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Graphical Models
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Graphical models

Applications

Representation

Inference

message passing (LP relaxations)
graph cuts

Learning
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Classification algorithms

We want to classify an object x ∈ X into labels y ∈ Y
First there was binary y ∈ {−1, 1}

x → ; y → {table, notable}

Then multiclass y ∈ {1, · · · , C}

x → ; y → {car , bus, bicycle}

The next generation is structured labels
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Structure Prediction Problems

Segmentation and detection

Stereo

3D scene understanding

Multi-labeling of images
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Structure Prediction Problems

Segmentation and detection

Stereo

3D scene understanding

Multi-labeling of images

man −made, vehicle, car .
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Structure Prediction Problems

Segmentation and detection

Stereo

3D scene understanding

Multi-labeling of images

Other fields, e.g., part of speech tagging, parsing, protein folding.
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Why structured?

Independent prediction is good but...

Neighboring pixels should have same labels (if they look similar).

Learning and inference is tractable for tree-shaped models or binary variables
with submodular energies.
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Structure Prediction

Input: x ∈ X , typically an image.

Output: label y ∈ Y.

Consider a score function θ(x , y) called potential or feature such that

θ(x , y) =

{
high if y is a good label for x

low if y is a bad label for x

We want to predict a label as

y∗ = arg max
y
θ(x , y)
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Score Decomposition

We assume that the score decomposes

θ(y |x) =
∑
i

θi (yi ) +
∑
α

θα(yα)

This represents a (conditional) Markov Random Field (CRF)

p(x , y) =
1

Z

∏
i

ψi (x , yi )
∏
α

ψα(x , yα)

with logψi (x , yi ) = θi (x , yi ), and logψα(x , yα) = θα(x , yα).

Z =
∑

y

∏
i ψi (x , yi )

∏
α ψα(x , yα) is the partition function.

Prediction also decomposes

y∗ = arg max
y

∑
i

θi (yi ) +
∑
α

θα(yα)

This in general is NP hard.
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Markov Networks

A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge.

A maximal clique is a clique that cannot be extended by including one
more adjacent vertex.

For a set of variables y = {y1, · · · , yN} a Markov network is defined as a
product of potentials over the maximal cliques yα of the graph G

p(y1, · · · , yN) =
1

Z

∏
α

ψα(yα)

Special case: cliques of size 2 – pairwise Markov network

In case all potentials are strictly positive this is called a Gibbs distribution

Example: p(a, b, c) = 1
Z ψa,c(a, c)ψbc(b, c)
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Properties of Markov Network

Marginalizing over c makes a and b dependent

Conditioning on c makes a and b independent

[Source: P. Gehler]
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Local and Global Markov properties

Local Markov property: condition on neighbours makes indep. of the rest

p(yi |y \ {yi}) = p(y |ne(yi ))

Example: y4⊥{y1, y7}|{y2, y3, y5, y6}
Global Markov Property: For disjoint sets of variables (A,B,S), where S
separates A from B then A⊥B|S
S is called a separator.

Example: y1⊥y7|{y4}

[Source: P. Gehler]
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Relationship Potentials to Graphs

Consider

p(a, b, c) =
1

Z
ψ(a, b)ψ(b, c)ψ(c , a)

What is the corresponding Markov network (graphical representation)?

Which other factorization is represented by this network?

The factorization is not specified by the graph

Let’s look at Factor Graphs
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Factor Graphs

Now consider we introduce an extra node (a square) for each factor

The factor graph (FG) has a node (represented by a square) for each factor
ψ(yα) and a variable node (represented by a circle) for each variable xi .

Left: Markov Network

Middle: Factor graph representation of ψ(a, b, c)

Right: Factor graph representation of ψ(a, b)ψ(b, c)ψ(c , a)

Different factor graphs can have the same Markov network

[Source: P. Gehler]
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Examples

Which distribution?

