Visual Recognition: Inference in Graphical Models

Raquel Urtasun

TTI Chicago
March 1, 2012

Graphical models

- Applications
- Representation
- Inference
- message passing (LP relaxations)
- graph cuts
- Learning

Inference with graph cuts

St-mincut and Energy Minimization

$$
\begin{gathered}
\qquad E(x)=\sum_{i} \theta_{i}\left(x_{i}\right)+\sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}\right) \\
\text { For all ij } \theta_{i j}(0,1)+\theta_{i j}(1,0) \geq \theta_{i j}(0,0)+\theta_{i j}(1,1)
\end{gathered}
$$

Equivalent (transformable)

$$
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} c_{i j} x_{i}\left(1-x_{j}\right) \quad c_{i j} \geq 0
$$

[Source: P. Kohli]

How are they equivalent?

$$
A=\theta_{i j}(0,0) \quad B=\theta_{i j}(0,1) \quad C=\theta_{i j}(1,0) \quad D=\theta_{i j}(1,1)
$$

$$
\begin{aligned}
\theta_{\mathrm{ij}}\left(x_{i}, x_{\mathrm{j}}\right) & =\theta_{\mathrm{ij}}(0,0) \\
& +\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{i}+\left(\theta_{\mathrm{ij}}(1,0)-\theta_{\mathrm{ij}}(0,0)\right) x_{\mathrm{j}} \\
& +\left(\theta_{\mathrm{ij}}(1,0)+\theta_{\mathrm{ij}}(0,1)-\theta_{\mathrm{ij}}(0,0)-\theta_{\mathrm{ij}}(1,1)\right)\left(1-x_{\mathrm{i}}\right) x_{\mathrm{j}}
\end{aligned}
$$

$B+C-A-D \geq 0$ is true from the submodularity of $\theta_{i j}$
[Source: P. Kohli]

Our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x
2 The cost of the cut is equal to the energy of x : $E(x)$

[Source: P. Kohli]

Graph Construction

$$
E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}
$$

st-mincut cost = 8

$$
a_{1}=1 \quad a_{2}=0
$$

$$
E(1,0)=8
$$

How does the code look like

Graph *g;
For all pixels \mathbf{p}
/* Add a node to the graph */

nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q add_weights(nodeID(p), nodelD(q), cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p)); // is the label of pixel p (0 or 1)

How does the code look like

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */ set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p)); // is the label of pixel p (0 or 1)
[Source: P. Kohli]

How does the code look like

> Graph *g;

For all pixels \mathbf{p}
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q)); end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like

