Visual Recognition: Inference in Graphical Models

Raquel Urtasun

TTI Chicago
Feb 23, 2012

Graphical Models

Graphical models

- Applications
- Representation
- Inference
- message passing (LP relaxations)
- graph cuts
- Learning

Classification algorithms

We want to classify an object $x \in \mathcal{X}$ into labels $y \in \mathcal{Y}$

- First there was binary $y \in\{-1,1\}$

- Then multiclass $y \in\{1, \cdots, \mathcal{C}\}$

$$
y \rightarrow\{c a r, \text { bus, bicycle }\}
$$

- The next generation is structured labels

Structure Prediction Problems

- Segmentation and detection

- Stereo

Structure Prediction Problems

- Segmentation and detection
- Stereo

- 3D scene understanding

Structure Prediction Problems

- Segmentation and detection
- Stereo
- 3D scene understanding

- Multi-labeling of images

Structure Prediction Problems

- Segmentation and detection
- Stereo
- 3D scene understanding
- Multi-labeling of images

> man - made, vehicle, car.

Structure Prediction Problems

- Segmentation and detection
- Stereo
- 3D scene understanding
- Multi-labeling of images
- Other fields, e.g., part of speech tagging, parsing, protein folding.

MRLLILALLGICSLTAYIVEGVGSEVSDKR TCVSLTTQRLPVSRIKTYTITEGSLRAVIF ITKRGLKVCADPQATWVRDVVRSMDRKSNT RNNMIQTKPTGTQQSTNTAVTLTG

Why structured?

- Independent prediction is good but...

- Neighboring pixels should have same labels (if they look similar).

Why structured?

- Independent prediction is good but...

- Neighboring pixels should have same labels (if they look similar).

- Learning and inference is tractable for tree-shaped models or binary variables with submodular energies.

Why structured?

- Independent prediction is good but...

- Neighboring pixels should have same labels (if they look similar).

- Learning and inference is tractable for tree-shaped models or binary variables with submodular energies.

Structure Prediction

- Input: $x \in \mathcal{X}$, typically an image.
- Output: label $y \in \mathcal{Y}$.
- Consider a score function $\theta(x, y)$ called potential or feature such that

$$
\theta(x, y)= \begin{cases}\text { high } & \text { if } y \text { is a good label for } x \\ \text { low } & \text { if } y \text { is a bad label for } x\end{cases}
$$

- We want to predict a label as

$$
y^{*}=\arg \max _{y} \theta(x, y)
$$

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(x, y)=\frac{1}{z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(x, y)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(x, y)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.
- Prediction also decomposes

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(x, y)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.
- Prediction also decomposes

$$
y^{*}=\arg \max _{y} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This in general is NP hard.

Score Decomposition

- We assume that the score decomposes

$$
\theta(y \mid x)=\sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This represents a (conditional) Markov Random Field (CRF)

$$
p(x, y)=\frac{1}{Z} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)
$$

with $\log \psi_{i}\left(x, y_{i}\right)=\theta_{i}\left(x, y_{i}\right)$, and $\log \psi_{\alpha}\left(x, y_{\alpha}\right)=\theta_{\alpha}\left(x, y_{\alpha}\right)$.

- $Z=\sum_{y} \prod_{i} \psi_{i}\left(x, y_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(x, y_{\alpha}\right)$ is the partition function.
- Prediction also decomposes

$$
y^{*}=\arg \max _{y} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- This in general is NP hard.

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\boldsymbol{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network
- In case all potentials are strictly positive this is called a Gibbs distribution

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network
- In case all potentials are strictly positive this is called a Gibbs distribution
- Example: $p(a, b, c)=\frac{1}{2} \psi_{a, c}(a, c) \psi_{b c}(b, c)$

Markov Networks

- A clique in an undirected graph is a subset of its vertices such that every two vertices in the subset are connected by an edge.
- A maximal clique is a clique that cannot be extended by including one more adjacent vertex.
- For a set of variables $\mathbf{y}=\left\{y_{1}, \cdots, y_{N}\right\}$ a Markov network is defined as a product of potentials over the maximal cliques y_{α} of the graph G

$$
p\left(y_{1}, \cdots, y_{N}\right)=\frac{1}{Z} \prod_{\alpha} \psi_{\alpha}\left(y_{\alpha}\right)
$$

- Special case: cliques of size 2 - pairwise Markov network
- In case all potentials are strictly positive this is called a Gibbs distribution
- Example: $p(a, b, c)=\frac{1}{Z} \psi_{a, c}(a, c) \psi_{b c}(b, c)$

