f(\phi_1) \\ f(\phi_2) \\ f(\phi_k) \end{bmatrix}$$

Nonlinear local learning via learning a global linear function

Local Coordinate Coding (LCC):

• If f(x) is (alpha, beta)-Lipschitz smooth

$$\begin{aligned} f(x_i) - \sum_{j=1}^{k} a_{i,j} f(\phi_j) \\ \leq \alpha \left\| x_i - \sum_{j=1}^{k} a_{i,j} \phi_j \right\| + \beta \sum_{j=1}^{k} |a_{i,j}| \|x_i - \phi_j\|^2 \\ \\ \\ Function \\ approximation \\ error \end{aligned}$$
Locality term

A good coding scheme should [Yu et al. 09]

- have a small coding error,
- and also be sufficiently local

Results

• The larger dictionary, the higher accuracy, but also the higher comp. cost

Table 2: Error rates (%) of MNIST classification with different |C|.

C	512	1024	2048	4096
Linear SVM with sparse coding	2.96	2.64	2.16	2.02
Linear SVM with local coordinate coding	2.64	2.44	2.08	1.90

(Yu et al. 09)

Table 5. The effects of codebook size on ScSPM and LSPM respectively on Caltech 101 dataset.

	Codebook size	256	512	1024
30 train	ScSPM	68.26	71.20	73.20
	LSPM	57.42	58.81	58.56
15 train	ScSPM	61.97	63.23	69.70
	LSPM	51.84	53.23	51.74

(Yang et al. 09)

• The same observation for Caltech256, PASCAL, ImageNet

- A fast implementation of LCC [Wang et al. 10]
- Dictionary learning using k-means and code for x based on
- Step 1 ensure locality: find the K nearest bases $[\phi_j]_{j \in J(x)}$ Step 2 ensure low coding error:

$$\min_{a}||x-\sum_{j\in J(x)}a_{i,j}\phi_j||^2, \quad s.t. \quad \sum_{j\in J(x)}a_{i,j}=1$$

Results

training images	5	10	15	20	25	30
Zhang [25]	46.6	55.8	59.1	62.0	-	66.20
Lazebnik [15]	-	-	56.40	-	-	64.60
Griffin [11]	44.2	54.5	59.0	63.3	65.8	67.60
Boiman [2]	-	-	65.00	-	-	70.40
Jain [12]	-	-	61.00	-	-	69.10
Gemert [8]	-	-	-	-	-	64.16
Yang [22]	-	-	67.00	-	-	73.20
Ours	51.15	59.77	65.43	67.74	70.16	73.44

Table 1. Image classification results on Caltech-101 dataset

Table 2. Image classification results using Caltech-256 dataset

training images	15	30	45	60
Griffin [11]	28.30	34.10	-	-
Gemert [8]	-	27.17	-	-
Yang [22]	27.73	34.02	37.46	40.14
Ours	34.36	41.19	45.31	47.68

Interpretation of BoW + linear classifier

Raquel Urtasun (TTI-C)

Support vector coding [Zhou et al, 10]

Raquel Urtasun (TTI-C)

• Let $[a_i, 1, \dots, a_{i,k}]$ be the VQ coding of x_i

$$f(x_i) \approx \begin{bmatrix} a_{i,1}(1, x_i - \phi_1), \dots a_{i,k}(1, x_i - \phi_k) \end{bmatrix} \times \begin{bmatrix} f(\phi_1) \\ \nabla f(\phi_1) \\ \vdots \\ f(\phi_k) \\ \nabla f(\phi_k) \end{bmatrix}$$

Global linear weights to be learned

• No.1 position in PASCAL VOC 2009

Summary of coding algorithms

- All lead to higher-dimensional, sparse, and localized coding
- All explore geometric structure of data
- New coding methods are suitable for linear classifiers.
- Their implementations are quite straightforward.

PASCAL VOC 2009

- No.1 for 18 of 20 categories
- PASCAL: 20 categories, 10,000 images
- They use only HOG feature on gray images

Classes	Ours	Best of Other Teams	Difference
Aeroplane	88.1	86.6	1.5
Bicycle	68.6	63.9	4.7
Bird	68.1	66.7	1.4
Boat	72.9	67.3	5.6
Bottle	44.2	43.7	0.5
Bus	79.5	74.1	5.4
Car	72.5	64.7	7.8
Cat	70.8	64.2	6.6
Chair	59.5	57.4	2.1
Cow	53.6	46.2	7.4
Diningtable	57.5	54.7	2.8
Dog	59.3	53.5	5.8
Horse	73.1	68.1	5.0
Motorbike	72.3	70.6	1.7
Person	85.3	85.2	0.1
Pottedplant	36.6	39.1	-2.5
Sheep	56.9	48.2	8.7
Sofa	57.9	50.0	7.9
Train	86.0	83.4	2.6
Tymonitor	68.0	68.6	-0.6

ImageNet Large-scale Visual Recognition Challenge 2010

- 150 teams registered worldwide, resulting 37 submissions from 11 teams
- SC achieved 52% for 1000 class classification.

