Visual Recognition: Inference in Graphical Models

Raquel Urtasun

TTI Chicago

Feb 28, 2012

- Applications
- Representation
- Inference
 - message passing (LP relaxations)
 - graph cuts
- Learning

Inference with graph cuts

• A Pseudo-boolean function $f: \{0,1\}^n \to \Re$ is submodular if

$$f(A) + f(B) \ge \underbrace{f(A \lor B)}_{OR} + \underbrace{f(A \land B)}_{AND} \quad \forall A, B \in \{0, 1\}^n$$

• Example:
$$n = 2$$
, $A = [1,0]$, $B = [0,1]$
 $f([1,0]) + f([0,1]) \ge f([1,1]) + f([0,0])$

- $\bullet\,$ Sum of submodular functions is submodular \to Easy to proof.
- Some energies in computer vision can be submodular

- Pairwise submodular functions can be transformed to st-mincut/max-flow [Hammer, 65].
- Very low running time $\sim \mathcal{O}(n)$

The ST-mincut problem

• Suppose we have a graph $G = \{V, E, C\}$, with vertices V, Edges E and costs C.

[Source: P. Kohli]

The ST-mincut problem

- An st-cut (S,T) divides the nodes between source and sink.
- The cost of a st-cut is the sum of cost of all edges going from S to T

[Source: P. Kohli]

The ST-mincut problem

• The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]

Back to our energy minimization

Construct a graph such that

- $1\,$ Any st-cut corresponds to an assignment of x
- 2 The cost of the cut is equal to the energy of x : E(x)

How are they equivalent?

$$\begin{array}{l} \displaystyle \frac{\boldsymbol{\theta}_{ij}\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)}{+\left(\boldsymbol{\theta}_{ij}(1,0)\!-\!\boldsymbol{\theta}_{ij}(0,0)\right)\mathbf{x}_{i}+\left(\boldsymbol{\theta}_{ij}(1,0)\!-\!\boldsymbol{\theta}_{ij}(0,0)\right)\mathbf{x}_{j}}{+\left(\boldsymbol{\theta}_{ij}(1,0)\!+\!\boldsymbol{\theta}_{ij}(0,1)-\boldsymbol{\theta}_{ij}(0,0)-\boldsymbol{\theta}_{ij}(1,1)\right)\left(1\!-\!\mathbf{x}_{i}\right)\mathbf{x}_{j}} \end{array}$$

 $B+C-A-D \ge 0$ is true from the submodularity of θ_{ii}

[Source: P. Kohli]

Raquel Urtasun (TTI-C)

[Source: P. Kohli]

Raquel Urtasun (TTI-C)

[Source: P. Kohli]

Raquel Urtasun (TTI-C)

How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity

[Source: P. Kohli]

[Source: P. Kohli]

[Source: P. Kohli]

Graph *g;

For all pixels p

/* Add a node to the graph */ nodeID(p) = g->add_node();

```
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
```

end

```
for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q));
end
```

```
g->compute_maxflow();
```

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

Graph cuts for multi-label problems

• Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger et al. 06] [Ramalingam et al. 08]

• Very high computational cost

[Source: P. Kohli]

Alternative: Move making

Alternative: Move making

[Source: P. Kohli]

Computing the Optimal Move

[Source: P. Kohli] Raguel Urtasun (TTI-C)

Visual Recognition

Move Making Algorithms

Minimizing Pairwise Functions [Boykov Veksler and Zabih, PAMI 2001]

- Series of locally optimal moves.
- Each move reduces energy
- Optimal move by minimizing submodular function

Paguel Urtacup (TTLC)	Visual Percentition	Eab 29 2012 19 / 21
Naquel Ortasun (TTI-C)	visual recognition	TED 20, 2012 10 / 31

$$E(f) = \sum_{\{p,q\}\in\mathcal{N}} V_{p,q}(f_p, f_q) + \sum_p D_p(f_p)$$

with $\ensuremath{\mathcal{N}}$ defining the interactions between nodes, e.g., pixels

• D_p non-negative, but arbitrary.

$$E(f) = \sum_{\{p,q\}\in\mathcal{N}} V_{p,q}(f_p, f_q) + \sum_p D_p(f_p)$$

with $\ensuremath{\mathcal{N}}$ defining the interactions between nodes, e.g., pixels

- D_p non-negative, but arbitrary.
- Same as before, where $V_{p,q} \equiv -\theta_{\alpha}$ and $D_p \equiv -\theta_p$.

$$E(f) = \sum_{\{p,q\} \in \mathcal{N}} V_{p,q}(f_p, f_q) + \sum_p D_p(f_p)$$

with ${\mathcal N}$ defining the interactions between nodes, e.g., pixels

- D_p non-negative, but arbitrary.
- Same as before, where $V_{p,q} \equiv -\theta_{\alpha}$ and $D_p \equiv -\theta_p$.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

$$E(f) = \sum_{\{p,q\} \in \mathcal{N}} V_{p,q}(f_p, f_q) + \sum_p D_p(f_p)$$

with $\mathcal N$ defining the interactions between nodes, e.g., pixels

- D_p non-negative, but arbitrary.
- Same as before, where $V_{p,q} \equiv -\theta_{\alpha}$ and $D_p \equiv -\theta_p$.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