Properties of Markov Network

- Marginalizing over c makes a and b dependent

- Conditioning on c makes a and b independent

[Source: P. Gehler]

Local and Global Markov properties

- Local Markov property: condition on neighbours makes indep. of the rest

$$
p\left(y_{i} \mid \mathbf{y} \backslash\left\{y_{i}\right\}\right)=p\left(y \mid n e\left(y_{i}\right)\right)
$$

Example: $y_{4} \perp\left\{y_{1}, y_{7}\right\} \mid\left\{y_{2}, y_{3}, y_{5}, y_{6}\right\}$

- Global Markov Property: For disjoint sets of variables $(\mathcal{A}, \mathcal{B}, \mathcal{S})$, where \mathcal{S} separates \mathcal{A} from \mathcal{B} then $\mathcal{A} \perp \mathcal{B} \mid \mathcal{S}$
- \mathcal{S} is called a separator.
- Example: $y_{1} \perp y_{7} \mid\left\{y_{4}\right\}$

[Source: P. Gehler]

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b, c)
$$

- The factorization is not specified by the graph

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b, c)
$$

- The factorization is not specified by the graph
- Let's look at Factor Graphs

Relationship Potentials to Graphs

- Consider

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b) \psi(b, c) \psi(c, a)
$$

- What is the corresponding Markov network (graphical representation)?

- Which other factorization is represented by this network?

$$
p(a, b, c)=\frac{1}{Z} \psi(a, b, c)
$$

- The factorization is not specified by the graph
- Let's look at Factor Graphs

Factor Graphs

Now consider we introduce an extra node (a square) for each factor

The factor graph (FG) has a node (represented by a square) for each factor $\psi\left(y_{\alpha}\right)$ and a variable node (represented by a circle) for each variable x_{i}.

- Left: Markov Network
- Middle: Factor graph representation of $\psi(a, b, c)$
- Right: Factor graph representation of $\psi(a, b) \psi(b, c) \psi(c, a)$
- Different factor graphs can have the same Markov network
[Source: P. Gehler]

Examples

- Which distribution?

- What factor graph?

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

[Source: P. Gehler]

Inference in trees

- Given distribution $p\left(y_{1}, \cdots, y_{n}\right)$
- Inference: computing functions of the distribution
- mean
- marginal
- conditionals
- Marginal inference in singly-connected graph (trees)
- Later: extensions to loopy graphs
[Source: P. Gehler]

Variable Elimination

- Consider Markov chain ($a, b, c, d \in\{0,1\}$)

with distribution

$$
p(a, b, c, d)=p(a \mid b) p(b \mid c) p(c \mid d) p(d)
$$

- Task: compute the marginal $p(a)$
[Source: P. Gehler]

Variable Elimination

$$
\begin{aligned}
p(a) & =\sum_{b, c, d} p(a, b, c, d) \\
& =\sum_{b, c, d} p(a \mid b) p(b \mid c) p(c \mid d) p(d)
\end{aligned}
$$

- Naive: $2 \times 2 \times 2=8$ states to sum over
- Re-order summation:

$$
p(a)=\sum_{b, c} p(a \mid b) p(b \mid c) \underbrace{\sum_{d} p(c \mid d) p(d)}_{\gamma_{d}(c)}
$$

[Source: P. Gehler]

Variable Elimination

$$
\begin{aligned}
& p(a)=\sum_{b, c} p(a \mid b) p(b \mid c) \underbrace{\sum_{d} p(c \mid d) p(d)}_{\gamma_{d}(c)} \\
& p(a)=\sum_{b} p(a \mid b) \underbrace{\sum_{c} p(b \mid c) \gamma_{d}(c)}_{\gamma_{c}(b)} \\
& p(a)=\sum_{b} p(a \mid b) \gamma_{c}(b)
\end{aligned}
$$

- We need $2+2+2=6$ calculations
- For a chain of length T scale linearly $n * 2$, cf naive approach 2^{n}
[Source: P. Gehler]

Finding Conditional Marginals

- Again:

$$
p(a, b, c, d)=p(a \mid b) p(b \mid c) p(c \mid d) p(d)
$$

- Now find $p(d \mid a)$

$$
\begin{aligned}
p(d \mid a) & \propto \sum_{b, c} p(a \mid b) p(b \mid c) p(c \mid d) p(d) \\
& =\sum_{c} \underbrace{\sum_{b} p(a \mid b) p(b \mid c) p(c \mid d) p(d)}_{\gamma_{b}(c)} \\
& \stackrel{\text { def }}{=} \gamma_{c}(d) \text { not a distribution }
\end{aligned}
$$