Graph *g;
For all pixels p
/* Add a node to the graph */ nodelD(p) = g->add_node();
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p, q
add_weights(nodeID(p), nodeID(q), cost(p,q));
end

```
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```

Source (0) $\operatorname{bg} \operatorname{Cost}\left(a_{2}\right)$
$\mathrm{fg} \operatorname{Cost}\left(a_{2}\right)$
Sink (1)

$$
a_{1}=b g \quad a_{2}=f g
$$

[Source: P. Kohli]

Graph cuts for multi-label problems

- Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger et al. 06] [Ramalingam et al. 08]

So what is the problem?

 such that:
Let Y and X be the set of feasible solutions, then

1. One-One encoding function $T: X->Y$
2. $\arg \min E_{m}(y)=T\left(\arg \min E_{b}(x)\right)$

- Very high computational cost
[Source: P. Kohli]

Computing the Optimal Move

Move Making Algorithms

Minimizing Pairwise Functions

[Boykov Veksler and Zabih, PAMI 2001]

- Series of locally optimal moves
- Each move reduces energy
- Optimal move by minimizing submodular function

- Current Solution

n Number of Variables
L Number of Labels

Space of Solutions (x) : Ln

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.
- Same as before, where $V_{p, q} \equiv-\theta_{\alpha}$ and $D_{p} \equiv-\theta_{p}$.

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.
- Same as before, where $V_{p, q} \equiv-\theta_{\alpha}$ and $D_{p} \equiv-\theta_{p}$.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

Energy Minimization

- Consider pairwise MRFs

$$
E(f)=\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)+\sum_{p} D_{p}\left(f_{p}\right)
$$

with \mathcal{N} defining the interactions between nodes, e.g., pixels

- D_{p} non-negative, but arbitrary.
- Same as before, where $V_{p, q} \equiv-\theta_{\alpha}$ and $D_{p} \equiv-\theta_{p}$.
- This is the graph-cuts notation.
- Important to notice it's the same thing.

Metric vs Semimetric

Two general classes of pairwise interactions

- Metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
$$

- Semi-metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
$$

Metric vs Semimetric

Two general classes of pairwise interactions

- Metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0 \\
V(\alpha, \beta) & \leq V(\alpha, \gamma)+V(\gamma, \beta)
\end{aligned}
$$

- Semi-metric if it satisfies for any set of labels α, β, γ

$$
\begin{aligned}
V(\alpha, \beta)=0 & \leftrightarrow \alpha=\beta \\
V(\alpha, \beta) & =V(\beta, \alpha) \geq 0
\end{aligned}
$$

Binary Moves

- $\alpha-\beta$ moves works for semi-metrics
- α expansion works for V being a metric

Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts

- For certain x^{1} and x^{2}, the move energy is sub-modular QPBF

Swap Move

- Variables labeled α, β can swap their labels

[Source: P. Kohli]

Swap Move

- Variables labeled α, β can swap their labels
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Semi-metric

$$
\begin{gathered}
\theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{b}}\right) \geq 0 \\
\theta_{\mathrm{ij}}\left(I_{\mathrm{a}}, I_{\mathrm{b}}\right)=0 \quad \mathrm{a}=\mathrm{b}
\end{gathered}
$$

Examples: Potts model, Truncated Convex
[Source: P. Kohli]

Expansion Move

- Variables take label α or retain current label

Status: Exipalizeflyithatyee

[Source: P. Kohli]

Expansion Move

- Variables take label α or retain current label
- Move energy is submodular if:
- Unary Potentials: Arbitrary
- Pairwise potentials: Metric

Semi metric +

Triangle Inequality

$$
\theta_{i j}\left(l_{a}, l_{b}\right)+\theta_{i j}\left(l_{b}, l_{c}\right) \geq \theta_{i j}\left(l_{a}, l_{c}\right)
$$

Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{I} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{l}^{\prime} \subset \mathcal{P}_{I}$.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}$.
- An α-expansion move allows any set of image pixels to change their labels to α.

More formally

- Any labeling can be uniquely represented by a partition of image pixels $\mathbf{P}=\left\{\mathcal{P}_{l} \mid I \in \mathcal{L}\right\}$, where $\mathcal{P}_{I}=\left\{p \in \mathcal{P} \mid f_{p}=l\right\}$ is a subset of pixels assigned label I.
- There is a one to one correspondence between labelings f and partitions \mathcal{P}.
- Given a pair of labels α, β, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an $\alpha-\beta$ swap if $\mathcal{P}_{l}=\mathcal{P}^{\prime}$ for any label $I \neq \alpha, \beta$.