Two general classes of pairwise interactions

• Metric if it satisfies for any set of labels α,β,γ

$$egin{array}{rcl} V(lpha,eta)=0&\leftrightarrow&lpha=eta\ V(lpha,eta)&=&V(eta,lpha)\geq 0\ V(lpha,eta)&\leq&V(lpha,\gamma)+V(\gamma,eta) \end{array}$$

• Semi-metric if it satisfies for any set of labels α, β, γ

$$V(\alpha, \beta) = 0 \quad \leftrightarrow \quad \alpha = \beta$$
$$V(\alpha, \beta) = V(\beta, \alpha) \ge 0$$

Two general classes of pairwise interactions

• Metric if it satisfies for any set of labels α,β,γ

$$egin{array}{rcl} V(lpha,eta)=0&\leftrightarrow&lpha=eta\ V(lpha,eta)&=&V(eta,lpha)\geq 0\ V(lpha,eta)&\leq&V(lpha,\gamma)+V(\gamma,eta) \end{array}$$

• Semi-metric if it satisfies for any set of labels α, β, γ

$$egin{array}{rcl} V(lpha,eta)=0 & \leftrightarrow & lpha=eta\ V(lpha,eta) & = & V(eta,lpha)\geq 0 \end{array}$$

Examples for 1D label set

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

Examples for 1D label set

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

• For multi-dimensional, replace | · | by any norm.

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

- For multi-dimensional, replace $|\cdot|$ by any norm.
- Potts model is a metric

$$V(\alpha,\beta) = K \cdot T(\alpha \neq \beta)$$

with $T(\cdot) = 1$ if the argument is true and 0 otherwise.

• Truncated quadratic is a semi-metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|^2)$$

with K a constant.

• Truncated absolute distance is a metric

$$V(\alpha,\beta) = \min(K, |\alpha - \beta|)$$

with K a constant.

- For multi-dimensional, replace $|\cdot|$ by any norm.
- Potts model is a metric

$$V(\alpha,\beta) = K \cdot T(\alpha \neq \beta)$$

with $T(\cdot) = 1$ if the argument is true and 0 otherwise.

Binary Moves

- $\alpha \beta$ moves works for semi-metrics
- α expansion works for V being a metric

Figure: Figure from P. Kohli tutorial on graph-cuts

• For certain x^1 and x^2 , the move energy is sub-modular QPBF

Swap Move

[Source: P. Kohli]

Raquel Urtasun (TTI-C)

Swap Move

Expansion Move

[Source: P. Kohli]

Expansion Move

- Move energy is submodular if:
 - Unary Potentials: Arbitrary
 - Pairwise potentials: Metric

$$\Theta_{ij}\left(\mathsf{I}_{a},\mathsf{I}_{b}\right) + \Theta_{ij}\left(\mathsf{I}_{b},\mathsf{I}_{c}\right) \geq \Theta_{ij}\left(\mathsf{I}_{a},\mathsf{I}_{c}\right)$$

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

- Any labeling can be uniquely represented by a partition of image pixels
 P = {P_l | l ∈ L}, where P_l = {p ∈ P|f_p = l} is a subset of pixels assigned label l.
- There is a one to one correspondence between labelings f and partitions \mathcal{P} .

- Any labeling can be uniquely represented by a partition of image pixels
 P = {P_l | l ∈ L}, where P_l = {p ∈ P|f_p = l} is a subset of pixels assigned label l.
- There is a one to one correspondence between labelings f and partitions \mathcal{P} .
- Given a pair of labels α, β, a move from a partition P (labeling f) to a new partition P' (labeling f') is called an α − β swap if P_l = P' for any label l ≠ α, β.

- Any labeling can be uniquely represented by a partition of image pixels
 P = {P_l | l ∈ L}, where P_l = {p ∈ P|f_p = l} is a subset of pixels assigned label l.
- There is a one to one correspondence between labelings f and partitions \mathcal{P} .
- Given a pair of labels α, β, a move from a partition P (labeling f) to a new partition P' (labeling f') is called an α − β swap if P_l = P' for any label l ≠ α, β.
- The only difference between \mathcal{P} and \mathcal{P}' is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}' , and vice-versa.

- Any labeling can be uniquely represented by a partition of image pixels
 P = {P_l | l ∈ L}, where P_l = {p ∈ P|f_p = l} is a subset of pixels assigned label l.
- There is a one to one correspondence between labelings f and partitions \mathcal{P} .
- Given a pair of labels α, β , a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}' (labeling f') is called an $\alpha \beta$ swap if $\mathcal{P}_l = \mathcal{P}'$ for any label $l \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}' is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}' , and vice-versa.
- Given a label *I*, a move from a partition *P* (labeling *f*) to a new partition *P*' (labeling *f*') is called an α-expansion if *P*_α ⊂ *P*'_α and *P*'₁ ⊂ *P*₁.