[Source: P. Gehler]

Finding Conditional Marginals

- Found that

$$
p(d \mid a)=k \gamma_{c}(d)
$$

- and since $\sum_{d} p(d \mid a)=1$

$$
k=\frac{1}{\sum_{d} \gamma_{c}(d)}
$$

- Again $\gamma_{c}(d)$ is not a distribution (but a message)
[Source: P. Gehler]

Now with factor graphs

$$
\begin{gathered}
a-b(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d) \\
p(a, b, c)=\sum_{d} p(a, b, c, d) \\
=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(d)}_{\mu_{d \rightarrow c}(c)} \\
p(a, b)=\sum_{c} p(a, b, c)=f_{1}(a, b) \underbrace{\sum_{c}^{f_{3}} f_{2}(b, c) \mu_{d \rightarrow c}(c)}_{\mu_{c \rightarrow b}(b)}
\end{gathered}
$$

Inference in Chain Structured Factor Graphs

- Simply recurse further
- $\gamma_{m \rightarrow n}(n)$ carries the information beyond m
- We did not need the factors in general (next) we will see that making a distinction is helpful
[Source: P. Gehler]

General singly-connected factor graphs I

- Now consider a branching graph:

with factors

$$
f_{1}(a, b) f_{2}(b, c, d) f_{3}(c) f_{4}(d, e) f_{5}(d)
$$

- For example: find marginal $p(a, b)$
[Source: P. Gehler]

General singly-connected factor graphs II

[Source: P. Gehler]

General singly-connected factor graphs III

[Source: P. Gehler]

General singly-connected factor graphs IV

- If we want to compute the marginal $p(a)$:

$$
p(a)=\underbrace{\sum_{b} f_{1}(a, b) \mu_{f_{2} \rightarrow b}(b)}_{\mu_{f_{1} \rightarrow a}(a)}
$$

- which we could also view as

$$
p(a)=\sum_{b} f_{1}(a, b) \underbrace{\mu_{f_{2} \rightarrow b}(b)}_{\mu_{b \rightarrow f_{1}}(b)}
$$

[Source: P. Gehler]

Summary

- Once computed, messages can be re-used
- All marginals $p(c), p(d), p(c, d), \cdots$ can be written as a function of messages
- We need an algorithm to compute all messages: Sum-Product algorithm

[Source: P. Gehler]

Sum-product algorithm overview

- Algorithm to compute all messages efficiently, assuming the graph is singly-connected
- It can be used to compute any desired marginals
- Also known as belief propagation (BP)

The algorithm is composed of
1 Initialization
2 Variable to Factor message
3 Factor to Variable message
[Source: P. Gehler]

1. Initialization

- Messages from extremal (simplical) node factors are initialized to the factor (left)
- Messages from extremal (simplical) variable nodes are set to unity (right)

[Source: P. Gehler]

2. Variable to Factor message

[Source: P. Gehler]

3. Factor to Variable message

- We sum over all states in the set of variables
- This explains the name for the algorithm (sum-product)

$$
\mu_{f \rightarrow x}(x)=\sum_{y \in \mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

[Source: P. Gehler]

Marginal computation

[Source: P. Gehler]

Message Ordering

- Messages depend on previous computed messages
- Only extremal |nodes/factors do not depend on other messages
- To compute all messages in the graph

1. leaf-to-root: (pick root node, compute messages pointing towards root)
2. root-to-leave: (compute messages pointing away from root)

[Source: P. Gehler]

Problems with loops

- Marginalizing over d introduces new link (changes graph structure - in contrast to singly connected graphs)

$$
p(a, b, c, d)=f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d, a)
$$

and marginal

$$
p(a, b, c)=f_{1}(a, b) f_{2}(b, c) \underbrace{\sum_{d} f_{3}(c, d) f_{4}(d, a)}_{f_{5}(a, c)}
$$

What to infer?