- The only difference between \mathcal{P} and \mathcal{P}^{\prime} is that some pixels that were labeled in \mathcal{P} are now labeled in \mathcal{P}^{\prime}, and vice-versa.
- Given a label I, a move from a partition \mathcal{P} (labeling f) to a new partition \mathcal{P}^{\prime} (labeling f^{\prime}) is called an α-expansion if $\mathcal{P}_{\alpha} \subset \mathcal{P}_{\alpha}^{\prime}$ and $\mathcal{P}_{I}^{\prime} \subset \mathcal{P}_{I}$.
- An α-expansion move allows any set of image pixels to change their labels to α.

Example

Figure: (a) Current partition (b) local move (c) $\alpha-\beta$-swap (d) α-expansion.

Algorithms

1. Start with an arbitrary labeling f
2. Set success $:=0$
3. For each pair of labels $\{\alpha, \beta\} \subset \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one $\alpha-\beta$ swap of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success $:=1$
4. If success $=1$ goto 2
5. Return f
6. Start with an arbitrary labeling f
7. Set success := 0
8. For each label $\alpha \in \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one α-expansion of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success $:=1$
9. If success $=1$ goto 2
10. Return f

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β.

Finding optimal Swap move

- Given an input labeling f (partition \mathcal{P}) and a pair of labels α, β we want to find a labeling \hat{f} that minimizes E over all labelings within one $\alpha-\beta$-swap of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha \beta}=\left(\mathcal{V}_{\alpha \beta}, \mathcal{E}_{\alpha \beta}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the labels α, β.

Graph Construction

- The set of vertices includes the two terminals α and β, as well as image pixels p in the sets \mathcal{P}_{α} and \mathcal{P}_{β} (i.e., $f_{p} \in\{\alpha, \beta\}$).
- Each pixel $p \in \mathcal{P}_{\alpha \beta}$ is connected to the terminals α and β, called t-links.
- Each set of pixels $p, q \in \mathcal{P}_{\alpha \beta}$ which are neighbors is connected by an edge $e_{p, q}$

edge	weight	for
t_{p}^{α}	$D_{p}(\alpha)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\alpha, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
t_{p}^{β}	$D_{p}(\beta)+\sum_{\substack{q \in \mathcal{N}_{p} \\ q \notin \mathcal{P}_{\alpha \beta}}} V\left(\beta, f_{q}\right)$	$p \in \mathcal{P}_{\alpha \beta}$
$e_{\{p, q\}}$	$V(\alpha, \beta)$	$\{p, q\} \in \mathcal{N}$ $p, q \in \mathcal{P}_{\alpha \beta}$

Computing the Cut

- Any cut must have a single t-link not cut.
- This defines a labeling

$$
f_{p}^{\mathcal{C}}= \begin{cases}\alpha & \text { if } t_{p}^{\alpha} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ \beta & \text { if } t_{p}^{\beta} \in \mathcal{C} \text { for } p \in \mathcal{P}_{\alpha \beta} \\ f_{p} & \text { for } p \in \mathcal{P}, p \notin \mathcal{P}_{\alpha \beta}\end{cases}
$$

- There is a one-to-one correspondences between a cut and a labeling.
- The energy of the cut is the energy of the labeling.
- See Boykov et al, " fast approximate energy minimization via graph cuts" PAMI 2001.

Properties

- For any cut, then
(a) If $t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}$ then $e_{\{p, q\}} \notin \mathcal{C}$.
(b) If $t_{p}^{\beta}, t_{q}^{\beta} \in \mathcal{C}$ then $e_{\{p, q\}} \notin \mathcal{C}$.
(c) If $t_{p}^{\beta}, t_{q}^{\alpha} \in \mathcal{C}$ then $e_{\{p, q\}} \in \mathcal{C}$.
(d) If $t_{p}^{\alpha}, t_{q}^{\beta} \in \mathcal{C}$ then $e_{\{p, q\}} \in \mathcal{C}$.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the label α.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the label α.
- Different graph than the $\alpha-\beta$ swap.

Finding the optimal α expansion

- Given an input labeling f (partition \mathcal{P}) and a label α we want to find a labeling \hat{f} that minimizes E over all labelings within one α-expansion of f.
- This is going to be done by computing a labeling corresponding to a minimum cut on a graph $\mathcal{G}_{\alpha}=\left(\mathcal{V}_{\alpha}, \mathcal{E}_{\alpha}\right)$.
- The structure of this graph is dynamically determined by the current partition \mathcal{P} and by the label α.
- Different graph than the $\alpha-\beta$ swap.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.
- For each pair of neighboring pixels such that $f_{p} \neq f_{q}$, we create a triplet $\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}$.

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.
- For each pair of neighboring pixels such that $f_{p} \neq f_{q}$, we create a triplet $\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}$.
