Visual Recognition: Inference in Graphical Models

Raquel Urtasun

TTI Chicago
Feb 28, 2012

Graphical models

- Applications
- Representation
- Inference
- message passing (LP relaxations)
- graph cuts
- Learning

Inference with graph cuts

Submodular Functions

- A Pseudo-boolean function $f:\{0,1\}^{n} \rightarrow \Re$ is submodular if

$$
f(A)+f(B) \geq \underbrace{f(A \vee B)}_{O R}+\underbrace{f(A \wedge B)}_{A N D} \quad \forall A, B \in\{0,1\}^{n}
$$

- Example: $n=2, A=[1,0], B=[0,1]$

$$
f([1,0])+f([0,1]) \geq f([1,1])+f([0,0])
$$

- Sum of submodular functions is submodular \rightarrow Easy to proof.
- Some energies in computer vision can be submodular

Minimizing submodular Functions

- Pairwise submodular functions can be transformed to st-mincut/max-flow [Hammer, 65].
- Very low running time $\sim \mathcal{O}(n)$

The ST-mincut problem

- Suppose we have a graph $G=\{V, E, C\}$, with vertices V, Edges E and costs C.

[Source: P. Kohli]

The ST-mincut problem

- An st-cut (S, T) divides the nodes between source and sink.
- The cost of a st-cut is the sum of cost of all edges going from S to T

[Source: P. Kohli]

The ST-mincut problem

- The st-mincut is the st-cut with the minimum cost

[Source: P. Kohli]

Back to our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x
2 The cost of the cut is equal to the energy of x : $E(x)$

[Source: P. Kohli]

St-mincut and Energy Minimization

$$
\begin{gathered}
\qquad E(x)=\sum_{i} \theta_{i}\left(x_{i}\right)+\sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}\right) \\
\text { For all ij } \theta_{i j}(0,1)+\theta_{i j}(1,0) \geq \theta_{i j}(0,0)+\theta_{i j}(1,1)
\end{gathered}
$$

Equivalent (transformable)

$$
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} c_{i j} x_{i}\left(1-x_{j}\right) \quad c_{i j} \geq 0
$$

[Source: P. Kohli]

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(x_{i}, x_{\mathrm{j}}\right) & =\theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{i}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-x_{\mathrm{i}}\right) x_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$
[Source: P. Kohli]

Graph Construction

$E\left(a_{1}, a_{2}\right)$

Source (0)

Sink (1)

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}
$$

Sink (1)

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

st-mincut cost = 8

$$
a_{1}=1 \quad a_{2}=0
$$

$$
E(1,0)=8
$$

How to compute the St-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

> Edges: Flow < Capacity
> Nodes: Flow in = Flow out

Min-cut \backslash Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity
[Source: P. Kohli]

How does the code look like

Graph *g;
For all pixels \mathbf{p}
/* Add a node to the graph */

nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q add_weights(nodelD(p), nodelD(q), cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)

How does the code look like

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */ set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p)); // is the label of pixel p (0 or 1)
[Source: P. Kohli]

How does the code look like

> Graph *g;