- Mean

$$
\mathbb{E}_{p(x)}[x]=\sum_{x \in \mathcal{X}} x p(x)
$$

- Mode

$$
x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x)
$$

- Conditional Distributions

$$
p\left(x_{i}, x_{j} \mid x_{k}, x_{l}\right) \operatorname{or} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

- Max-Marginals

$$
x_{i}^{*}=\underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmax}} p\left(x_{i}\right)=\cdots d x_{n} \underset{x_{i} \in \mathcal{X}_{i}}{\operatorname{argmax}} \int_{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)} p(x) d x_{1}
$$

Computing the Partition Function

- The partition function $\left(p(x)=\frac{1}{Z} \prod_{f} \Phi_{f}\left(\mathcal{X}_{f}\right)\right)$ (normalization constant) Z can be computed after the leaf-to-root step (no need for the root-to-leaf step) (choose any $x \in \mathcal{X}$)

$$
\begin{align*}
Z & =\sum_{\mathcal{X}} \prod_{f} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{10}\\
& =\sum_{x} \sum_{\mathcal{X} \backslash\{x\}} \prod_{f \in \operatorname{ne}(x)} \prod_{f \notin \operatorname{ne}(x)} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{11}\\
& =\sum_{x} \prod_{f \in \operatorname{ne}(x)} \sum_{\mathcal{X} \backslash\{x\}} \prod_{f \notin \operatorname{ne}(x)} \phi_{f}\left(\mathcal{X}_{f}\right) \tag{12}\\
& =\sum_{x} \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x) \tag{13}
\end{align*}
$$

Log Messages

- In large graphs, messages may become very small
- Work with log-messages instead $\lambda=\log \mu$
- Variable-to-factor messages

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

then becomes

$$
\lambda_{x \rightarrow f}(x)=\sum_{g \in\{\operatorname{ne}(x) \backslash f\}} \lambda_{g \rightarrow x}(x)
$$

[Source: P. Gehler]

Log Messages

- Work with log-messages instead $\lambda=\log \mu$
- Factor-to-Variable messages

$$
\begin{equation*}
\mu_{f \rightarrow x}(x)=\sum_{y \in \mathcal{X}_{f} \backslash x} \Phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y) \tag{16}
\end{equation*}
$$

then becomes

$$
\begin{equation*}
\lambda_{f \rightarrow x}(x)=\log \left(\sum_{y \in \mathcal{X}_{f} \backslash x} \Phi\left(\mathcal{X}_{f}\right) \exp \left[\sum_{y \in\{\mathrm{ne}(f) \backslash \times\}} \lambda_{y \rightarrow f}(y)\right]\right. \tag{17}
\end{equation*}
$$

[Source: P. Gehler]

Trick

- Log-Factor-to-Variable Message:

$$
\begin{equation*}
\lambda_{f \rightarrow x}(x)=\log \sum_{y \in \mathcal{X}_{f} \backslash x} \Phi_{f}\left(\mathcal{X}_{f}\right) \exp \sum_{y \in\{\operatorname{ne}(f) \backslash x\}} \lambda_{y \rightarrow f}(y) \tag{18}
\end{equation*}
$$

- large numbers lead to numerical instability
- Use the following equality

$$
\begin{equation*}
\log \sum_{i} \exp \left(v_{i}\right)=\alpha+\log \sum_{i} \exp \left(v_{i}-\alpha\right) \tag{19}
\end{equation*}
$$

- With $\alpha=\max \lambda_{y \rightarrow f}(y)$
[Source: P. Gehler]

Finding the maximal state: Max-Product

- For a given distribution $p(x)$ find the most likely state:

$$
x^{*}=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n}\right)
$$

- Again use factorization structure to distribute the maximisation to local computations
- Example: chain

$$
\begin{aligned}
& \text { (x, } \left.d, x_{2}, x_{3}, x_{4}\right)=\phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{1}\right)
\end{aligned}
$$

[Source: P. Gehler]

Be careful: not maximal marginal states!

- The most likely state

$$
x^{*}=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{n}\right)
$$

does not need to be the one for which the marginals are maximized:

- For all $i=1, \ldots, n$

$$
x_{i}^{*}=\underset{x_{i}}{\operatorname{argmax}} p\left(x_{i}\right)
$$

- Example: | | | $x=0$ | $x=1$ |
| :---: | :---: | :---: | :---: |
| | $y=0$ | 0.3 | 0.4 |
| | $y=1$ | 0.3 | 0.0 |