- The set of edges is then

$$
\mathcal{E}_{\alpha}=\left\{\bigcup_{p \in \mathcal{P}}\left\{t_{p}^{\alpha}, t_{p}^{\bar{\alpha}}\right\}, \bigcup_{\substack{\left(p, q \in \mathcal{E} \\ p, f_{p}\right.}} \mathcal{E}_{\{p, q\}}, \bigcup_{\substack{(p, q) \in \mathcal{V} \\ p, p, q}} e_{\{p, q\}}\right\}
$$

Graph Construction

- The set of vertices includes the two terminals α and $\bar{\alpha}$, as well as all image pixels $p \in \mathcal{P}$.
- Additionally, for each pair of neighboring pixels p, q such that $f_{p} \neq f_{q}$ we create an auxiliary node $a_{p, q}$.
- Each pixel p is connected to the terminals α and $\bar{\alpha}$, called t-links.
- Each set of pixels p, q which are neighbors and $f_{p}=f_{q}$, we connect with and n-link.
- For each pair of neighboring pixels such that $f_{p} \neq f_{q}$, we create a triplet $\left\{e_{p, a}, e_{a, q}, t_{a}^{\bar{\alpha}}\right\}$.
- The set of edges is then

$$
\mathcal{E}_{\alpha}=\left\{\bigcup_{p \in \mathcal{P}}\left\{t_{p}^{\alpha}, t_{p}^{\bar{\alpha}}\right\}, \bigcup_{\substack{\left(p, p \in \in \mathbb{N} \\ p, F_{q}\right.}} \mathcal{E}_{\{p, q\}}, \bigcup_{\substack{\left\{p, p \in \in \mathcal{N} \\ p, p_{q}\right.}} e_{\{p, q\}}\right\}
$$

Graph Construction

Properties

- There is a one-to-one correspondences between a cut and a labeling.

$$
f_{p}^{\mathcal{C}}=\left\{\begin{array}{lll}
\alpha & \text { if } & t_{p}^{\alpha} \in \mathcal{C} \\
f_{p} & \text { if } & t_{p}^{\bar{\alpha}} \in \mathcal{C}
\end{array} \quad \forall p \in \mathcal{P}\right.
$$

- The energy of the cut is the energy of the labeling.
- See Boykov et al, "fast approximate energy minimization via graph cuts" PAMI 2001.

Property 5.2. If $\{p, q\} \in \mathcal{N}$ and $f_{p} \neq f_{q}$, then a minimum cut \mathcal{C} on \mathcal{G}_{α} satisfies:
(a) If $t_{p}^{\alpha}, t_{q}^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=\emptyset$.
(b) If $t_{p}^{\bar{\alpha}}, t_{q}^{\bar{\alpha}} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=t_{a}^{\bar{\alpha}}$.
(c) If $t_{p}^{\bar{\alpha}}, t_{q}^{\alpha} \in \mathcal{C}$ then $\mathcal{C} \cap \mathcal{E}_{\{p, q\}}=e_{\{p, a\}}$.
(d) If $t_{p}^{\alpha}, t_{q}^{\bar{\alpha}} \in \mathcal{C} \quad$ then $\quad \mathcal{C} \cap \mathcal{E}_{\{p, q\}}=e_{\{a, q\}}$.

Learning in graphical models

Parameter learning

- The MAP problem was defined as

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Learn parameters w for more accurate prediction

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \mathbf{w}_{i} \phi_{i}\left(y_{i}\right)+\sum_{\alpha} \mathbf{w}_{\alpha} \phi_{\alpha}\left(y_{\alpha}\right)
$$

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- Different learning frameworks depending on the surrogate loss $\hat{\ell}(\mathbf{w}, x, y)$
- Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04] - log-loss for Conditional Random Fields [Lafferty et al. 01]
- Unified by [Hazan and Urtasun, 10]

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Different learning frameworks depending on the surrogate loss $\hat{\ell}(\mathbf{w}, x, y)$
- Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04]
- log-loss for Conditional Random Fields [Lafferty et al. 01]
- Unified by [Hazan and Urtasun, 10]

Recall SVM

- In SVMs we minimize the following program

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left(b+\mathbf{w}^{T} \mathbf{x}_{i}\right)-1+\xi_{i} \geq 0, \quad \forall i=1, \ldots, N .
\end{gathered}
$$

with $y_{i} \in\{-1,1\}$ binary.

- We need to extend this to reason about more complex structures, not just binary variables.

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced
- $\Delta\left(y_{i}, f\left(x_{i}, w\right)\right)$ is the "task loss" which depends on the application
- segmentation: per pixel segmentation error
- detection: intersection over the union

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced
- $\Delta\left(y_{i}, f\left(x_{i}, w\right)\right)$ is the "task loss" which depends on the application
- segmentation: per pixel segmentation error
- detection: intersection over the union
- Typically, $\Delta\left(y, y^{\prime}\right)=0$ if $y=y^{\prime}$

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced
- $\Delta\left(y_{i}, f\left(x_{i}, w\right)\right)$ is the "task loss" which depends on the application
- segmentation: per pixel segmentation error
- detection: intersection over the union
