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Graphical models

@ Applications
@ Representation
@ Inference

o message passing (LP relaxations)
e graph cuts

@ Learning
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Inference with graph cuts
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Submodular Functions

A Pseudo-boolean function f : {0,1}" — R is submodular if

f(A)+ f(B) > f(AV B)+ f(AANB) VA B¢ {0,1}"
OR AND

Example: n=2, A=[1,0], B=[0,1]

f([1,0]) + £([0, 1]) = £([1,1]) + £([0,0])

@ Sum of submodular functions is submodular — Easy to proof.

@ Some energies in computer vision can be submodular
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Minimizing submodular Functions

@ Pairwise submodular functions can be transformed to st-mincut/max-flow
[Hammer, 65].

@ Very low running time ~ O(n)
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The ST-mincut problem

@ Suppose we have a graph G = {V, E, C}, with vertices V, Edges E and
costs C.

[Source: P. Kohli]
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The ST-mincut problem

@ An st-cut (S,T) divides the nodes between source and sink.

@ The cost of a st-cut is the sum of cost of all edges going from S to T

5+1+9=15

[Source: P. Kohli]
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The ST-mincut problem

@ The st-mincut is the st-cut with the minimum cost

2+2+4-=28

[Source: P. Kohli]
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Back to our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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St-mincut and Energy Minimization

E(x) = iZGi () + iZjeu (xi»xj)

Forallij ©(0,1) +8;(1,0) >6,(0.0)+6;(1,1)

I Equivalent (transformable)

E(x) = Z € X+ Zcij x(1-x;)
i i,j

[Source: P. Kohli]
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How are they equivalent?

A=6,(00) B=6,0,1) €=6,(10) D=8, (1)

1 0 1 0 1
B
0 0 0 D-C 0 0 +C-
+ +
A-D
C-A 1| 0 |D-C 1
0 0

if x;=1 addC- if x, = 1 add

A D-C
- 8,0.0
+ (6,(1,0)-8;(0,0)) x; + (6,(1,0)-6;(0,0)) x;
+ (8;(1,0) + 6,(0,1) - 6;(0,0) - §;(1,1)) (1-x) x;

B+C-A-D = O is true from the submodularity of 6;

[Source: P. Kohli]
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Graph Construction

I:l Source (0)

@ @

[Source: P. Kohli]
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Graph Construction

Source (0)

2

@ @

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1

Source (0)

2

@ @
5

[ ] sink (1)
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1"‘ 902 + 4&2

Source (0)

9

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 561"' gﬁz + 4&2 + 20152

Source (0)
2 9
a; O az

/-

[] sink (1)

[Source: P. Kohli]
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Graph Construction

E(ﬁl,az) = 2&1 + 5&1"‘ 9(!2 + 462 + 20152 + alaz

Source (0)
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Graph Construction

E(Gl,az) = 21‘.11 + 561"' 9“2 + 462 + 20162 + 5102

Source (0)

[Source: P. Kohli]
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Graph Construction

E(Ql,az) = 201 + Ba, + 902 + 4 +2

D Source (0)

Cost of cut = 11

‘al=1 a; =1 ‘

E(1.1) =11

[Source: P. Kohli]
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Graph Construction

E(Gl,az) = 201 +53.+9 + 4&2 + zalaz +

Source (0)

st-mincut cost = 8

E(1.0)-= 8

[Source: P. Kohli]

Raquel Urtasun (TTI-C)

Visual Recognition Feb 28, 2012

12 /31



How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Assuming non-negative capacity

[Source: P. Kohli]
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How does the code look like

| Graph *g;

For all pixels p

D Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p
Source (0)
/* Add a node to the graph */

nodelD(p) = g->add_node();
bgCost(a;) bgCost(a;)

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

[4] a
@ :

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)
end

g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

bgCost(a;) bgCost(a;)
/* Set cost of terminal edges */

set_weights(nodelD(p), fgCost(p), bgCost(p)); COST(p,q)
a;
end
—

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)

end
g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCosT(aI)
end

g->compute_maxflow(); D Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1) ‘ a; = bg a; = fg ‘

[Source: P. Kohli]
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Graph cuts for multi-label problems

@ Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

So what is the problem?

En(yiva. . Yo) = B, (X% ... Xp)
Multi-label Problem Binary label Problem

such that:
LetY and X be the set of feasible solutions, then

1. One-One encoding function T:X->Y

2. arg min E_(y) =T(arg min Ej,(x))

@ Very high computational cost

[Source: P. Kohli]

Raquel Urtasun (TTI-C) Visual Recognition Feb 28, 2012 15 / 31



Alternative: Move making

+————— SolutionSpace =~ —m——

[Source: P. Kohli]
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Alternative: Move making

Current Solution

Search
Neighbourhood

-------- Optimal Move

+————— SolutionSpace =~ ——m—m—

[Source: P. Kohli]
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Computing the Optimal Move

Current Solution

Search
Neighbourhood

-------- » Optimal Move

Key Property

Move Space

+«————— SolutionSpace =~ ——

Bigger move > Better solutions

Space * Finding the optimal move hard

ource: P_Koh
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Move Making Algorithms

Minimizing Pairwise Functions
[Boykov Veksler and Zabih, PAMI 2001]