Example chain

$$
\begin{aligned}
\max _{x} f(x) & =\max _{x_{1}, x_{2}, x_{3}, x_{4}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \phi\left(x_{3}, x_{4}\right) \\
& =\max _{x_{1}, x_{2}, x_{3}} \phi\left(x_{1}, x_{2}\right) \phi\left(x_{2}, x_{3}\right) \underbrace{\max _{x_{4}} \phi\left(x_{3}, x_{4}\right)}_{\gamma\left(x_{3}\right)} \\
& =\max _{x_{1}, x_{2}} \phi\left(x_{1}, x_{2}\right) \underbrace{\max _{x_{3}} \phi\left(x_{2}, x_{3}\right) \gamma\left(x_{3}\right)}_{\gamma\left(x_{2}\right)} \\
& =\max _{x_{1}} \underbrace{\max _{x_{2}} \phi\left(x_{1}, x_{2}\right) \gamma\left(x_{2}\right)}_{\gamma\left(x_{1}\right)} \\
& =\max _{x_{1}} \gamma\left(x_{1}\right)
\end{aligned}
$$

[Source: P. Gehler]

Example chain

- Once computed the messages $(\gamma(\cdot))$ find the optimal values

$$
\begin{aligned}
x_{1}^{*} & =\underset{x_{1}}{\operatorname{argmax}} \gamma\left(x_{1}\right) \\
x_{2}^{*} & =\underset{x_{2}}{\operatorname{argmax}} \phi\left(x_{1}^{*}, x_{2}\right) \gamma\left(x_{2}\right) \\
x_{3}^{*} & =\underset{x_{3}}{\operatorname{argmax}} \phi\left(x_{2}^{*}, x_{3}\right) \gamma\left(x_{3}\right) \\
x_{4}^{*} & =\underset{x_{4}}{\operatorname{argmax}} \phi\left(x_{3}^{*}, x_{4}\right) \gamma\left(x_{4}\right)
\end{aligned}
$$

- this is called backtracking (an application of dynamic programming)
- can choose arbitrary start point
[Source: P. Gehler]

Trees

- Spot the messages:

Max-Product Algorithm

Pick any variable as root and
1 Initialisation (same as sum-product)
2 Variable to Factor message (same as sum-product)
3 Factor to Variable message
Then compute the maximal state
[Source: P. Gehler]

1. Initialization

- Messages from extremal node factors are initialized to the factor
- Messages from extremal variable nodes are set to unity

- Same as sum product
[Source: P. Gehler]

2. Variable to Factor message

- Same as for sum-product

$$
\mu_{x \rightarrow f}(x)=\prod_{g \in\{\operatorname{ne}(x) \backslash f\}} \mu_{g \rightarrow x}(x)
$$

[Source: P. Gehler]

3. Factor to Variable message

- Different message than in sum-product
- This is now a max-product

$$
\mu_{f \rightarrow x}(x)=\max _{y \in \mathcal{X}_{f} \backslash x} \phi_{f}\left(\mathcal{X}_{f}\right) \prod_{y \in\{\operatorname{ne}(f) \backslash x\}} \mu_{y \rightarrow f}(y)
$$

[Source: P. Gehler]

Maximal state of Variable

$$
x^{*}=\underset{x}{\operatorname{argmax}} \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x)
$$

- This does not work with loops
- Same problem as the sum product algorithm

Inference with LP relaxations

Decomposition Solvers

- Solving the problem is hard, as it involves exponential many labels

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Trivial decomposition upper bound

Decomposition Solvers

- Solving the problem is hard, as it involves exponential many labels

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Trivial decomposition upper bound

$$
\sum_{i} \max _{y_{i}} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \max _{y_{\alpha}} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Solves MAP in trivial cases, e.g., $\theta_{\alpha}=0$.

Decomposition Solvers

- Solving the problem is hard, as it involves exponential many labels

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Trivial decomposition upper bound

$$
\sum_{i} \max _{y_{i}} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \max _{y_{\alpha}} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Solves MAP in trivial cases, e.g., $\theta_{\alpha}=0$.
- Fails for example

$$
\begin{array}{ll}
\theta_{1}\left(y_{1}\right)=\theta_{2}\left(y_{2}\right)=\left[\begin{array}{l}
3 \\
0
\end{array}\right] & \text { max argument } \rightarrow y_{1}=y_{2}=0 \\
\theta_{1,2}\left(y_{1}, y_{2}\right)=\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right] & \max \text { argument } \rightarrow y_{1}=y_{2}=1
\end{array}
$$

Decomposition Solvers

- Solving the problem is hard, as it involves exponential many labels

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Trivial decomposition upper bound

$$
\sum_{i} \max _{y_{i}} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \max _{y_{\alpha}} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Solves MAP in trivial cases, e.g., $\theta_{\alpha}=0$.
- Fails for example

$$
\begin{array}{ll}
\theta_{1}\left(y_{1}\right)=\theta_{2}\left(y_{2}\right)=\left[\begin{array}{l}
3 \\
0
\end{array}\right] & \text { max argument } \rightarrow y_{1}=y_{2}=0 \\
\theta_{1,2}\left(y_{1}, y_{2}\right)=\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right] & \text { max argument } \rightarrow y_{1}=y_{2}=1
\end{array}
$$