What factor graph?

p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2)

[Source: P. Gehler]
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Inference in trees

Given distribution p(y1, · · · , yn)

Inference: computing functions of the distribution

mean
marginal
conditionals

Marginal inference in singly-connected graph (trees)

Later: extensions to loopy graphs

[Source: P. Gehler]
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Variable Elimination

[Source: P. Gehler]
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Variable Elimination

[Source: P. Gehler]
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Variable Elimination

[Source: P. Gehler]
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Finding Conditional Marginals

[Source: P. Gehler]
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Finding Conditional Marginals

[Source: P. Gehler]
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Now with factor graphs

[Source: P. Gehler]
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Inference in Chain Structured Factor Graphs

Simply recurse further

γm→n(n) carries the information beyond m

We did not need the factors in general (next) we will see that making a
distinction is helpful

[Source: P. Gehler]
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General singly-connected factor graphs I

[Source: P. Gehler]
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General singly-connected factor graphs II

[Source: P. Gehler]
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General singly-connected factor graphs III

[Source: P. Gehler]
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General singly-connected factor graphs IV

[Source: P. Gehler]
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Summary

Once computed, messages can be re-used

All marginals p(c), p(d), p(c , d), · · · can be written as a function of
messages

We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]
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Sum-product algorithm overview

Algorithm to compute all messages efficiently, assuming the graph is
singly-connected

It can be used to compute any desired marginals

Also known as belief propagation (BP)

The algorithm is composed of

1 Initialization

2 Variable to Factor message

3 Factor to Variable message

[Source: P. Gehler]
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1. Initialization

Messages from extremal (simplical) node factors are initialized to the factor
(left)

Messages from extremal (simplical) variable nodes are set to unity (right)

[Source: P. Gehler]
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2. Variable to Factor message

[Source: P. Gehler]
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3. Factor to Variable message

We sum over all states in the set of variables

This explains the name for the algorithm (sum-product)

[Source: P. Gehler]
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Marginal computation

[Source: P. Gehler]
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Message Ordering

[Source: P. Gehler]
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Problems with loops

[Source: P. Gehler]
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What to infer?

[Source: P. Gehler]
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Computing the Partition Function

[Source: P. Gehler]

Raquel Urtasun (TTI-C) Visual Recognition Feb 23, 2012 36 / 58



Log Messages

[Source: P. Gehler]
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Log Messages

[Source: P. Gehler]
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Trick

[Source: P. Gehler]
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Finding the maximal state: Max-Product

[Source: P. Gehler]

Raquel Urtasun (TTI-C) Visual Recognition Feb 23, 2012 40 / 58



Be careful: not maximal marginal states!

[Source: P. Gehler]
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Example chain

[Source: P. Gehler]
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Example chain

[Source: P. Gehler]
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Trees

[Source: P. Gehler]
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Max-Product Algorithm

Pick any variable as root and

1 Initialisation (same as sum-product)

2 Variable to Factor message (same as sum-product)

3 Factor to Variable message

Then compute the maximal state

[Source: P. Gehler]
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1. Initialization

Messages from extremal node factors are initialized to the factor

Messages from extremal variable nodes are set to unity

Same as sum product

[Source: P. Gehler]
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2. Variable to Factor message

Same as for sum-product

[Source: P. Gehler]
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3. Factor to Variable message

Different message than in sum-product

This is now a max-product

[Source: P. Gehler]
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Maximal state of Variable

This does not work with loops

Same problem as the sum product algorithm

[Source: P. Gehler]
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Inference with LP relaxations
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Decomposition Solvers

Solving the problem is hard, as it involves exponential many labels

max
y1,··· ,yn

∑
i

θi (yi ) +
∑
α

θα(yα)

Trivial decomposition upper bound∑
i

max
yi

θi (yi ) +
∑
α

max
yα

θα(yα)

Solves MAP in trivial cases, e.g., θα = 0.