Teams	Top 5 Hit Rate
Our team: NEC-UIUC	72.8%
Xerox European Lab, France	66.4%
Univ. of Tokyo	55.4%
Univ. of California, Irvine	53.4%
MIT	45.6%
NTU, Singapore	41.7%
LIG, France	39.3%
IBM T. J. Waston Research Center	30.0%
National Institute of Informatics, Tokyo	25.8%
SRI (Stanford Research Institute)	24.9%

Learning Codebooks for Image Classification

Replacing Vector Quantization by Learned Dictionaries

- unsupervised: [Yang et al., 2009]
- supervised: [Boureau et al., 2010, Yang et al., 2010]

[Source: Mairal]

"Discriminative" training

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008a]

$$\min_{\mathbf{D}_{-},\mathbf{D}_{+}}\sum_{i} \mathcal{C}\Big(\lambda z_{i}\big(\mathbf{R}^{\star}(\mathbf{x}_{i},\mathbf{D}_{-})-\mathbf{R}^{\star}(\mathbf{x}_{i},\mathbf{D}_{+})\big)\Big),$$

where $z_i \in \{-1, +1\}$ is the label of \mathbf{x}_i .

Logistic regression function

Discriminative Dictionaries

Figure: Top: reconstructive, Bottom: discriminative, Left: Bicycle, Right: Background

[Source: Mairal]

Raquel Urtasun (TTI-C)

Application: Edge detection

[Source: Mairal]

Application:Edge detection

[Source: Mairal]

Application: Authentic from fake

Authentic

Fake

Fake

[Source: Mairal]

Raquel Urtasun (TTI-C)

Feb 16, 2012 78 / 84

Predictive Sparse Decomposition (PSD)

• Feed-forward predictor function for feature extraction

$$\min_{a,\phi,K} \sum_{i=1}^{m} \left(||x^{(i)} - \sum_{j=1}^{k} a_{j}^{(i)} \phi_{j}||^{2} + \lambda \sum_{j=1}^{k} |a_{j}^{(i)}| + \beta ||a - C(X,K)||_{2}^{2} \right)$$

with e.g.,
$$C(X, K) = g \cdot tanh(x * k)$$

Learning is done by

١

- 1) Fix K and a, minimize to get optimal ϕ
- 2) Update a and K using optimal ϕ
- 3) Scale elements of ϕ to be unit norm.

[Source: Y. LeCun]

Predictive Sparse Decomposition (PSD)

• 12 x12 natural image patches with 256 dictionary elements

Figure: (Left) Encoder, (Right) Decoder

[Source: Y. LeCun]

Raquel Urtasun (TTI-C)

Feb 16, 2012 80 / 84

- Train layer wise [Hinton, 06]
 - C(X, K¹)
 C(f(K¹), K²)
- Each layer is trained on the output f(x) produced from previous layer.
- f is a series of non-linearity and pooling operations

Object Recognition - Caltech 101

Raquel Urtasun (TTI-C)

- Sparse coding produces filters that are shifted version of each other
- It ignores that it's going to be used in a convolutional fashion
- Inference in all overlapping patches independently

Problems with sparse coding

- 1) the representations are redundant, as the training and inference are done at the patch level
- 2) inference for the whole image is computationally expensive

Solutions

Problems

- 1) the representations are redundant, as the training and inference are done at the patch level
- 2) inference for the whole image is computationally expensive

Solutions

1) Apply sparse coding to the entire image at once, with the dictionary as a convolutional filter bank

$$\ell(x, z, D) = \frac{1}{2} ||x - \sum_{k=1}^{K} D_k * z_k||_2^2 + |z|_1$$

2) Use feed-forward, non-linear encoders to produce a fast approx. to the sparse code

$$\ell(x, z, D, W) = \frac{1}{2} ||x - \sum_{k=1}^{K} D_k * z_k||_2^2 + \sum_{k=1}^{K} ||z_k - f(W^k * x)||_2^2 + |z|_1$$