- We need to balance non-agreements between arguments

Decomposition Solvers

- Solving the problem is hard, as it involves exponential many labels

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Trivial decomposition upper bound

$$
\sum_{i} \max _{y_{i}} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \max _{y_{\alpha}} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Solves MAP in trivial cases, e.g., $\theta_{\alpha}=0$.
- Fails for example

$$
\begin{array}{ll}
\theta_{1}\left(y_{1}\right)=\theta_{2}\left(y_{2}\right)=\left[\begin{array}{l}
3 \\
0
\end{array}\right] & \text { max argument } \rightarrow y_{1}=y_{2}=0 \\
\theta_{1,2}\left(y_{1}, y_{2}\right)=\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right] & \text { max argument } \rightarrow y_{1}=y_{2}=1
\end{array}
$$

- We need to balance non-agreements between arguments

Alternative Representation

- We want to solve

$$
\max _{y_{1}, y_{2}, y_{3}} \theta_{1}\left(y_{1}\right)+\theta_{2}\left(y_{2}\right)+\theta_{3}\left(y_{3}\right)+\theta_{12}\left(y_{1}, y_{2}\right)+\theta_{23}\left(y_{2}, y_{3}\right)
$$

- We can parameterize the problem as

with b satisfying certain conditions, i.e., define the marginal polytope.

Alternative Representation

- We want to solve

$$
\max _{y_{1}, y_{2}, y_{3}} \theta_{1}\left(y_{1}\right)+\theta_{2}\left(y_{2}\right)+\theta_{3}\left(y_{3}\right)+\theta_{12}\left(y_{1}, y_{2}\right)+\theta_{23}\left(y_{2}, y_{3}\right)
$$

- We can parameterize the problem as

$$
\theta_{1}\left(y_{1}\right)+\theta_{2}\left(y_{2}\right)+\theta_{3}\left(y_{3}\right)+\theta_{12}\left(y_{1}, y_{2}\right)+\theta_{23}\left(y_{2}, y_{3}\right)=\left[\begin{array}{c}
\theta_{1}(0) \\
\theta_{1}(1) \\
\theta_{2}(0) \\
\theta_{2}(1) \\
\theta_{3}(0) \\
\theta_{3}(1) \\
\theta_{12}(0,0) \\
\theta_{12}(1,0) \\
\theta_{12}(0,1) \\
\theta_{12}(1,1) \\
\theta_{23}(0,0) \\
\theta_{23}(1,0) \\
\theta_{23}(0,1) \\
\theta_{23}(1,1)
\end{array}\right]^{T}\left[\begin{array}{c}
b_{1}(0) \\
b_{1}(1) \\
b_{2}(0) \\
b_{2}(1) \\
b_{3}(0) \\
b_{3}(1) \\
b_{12}(0,0) \\
b_{12}(1,0) \\
b_{12}(0,1) \\
b_{12}(1,1) \\
b_{23}(0,0) \\
b_{23}(1,0) \\
b_{23}(0,1) \\
b_{23}(1,1)
\end{array}\right]
$$

with \mathbf{b} satisfying certain conditions, i.e., define the marginal polytope.

ILP formulation

- Introduce indicator variables $b_{i}\left(y_{i}\right)$ for each variable and $b_{\alpha}\left(y_{\alpha}\right)$ for the factors, and define

$$
\begin{aligned}
& \max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right) \\
& \text { subject to: } \\
& b_{i}\left(y_{i}\right), b_{\alpha}\left(y_{\alpha}\right) \in\{0,1\} \\
& \sum_{y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right)=1, \sum_{y_{i}} b_{i}\left(y_{i}\right)=1 \\
& \forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
\end{aligned}
$$

- This ILP is NP-Hard

LP Relaxation

- Replace the integrality constraint

$$
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)
$$

subject to:

$$
\begin{aligned}
& b_{i}\left(y_{i}\right), b_{\alpha}\left(y_{\alpha}\right) \in[0,1], \sum_{y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right)=1, \sum_{y_{i}} b_{i}\left(y_{i}\right)=1 \\
& \forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
\end{aligned}
$$