- Any labeling can be uniquely represented by a partition of image pixels
 P = {P_l | l ∈ L}, where P_l = {p ∈ P|f_p = l} is a subset of pixels assigned label l.
- There is a one to one correspondence between labelings f and partitions \mathcal{P} .
- Given a pair of labels α, β, a move from a partition P (labeling f) to a new partition P' (labeling f') is called an α − β swap if P_l = P' for any label l ≠ α, β.
- The only difference between \mathcal{P} and \mathcal{P}' is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}' , and vice-versa.
- Given a label *I*, a move from a partition *P* (labeling *f*) to a new partition *P*' (labeling *f*') is called an α-expansion if *P*_α ⊂ *P*'_α and *P*'_{*I*} ⊂ *P*_{*I*}.
- An α-expansion move allows any set of image pixels to change their labels to α.

- Any labeling can be uniquely represented by a partition of image pixels
 P = {P_l | l ∈ L}, where P_l = {p ∈ P|f_p = l} is a subset of pixels assigned label l.
- There is a one to one correspondence between labelings f and partitions \mathcal{P} .
- Given a pair of labels α, β, a move from a partition P (labeling f) to a new partition P' (labeling f') is called an α − β swap if P_l = P' for any label l ≠ α, β.
- The only difference between \mathcal{P} and \mathcal{P}' is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}' , and vice-versa.
- Given a label *I*, a move from a partition *P* (labeling *f*) to a new partition *P*' (labeling *f*') is called an α-expansion if *P*_α ⊂ *P*'_α and *P*'_{*I*} ⊂ *P*_{*I*}.
- An α-expansion move allows any set of image pixels to change their labels to α.

Figure: (a) Current partition (b) local move (c) $\alpha - \beta$ -swap (d) α -expansion.

Algorithms

```
1. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels \{\alpha, \beta\} \subset \mathcal{L}
    3.1. Find \hat{f} = \arg \min E(f') among f' within one \alpha - \beta swap of f
    3.2. If E(\hat{f}) < E(f), set f := \hat{f} and success := 1
4. If success = 1 \text{ goto } 2
5. Return f
1. Start with an arbitrary labeling f
Set success := 0
3. For each label \alpha \in \mathcal{L}
    3.1. Find \hat{f} = \arg\min E(f') among f' within one \alpha-expansion of f
    3.2. If E(\hat{f}) < E(f), set f := \hat{f} and success := 1
4. If success = 1 goto 2
5. Return f
```

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha \beta$ -swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph G_{αβ} = (V_{αβ}, E_{αβ}).

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha \beta$ -swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph G_{αβ} = (V_{αβ}, E_{αβ}).
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β .

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha \beta$ -swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph G_{αβ} = (V_{αβ}, E_{αβ}).
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β .

- The set of vertices includes the two terminals α and β, as well as image pixels p in the sets P_α and P_β (i.e., f_p ∈ {α, β}).
- Each pixel $p \in \mathcal{P}_{\alpha\beta}$ is connected to the terminals α and β , called *t*-links.
- Each set of pixels $p,q\in \mathcal{P}_{lphaeta}$ which are neighbors is connected by an edge $e_{p,q}$

Computing the Cut

- Any cut must have a single *t*-link not cut.
- This defines a labeling

$$f_p^{\mathcal{C}} = \begin{cases} \alpha & \text{if } t_p^{\alpha} \in \mathcal{C} \text{ for } p \in \mathcal{P}_{\alpha\beta} \\ \beta & \text{if } t_p^{\beta} \in \mathcal{C} \text{ for } p \in \mathcal{P}_{\alpha\beta} \\ f_p & \text{for } p \in \mathcal{P}, p \notin \mathcal{P}_{\alpha\beta}. \end{cases}$$

- There is a one-to-one correspondences between a cut and a labeling.
- The energy of the cut is the energy of the labeling.
- See Boykov et al, "fast approximate energy minimization via graph cuts" PAMI 2001.

Properties

• For any cut, then

$$\begin{array}{lll} (a) \quad If \quad t_p^{\alpha}, t_q^{\alpha} \in \mathcal{C} \quad then \quad e_{\{p,q\}} \notin \mathcal{C}. \\ (b) \quad If \quad t_p^{\beta}, t_q^{\beta} \in \mathcal{C} \quad then \quad e_{\{p,q\}} \notin \mathcal{C}. \\ (c) \quad If \quad t_p^{\beta}, t_q^{\alpha} \in \mathcal{C} \quad then \quad e_{\{p,q\}} \in \mathcal{C}. \\ (d) \quad If \quad t_p^{\alpha}, t_q^{\beta} \in \mathcal{C} \quad then \quad e_{\{p,q\}} \in \mathcal{C}. \end{array}$$