For all pixels \mathbf{p}
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q)); end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end

```
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```

Source (0) $\operatorname{bg} \operatorname{Cost}\left(a_{2}\right)$
$\mathrm{fg} \operatorname{Cost}\left(a_{2}\right)$
Sink (1)

$$
a_{1}=b g \quad a_{2}=f g
$$

[Source: P. Kohli]

Graph cuts for multi-label problems

- Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger et al. 06] [Ramalingam et al. 08]

So what is the problem?

 such that:
Let Y and X be the set of feasible solutions, then

1. One-One encoding function $T: X->Y$
2. $\arg \min E_{m}(y)=T\left(\arg \min E_{b}(x)\right)$

- Very high computational cost
[Source: P. Kohli]

Alternative: Move making

[Source: P. Kohli]

Alternative: Move making

$$
\begin{array}{cl}
\quad \text { Current Solution } \\
|\ldots| & \begin{array}{l}
\text { Search } \\
\text { Neighbourhood }
\end{array} \\
\ldots \ldots . .>\text { Optimal Move }
\end{array}
$$

[Source: P. Kohli]

Computing the Optimal Move

Move Making Algorithms

Minimizing Pairwise Functions

[Boykov Veksler and Zabih, PAMI 2001]

- Series of locally optimal moves
- Each move reduces energy
- Optimal move by minimizing submodular function

- Current Solution

n Number of Variables
L Number of Labels

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.
- Same as before, where $V_{p, q} \equiv-\theta_{\alpha}$ and $D_{p} \equiv-\theta_{p}$.

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.
- Same as before, where $V_{p, q} \equiv-\theta_{\alpha}$ and $D_{p} \equiv-\theta_{p}$.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.
- Same as before, where $V_{p, q} \equiv-\theta_{\alpha}$ and $D_{p} \equiv-\theta_{p}$.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

Metric vs Semimetric

Two general classes of pairwise interactions

- Metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
$$

- Semi-metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
$$

Metric vs Semimetric

Two general classes of pairwise interactions

- Metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
$$

- Semi-metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
$$

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

- For multi-dimensional, replace |• | by any norm.

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

- For multi-dimensional, replace $|\cdot|$ by any norm.
- Potts model is a metric

$$
V(\alpha, \beta)=K \cdot T(\alpha \neq \beta)
$$

with $T(\cdot)=1$ if the argument is true and 0 otherwise.

Examples for 1D label set

- Truncated quadratic is a semi-metric

$$
V(\alpha, \beta)=\min \left(K,|\alpha-\beta|^{2}\right)
$$

with K a constant.

- Truncated absolute distance is a metric

$$
V(\alpha, \beta)=\min (K,|\alpha-\beta|)
$$

with K a constant.

- For multi-dimensional, replace $|\cdot|$ by any norm.
- Potts model is a metric

$$
V(\alpha, \beta)=K \cdot T(\alpha \neq \beta)
$$

with $T(\cdot)=1$ if the argument is true and 0 otherwise.

Binary Moves

- $\alpha-\beta$ moves works for semi-metrics
- α expansion works for V being a metric

Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts

- For certain x^{1} and x^{2}, the move energy is sub-modular QPBF

Swap Move

- Variables labeled α, β can swap their labels

[Source: P. Kohli]

Swap Move

- Variables labeled α, β can swap their labels
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Semi-metric

$$
\begin{gathered}
\theta_{i j}\left(I_{a}, I_{b}\right) \geq 0 \\
\theta_{i j}\left(l_{a}, l_{b}\right)=0 \quad a=b
\end{gathered}
$$

Examples: Potts model, Truncated Convex
[Source: P. Kohli]

Expansion Move

- Variables take label α or retain current label

Status: Exipalizeflyithatyee

[Source: P. Kohli]

Expansion Move

- Variables take label α or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric

Semi metric +

Triangle Inequality

$$
\theta_{\mathrm{ij}}\left(\mathrm{l}_{\mathrm{a}}, \mathrm{l}_{\mathrm{b}}\right)+\theta_{\mathrm{ij}}\left(l_{\mathrm{b}}, \mathrm{l}_{\mathrm{c}}\right) \geq \theta_{\mathrm{ij}}\left(\mathrm{l}_{\mathrm{a}}, \mathrm{l}_{\mathrm{c}}\right)
$$

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{l}^{\prime} \subset \mathcal{P}_{I}$.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}$.
- An α-expansion move allows any set of image pixels to change their labels to α.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}$.
- An α-expansion move allows any set of image pixels to change their labels to α.

Example

Figure: (a) Current partition (b) local move (c) $\alpha-\beta$-swap (d) α-expansion.

Algorithms

1. Start with an arbitrary labeling f
2. Set success $:=0$
3. For each pair of labels $\{\alpha, \beta\} \subset \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one $\alpha-\beta$ swap of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success $:=1$
4. If success $=1$ goto 2
5. Return f
6. Start with an arbitrary labeling f
7. Set success := 0
8. For each label $\alpha \in \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one α-expansion of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success $:=1$
9. If success $=1$ goto 2
10. Return f

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β.

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β.

Graph Construction

- The set of vertices includes the two terminals α and β, as well as image pixels p in the sets \mathcal{P}_{α} and \mathcal{P}_{β} (i.e., $f_{p} \in\{\alpha, \beta\}$).
- Each pixel $p \in \mathcal{P}_{\alpha \beta}$ is connected to the terminals α and β, called t-links.
- Each set of pixels $p, q \in \mathcal{P}_{\alpha \beta}$ which are neighbors is connected by an edge $e_{p, q}$

edge	weight	for
t_{p}^{α}	$D_{p}(\alpha)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\alpha, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
t_{p}^{β}	$D_{p}(\beta)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\beta, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
$e_{\{p, q\}}$	$V(\alpha, \beta)$	$\{p, q\} \in \mathcal{N}$ $p, q \in \mathcal{P}_{\alpha \beta}$

Computing the Cut

- Any cut must have a single t-link not cut.
- This defines a labeling

$$
f_{p}^{\mathcal{C}}= \begin{cases}\alpha & \text { if } t_{p}^{\alpha} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ \beta & \text { if } t_{p}^{\beta} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ f_{p} & \text { for } p \in \mathcal{P}, p \notin \mathcal{P}_{\alpha \beta}\end{cases}
$$

- There is a one-to-one correspondences between a cut and a labeling.
- The energy of the cut is the energy of the labeling.
- See Boykov et al, " fast approximate energy minimization via graph cuts" PAMI 2001.

Properties

- For any cut, then
(a) If $t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}$ then $e_{\{p, q\}} \notin \mathcal{C}$.
(b) If $t_{p}^{\beta}, t_{q}^{\beta} \in \mathcal{C}$ then $e_{\{p, q\}} \notin \mathcal{C}$.
(c) If $t_{p}^{\beta}, t_{q}^{\alpha} \in \mathcal{C}$ then $e_{\{p, q\}} \in \mathcal{C}$.
(d) If $t_{p}^{\alpha}, t_{q}^{\beta} \in \mathcal{C}$ then $e_{\{p, q\}} \in \mathcal{C}$.