- Introduce entropy barrier functions to be smooth and get rid of the simplex constraints

$$
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)+\epsilon\left(\sum_{\alpha} c_{\alpha} H\left(b_{\alpha}\right)+\sum_{i} c_{i} H\left(b_{i}\right)\right)
$$

subject to:

$$
\forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
$$

LP Relaxation

- Replace the integrality constraint

$$
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)
$$

subject to:

$$
\begin{aligned}
& b_{i}\left(y_{i}\right), b_{\alpha}\left(y_{\alpha}\right) \in[0,1], \sum_{y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right)=1, \sum_{y_{i}} b_{i}\left(y_{i}\right)=1 \\
& \forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
\end{aligned}
$$

- Introduce entropy barrier functions to be smooth and get rid of the simplex constraints

$$
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)+\epsilon\left(\sum_{\alpha} c_{\alpha} H\left(b_{\alpha}\right)+\sum_{i} c_{i} H\left(b_{i}\right)\right)
$$

subject to:

$$
\forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
$$

Primal Formulation

- The dual problem

$$
\begin{array}{ll}
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)+\epsilon\left(\sum_{\alpha} c_{\alpha} H\left(b_{\alpha}\right)+\sum_{i} c_{i} H\left(b_{i}\right)\right) \\
\text { subject to: } \quad \forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
\end{array}
$$

- Its primal problem has Lagrange multipliers for each constraint

Primal Formulation

- The dual problem

$$
\begin{array}{ll}
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)+\epsilon\left(\sum_{\alpha} c_{\alpha} H\left(b_{\alpha}\right)+\sum_{i} c_{i} H\left(b_{i}\right)\right) \\
\text { subject to: } & \forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
\end{array}
$$

- Its primal problem has Lagrange multipliers for each constraint

$$
\sum_{\alpha} \epsilon c_{\alpha} \ln \sum_{y_{\alpha}} \exp \left(\frac{\theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i \in N(\alpha)} \lambda_{i \rightarrow \alpha}\left(y_{i}\right)}{\epsilon c_{\alpha}}\right)+\sum_{i} \epsilon c_{i} \ln \sum_{y_{i}} \exp \left(\frac{\theta_{i}\left(y_{i}\right)-\sum_{\alpha \in N(i)} \lambda_{i \rightarrow \alpha}\left(y_{i}\right)}{\epsilon c_{i}}\right)
$$

- Optimization via coordinate descent (close form updates) gives us a new family of message passing algorithms [Hazan and Sashua 2010].
- Optimum guaranteed when $c_{i}, c_{\alpha}>0$.

Primal Formulation

- The dual problem

$$
\begin{array}{ll}
\max \sum_{\alpha, y_{\alpha}} b_{\alpha}\left(y_{\alpha}\right) \theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i, y_{i}} b_{i}\left(y_{i}\right) \theta_{i}\left(y_{i}\right)+\epsilon\left(\sum_{\alpha} c_{\alpha} H\left(b_{\alpha}\right)+\sum_{i} c_{i} H\left(b_{i}\right)\right) \\
\text { subject to: } \quad \forall i, y_{i}, \alpha \in N(i), \sum_{y_{\alpha} \backslash y_{i}} b_{\alpha}\left(y_{\alpha}\right)=b_{i}\left(y_{i}\right)
\end{array}
$$

- Its primal problem has Lagrange multipliers for each constraint

$$
\sum_{\alpha} \epsilon c_{\alpha} \ln \sum_{y_{\alpha}} \exp \left(\frac{\theta_{\alpha}\left(y_{\alpha}\right)+\sum_{i \in N(\alpha)} \lambda_{i \rightarrow \alpha}\left(y_{i}\right)}{\epsilon c_{\alpha}}\right)+\sum_{i} \epsilon c_{i} \ln \sum_{y_{i}} \exp \left(\frac{\theta_{i}\left(y_{i}\right)-\sum_{\alpha \in N(i)} \lambda_{i \rightarrow \alpha}\left(y_{i}\right)}{\epsilon c_{i}}\right)
$$

- Optimization via coordinate descent (close form updates) gives us a new family of message passing algorithms [Hazan and Sashua 2010].
- Optimum guaranteed when $c_{i}, c_{\alpha}>0$.

