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Graphical models
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Representation
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Inference with graph cuts
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Submodular Functions

A Pseudo-boolean function f : {0, 1}n → < is submodular if

f (A) + f (B) ≥ f (A ∨ B)︸ ︷︷ ︸
OR

+ f (A ∧ B)︸ ︷︷ ︸
AND

∀A,B ∈ {0, 1}n

Example: n = 2, A = [1, 0], B = [0, 1]

f ([1, 0]) + f ([0, 1]) ≥ f ([1, 1]) + f ([0, 0])

Sum of submodular functions is submodular → Easy to proof.

Some energies in computer vision can be submodular
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Minimizing submodular Functions

Pairwise submodular functions can be transformed to st-mincut/max-flow
[Hammer, 65].

Very low running time ∼ O(n)
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The ST-mincut problem

Suppose we have a graph G = {V ,E ,C}, with vertices V , Edges E and
costs C .

[Source: P. Kohli]
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The ST-mincut problem

An st-cut (S,T) divides the nodes between source and sink.

The cost of a st-cut is the sum of cost of all edges going from S to T

[Source: P. Kohli]
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The ST-mincut problem

The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that

1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

[Source: P. Kohli]
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How are they equivalent?
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B+C-A-D ! 0 is true from the submodularity of !ij
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Graph Construction

[Source: P. Kohli]
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Graph Construction

[Source: P. Kohli]
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How to compute the St-mincut?

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
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Graph cuts for multi-label problems

Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

Very high computational cost

[Source: P. Kohli]
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Alternative: Move making

[Source: P. Kohli]

Raquel Urtasun (TTI-C) Visual Recognition Feb 28, 2012 16 / 31



Alternative: Move making

[Source: P. Kohli]
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Computing the Optimal Move

[Source: P. Kohli]
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Move Making Algorithms

[Source: P. Kohli]
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Energy Minimization

Consider pairwise MRFs

E (f ) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑
p

Dp(fp)

with N defining the interactions between nodes, e.g., pixels

Dp non-negative, but arbitrary.

Same as before, where Vp,q ≡ −θα and Dp ≡ −θp.

This is the graph-cuts notation.

Important to notice it’s the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions

Metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0

V (α, β) ≤ V (α, γ) + V (γ, β)

Semi-metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0
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Examples for 1D label set

Truncated quadratic is a semi-metric

V (α, β) = min(K , |α− β|2)

with K a constant.

Truncated absolute distance is a metric

V (α, β) = min(K , |α− β|)

with K a constant.

For multi-dimensional, replace | · | by any norm.

Potts model is a metric

V (α, β) = K · T (α 6= β)

with T (·) = 1 if the argument is true and 0 otherwise.
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Binary Moves

α− β moves works for semi-metrics

α expansion works for V being a metric

Figure: Figure from P. Kohli tutorial on graph-cuts

For certain x1 and x2, the move energy is sub-modular QPBF
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Swap Move

[Source: P. Kohli]
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Swap Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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More formally

Any labeling can be uniquely represented by a partition of image pixels
P = {Pl |l ∈ L}, where Pl = {p ∈ P|fp = l} is a subset of pixels assigned
label l .

There is a one to one correspondence between labelings f and partitions P.

Given a pair of labels α, β, a move from a partition P (labeling f ) to a new
partition P’ (labeling f ′) is called an α− β swap if Pl = P ′ for any label
l 6= α, β.

The only difference between P and P ′ is that some pixels that were labeled
in P are now labeled in P ′, and vice-versa.

Given a label l , a move from a partition P (labeling f ) to a new partition P ′

(labeling f ′) is called an α-expansion if Pα ⊂ P ′
α and P ′

l ⊂ Pl .

An α-expansion move allows any set of image pixels to change their labels
to α.
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Example

Figure: (a) Current partition (b) local move (c) α− β-swap (d) α-expansion.
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Algorithms
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Finding optimal Swap move

Given an input labeling f (partition P) and a pair of labels α, β we want to
find a labeling f̂ that minimizes E over all labelings within one α− β-swap
of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gαβ = (Vαβ , Eαβ).

The structure of this graph is dynamically determined by the current
partition P and by the labels α, β.
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Graph Construction

The set of vertices includes the two terminals α and β, as well as image
pixels p in the sets Pα and Pβ (i.e., fp ∈ {α, β}).

Each pixel p ∈ Pαβ is connected to the terminals α and β, called t-links.

Each set of pixels p, q ∈ Pαβ which are neighbors is connected by an edge
ep,q
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Computing the Cut

Any cut must have a single t-link not cut.

This defines a labeling

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.

Raquel Urtasun (TTI-C) Visual Recognition Feb 28, 2012 30 / 31



Properties

For any cut, then
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