Fails for example

θ1(y1) = θ2(y2) =

[
3
0

]
max argument→ y1 = y2 = 0

θ1,2(y1, y2) =

[
0 1
2 3

]
max argument→ y1 = y2 = 1

We need to balance non-agreements between arguments
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Alternative Representation

We want to solve

max
y1,y2,y3

θ1(y1) + θ2(y2) + θ3(y3) + θ12(y1, y2) + θ23(y2, y3)

We can parameterize the problem as

θ1(y1) + θ2(y2) + θ3(y3) + θ12(y1, y2) + θ23(y2, y3) =



θ1(0)
θ1(1)
θ2(0)
θ2(1)
θ3(0)
θ3(1)
θ12(0, 0)
θ12(1, 0)
θ12(0, 1)
θ12(1, 1)
θ23(0, 0)
θ23(1, 0)
θ23(0, 1)
θ23(1, 1)



T

·



b1(0)
b1(1)
b2(0)
b2(1)
b3(0)
b3(1)

b12(0, 0)
b12(1, 0)
b12(0, 1)
b12(1, 1)
b23(0, 0)
b23(1, 0)
b23(0, 1)
b23(1, 1)


with b satisfying certain conditions, i.e., define the marginal polytope.
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ILP formulation

Introduce indicator variables bi (yi ) for each variable and bα(yα) for the
factors, and define

max
∑
α,yα

bα(yα)θα(yα) +
∑
i,yi

bi (yi )θi (yi )

subject to:

bi (yi ), bα(yα) ∈ {0, 1},∑
yα

bα(yα) = 1,
∑
yi

bi (yi ) = 1

∀i , yi , α ∈ N(i),
∑
yα\yi

bα(yα) = bi (yi )

This ILP is NP-Hard
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LP Relaxation

Replace the integrality constraint

max
∑
α,yα

bα(yα)θα(yα) +
∑
i,yi

bi (yi )θi (yi )

subject to:

bi (yi ), bα(yα) ∈ [0, 1],
∑
yα

bα(yα) = 1,
∑
yi

bi (yi ) = 1

∀i , yi , α ∈ N(i),
∑
yα\yi

bα(yα) = bi (yi )

Introduce entropy barrier functions to be smooth and get rid of the simplex
constraints

max
∑
α,yα

bα(yα)θα(yα) +
∑
i,yi

bi (yi )θi (yi ) + ε

(∑
α

cαH(bα) +
∑
i

ciH(bi )

)
subject to:

∀i , yi , α ∈ N(i),
∑
yα\yi

bα(yα) = bi (yi )
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Primal Formulation

The dual problem

max
∑
α,yα

bα(yα)θα(yα) +
∑
i,yi

bi (yi )θi (yi ) + ε

(∑
α

cαH(bα) +
∑
i

ciH(bi )

)

subject to: ∀i , yi , α ∈ N(i),
∑
yα\yi

bα(yα) = bi (yi )

Its primal problem has Lagrange multipliers for each constraint

∑
α

εcα ln
∑
yα

exp

(
θα(yα) +

∑
i∈N(α) λi→α(yi )

εcα

)
+
∑
i

εci ln
∑
yi

exp

(
θi (yi )−

∑
α∈N(i) λi→α(yi )

εci

)

Optimization via coordinate descent (close form updates) gives us a new
family of message passing algorithms [Hazan and Sashua 2010].

Optimum guaranteed when ci , cα > 0.
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Message passing: convex max-product when ε = 0

λi→α(yi )

µα→i (yi )

y1 y2 y3 y4 y5

{1, 2} {2, 3, 4} {2, 4, 5}
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Equivalence with other models
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Cloud computing: Very large problems

Dual decomposition: partition the problem and add Lagrange multipliers

max
∑
s∈GP

∑
α∈Gs ,xα

bsα(xα)θα(xα) +
∑

i∈Gs ,xi

bsi (xi )θi (xi ) + ε
∑
s∈GP

∑
α∈Gs

cαH(bsα) +
∑
i∈Gs

ciH(bsi )


subject to:

∀s, i , xi , α ∈ N(i),
∑
xα\xi

bsα(xα) = bsi (xi )

∀s, α ∈ NP (s), xα, bsα(xα) = bα(xα)

We obtain a dual problem with one additional set of Lagrange multipliers
which are messages between machines [Schwing et al. 11].
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