Message passing: convex max-product when $\epsilon=0$

$$
\begin{aligned}
& \lambda_{i \rightarrow \alpha}\left(y_{i}\right) \\
& \mu_{\alpha \rightarrow i}\left(y_{i}\right)
\end{aligned}
$$

Algorithm 1 Convex Max-Product:
Set $\hat{c}_{i}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha}$. For every $i=1, \ldots, n$ repeat until convergence: $\forall \alpha \in N(i), x_{i}$:

$$
\begin{aligned}
& \mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\} \\
& \lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

Message passing: convex max-product when $\epsilon=0$

Algorithm 1 Convex Max-Product:
$\overline{\text { Set } \hat{c}_{i}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha} \text {. For every } i=1, \ldots, n \text { repeat }}$ until convergence: $\forall \alpha \in N(i), x_{i}$:

$$
\begin{aligned}
& \mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\} \\
& \lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

Message passing: convex max-product when $\epsilon=0$

Algorithm 1 Convex Max-Product:
$\overline{\text { Set } \hat{c}_{i}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha} \text {. For every } i=1, \ldots, n \text { repeat }}$ until convergence: $\forall \alpha \in N(i), x_{i}$:

$$
\begin{aligned}
& \mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\} \\
& \lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

Message passing: convex max-product when $\epsilon=0$

Algorithm 1 Convex Max-Product:
$\overline{\text { Set } \hat{c}_{i}}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha}$. For every $i=1, \ldots, n$ repeat until convergence: $\forall \alpha \in N(i), x_{i}$:
$\mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\}$
$\lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)$

Message passing: convex max-product when $\epsilon=0$

Algorithm 1 Convex Max-Product:
$\overline{\text { Set } \hat{c}_{i}}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha}$. For every $i=1, \ldots, n$ repeat until convergence: $\forall \alpha \in N(i), x_{i}$:

$$
\begin{aligned}
& \mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\} \\
& \lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

Message passing: convex max-product when $\epsilon=0$

Algorithm 1 Convex Max-Product:
$\overline{\text { Set } \hat{c}_{i}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha} \text {. For every } i=1, \ldots, n \text { repeat }}$ until convergence: $\forall \alpha \in N(i), x_{i}$:

$$
\begin{aligned}
& \mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\} \\
& \lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

Message passing: convex max-product when $\epsilon=0$

Algorithm 1 Convex Max-Product:
$\overline{\text { Set } \hat{c}_{i}}=c_{i}+\sum_{\alpha \in N(i)} c_{\alpha}$. For every $i=1, \ldots, n$ repeat until convergence: $\forall \alpha \in N(i), x_{i}$:
$\mu_{\alpha \rightarrow i}\left(x_{i}\right)=\inf _{x_{\alpha} \backslash x_{i}}\left\{\theta_{\alpha}\left(x_{\alpha}\right)+\sum_{j \in N(\alpha) \backslash i} \lambda_{j \rightarrow \alpha}\left(x_{j}\right)\right\}$
$\lambda_{i \rightarrow \alpha}\left(x_{i}\right)=\frac{c_{\alpha}}{\hat{c}_{i}}\left(\theta_{i}\left(x_{i}\right)+\sum_{\beta \in N(i)} \mu_{\beta \rightarrow i}\left(x_{i}\right)\right)-\mu_{\alpha \rightarrow i}\left(x_{i}\right)$

Equivalence with other models

Cloud computing: Very large problems

- Dual decomposition: partition the problem and add Lagrange multipliers

$$
\max \sum_{s \in G_{\mathcal{P}}} \sum_{\alpha \in G_{s}, x_{\alpha}} b_{\alpha}^{s}\left(x_{\alpha}\right) \theta_{\alpha}\left(x_{\alpha}\right)+\sum_{i \in G_{s}, x_{i}} b_{i}^{s}\left(x_{i}\right) \theta_{i}\left(x_{i}\right)+\epsilon \sum_{s \in G_{\mathcal{P}}}\left(\sum_{\alpha \in G_{s}} c_{\alpha} H\left(b_{\alpha}^{s}\right)+\sum_{i \in G_{s}} c_{i} H\left(b_{i}^{s}\right)\right)
$$

subject to:

$$
\begin{aligned}
& \forall s, i, x_{i}, \alpha \in N(i), \quad \sum_{x_{\alpha} \backslash x_{i}} b_{\alpha}^{s}\left(x_{\alpha}\right)=b_{i}^{s}\left(x_{i}\right) \\
& \forall s, \alpha \in N_{\mathcal{P}}(s), x_{\alpha}, \quad b_{\alpha}^{s}\left(x_{\alpha}\right)=b_{\alpha}\left(x_{\alpha}\right)
\end{aligned}
$$

- We obtain a dual problem with one additional set of Lagrange multipliers which are messages between machines [Schwing et al. 11].