+ Series of locally optimal moves
+ Each move reduces energy
« Optimal move by minimizing submodular function

® Current Solution

]
I:l Search Neighbourhood

Move Space (t) : 2"

1] Number of Variables
L Number of Labels

Space of Solutions (x) : L"

[Source: P. Kohli]
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Energy Minimization

@ Consider pairwise MRFs

E(F)= > Voglfaify) + D Dplfy)

{p,a}eN

with A defining the interactions between nodes, e.g., pixels
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Energy Minimization

@ Consider pairwise MRFs
E(f) = Z Vp,q(fpafq)"‘ZDp(fp)
{p,a}eN P

with A defining the interactions between nodes, e.g., pixels

@ D, non-negative, but arbitrary.
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Energy Minimization

@ Consider pairwise MRFs
E(f) = Z Vo.a(fp, fq) + Z Dp(f5)
{p,a}eN P
with A defining the interactions between nodes, e.g., pixels
@ D, non-negative, but arbitrary.

@ Same as before, where V, = -6, and D, = —0,.
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Energy Minimization

@ Consider pairwise MRFs

Z Vo.a(fo, fq) + Z Dy(15)

{p,a}eN

with A defining the interactions between nodes, e.g., pixels

D, non-negative, but arbitrary.

Same as before, where V), ; = —6, and D, = —6,.
@ This is the graph-cuts notation.

@ Important to notice it's the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ie,) =0 + a=p

V(a,8) = V(B,«
V(ie,5) < V() + V(v,8)
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ia,) =0 <+ =4

V(a, ) = ( ya) >
V(e,8) < V(ay)+ (,ﬂ)

@ Semi-metric if it satisfies for any set of labels «, 3,7

V(ie,) =0 & a=p
V(Oé,ﬁ) = V(ﬁ,a) >0
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.

@ Truncated absolute distance is a metric
V(a, B) = min(K, |a = S])

with K a constant.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric
V(a, B) = min(K, |a — B)

with K a constant.

@ Truncated absolute distance is a metric

V(a, B) = min(K, |a = S])
with K a constant.

@ For multi-dimensional, replace | - | by any norm.
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Examples for 1D label set

@ Truncated quadratic is a semi-metric

V(a, 8) = min(K, | — BJ?)
with K a constant.

@ Truncated absolute distance is a metric

V(a, 8) = min(K, o — 3])
with K a constant.
@ For multi-dimensional, replace | - | by any norm.
@ Potts model is a metric
V(ia,B) =K - T(a # )

with T(-) = 1 if the argument is true and 0 otherwise.
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@ «a — 3 moves works for semi-metrics

@ « expansion works for V' being a metric

x= txt+(2-t)x2

~

New Current Second
solution Solution solution

E ()= E(tx* + (2- t) x?)

Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts

@ For certain x! and x?, the move energy is sub-modular QPBF
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Swap Move

* Variables labeled a, £ can swap their labels

Tree
Ground
Swap Sky, House —> [l House
—_— Sky

[Source: P. Kohli]
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Swap Move

* Variables labeled a, f can swap their labels

= Move energy is submodular if:
= Unary Potentials: Arbitrary
= Pairwise potentials: Semi-metric

8;(.lt) 20
©;(.lt) =0 «<——» a=b

Examples: Potts model, Truncated Convex

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

— Tree
—p - Ground
L — - House
— Sky

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

Semi metric
+

= Unary Potentials: Arbitrary Triangle
Inequality

= Move energy is submodular if:

= Pairwise potentials: Metric

6, (la.p) + 6, (1,.1.) > 6, (l..1.)
Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

[Source: P. Kohli]
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.

@ An a-expansion move allows any set of image pixels to change their labels
to a.
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Example

Figure: (a) Current partition (b) local move (c) oo — S-swap (d) a-expansion.
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Algorithms

L. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,f} C L
3.1. Find f=argminE(f') among f' within one a-j swap of f

3.2. If E(f}(E(f), set f := f and success := 1
4. TIf success = 1 goto 2

Return f

[

o

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label e L
3.1. Find f = argmin E(f') among f' within one a-expansion of f
3.2, If E(f) < E(f), set f := f and success :

=1
4, If success = 1 goto 2
5. Return [
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap

of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-

@ The structure of this graph is dynamically determined by the current
partition P and by the labels «, §.
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Graph Construction

@ The set of vertices includes the two terminals « and 3, as well as image
pixels p in the sets P, and Pj (i.e., f, € {a, 5}).

@ Each pixel p € P,g is connected to the terminals o and 3, called t-links.

@ Each set of pixels p, g € P,z which are neighbors is connected by an edge
€p.q

edge weight for
ty | Dp(e) + T aewy Ve, fy) | P € Pag
9€Pag
ti Dy(8) +% usy V(B8,1y) | p € Pas
€ Pag
Eipa} Ve, B) oy

P:q€Pag
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Computing the Cut

@ Any cut must have a single t-link not cut.

@ This defines a labeling

a if £ €C for p € Puy
fe g if tffEC for p € Pus
fp for peP, pé& Pus.

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.
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@ For any cut, then

(a) If t5,ty €C then egq ¢C.
(b) If t)eC then epqy &C.
(c) If 42 eC then epqy €C.
(d) If 5.t7eC then epq €C.
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