- Typically, $\Delta\left(y, y^{\prime}\right)=0$ if $y=y^{\prime}$

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{w^{\top} \phi\left(x_{i}, y\right)\right\} \leq w^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)\right\} \leq \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

- This can be replaced by $|\mathcal{Y}|-1$ inequalities

$$
\forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}: \quad \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{\top} \phi\left(x_{i}, y\right) \geq 0
$$

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)\right\} \leq \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

- This can be replaced by $|\mathcal{Y}|-1$ inequalities

$$
\forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}: \quad \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 0
$$

- What's the problem of this?

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)\right\} \leq \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

- This can be replaced by $|\mathcal{Y}|-1$ inequalities

$$
\forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}: \quad \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 0
$$

- What's the problem of this?

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the w with the maximum margin.

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1 \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{gathered}
$$

- This is a quadratic program, so it's convex

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1 \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{gathered}
$$

- This is a quadratic program, so it's convex
- But it involves exponentially many constraints!

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1 \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{gathered}
$$

- This is a quadratic program, so it's convex
- But it involves exponentially many constraints!

Non-separable case

Multiple formulations

- Multi-class classification [Crammer \& Singer, 03]
- Slack re-scaling [Tsochantaridis et al. 05]
- Margin re-scaling [Taskar et al. 04]

Let's look at them in more details

Multi-class classification [Crammer \& Singer, 03]

- Enforce a large margin and do a batch convex optimization
- The minimization program is then

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\xi_{i} \quad \forall i \in\{1, \cdots, n\}, \forall y \neq y_{i}
\end{aligned}
$$

- Can also be written in terms of kernels

Structured Output SVMs

- Frame structured prediction as a multiclass problem to predict a single element of Y and pay a penalty for mistakes
- Not all errors are created equally, e.g. in an HMM making only one mistake in a sequence should be penalized less than making 50 mistakes

Structured Output SVMs

- Frame structured prediction as a multiclass problem to predict a single element of Y and pay a penalty for mistakes
- Not all errors are created equally, e.g. in an HMM making only one mistake in a sequence should be penalized less than making 50 mistakes
- Pay a loss proportional to the difference between true and predicted error (task dependent)

$$
\Delta\left(y_{i}, y\right)
$$

[Source: M. Blaschko]

Structured Output SVMs

- Frame structured prediction as a multiclass problem to predict a single element of Y and pay a penalty for mistakes
- Not all errors are created equally, e.g. in an HMM making only one mistake in a sequence should be penalized less than making 50 mistakes
- Pay a loss proportional to the difference between true and predicted error (task dependent)

$$
\Delta\left(y_{i}, y\right)
$$

[Source: M. Blaschko]

Example: Data imbalanced

- Suppose that we have highly imbalanced training data: $n_{+} \gg n_{-}$
- We still have a two class problem
- We can use structured output formulation to pay a higher price for misclassification of positives than misclassification of negative, e.g.,

$$
\Delta\left(y_{i}, y\right)= \begin{cases}0 & \text { if } y_{i}==y \\ \frac{1}{n_{+}} & \text {if } y_{i}=1 \wedge y=-1 \\ \frac{1}{n_{-}} & \text {if } y_{i}=-1 \wedge y=1\end{cases}
$$

[Source: M. Blaschko]

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss
- The minimization program is then

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{\top} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi_{i}}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss
- The minimization program is then

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi_{i}}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- The justification is that $\frac{1}{n} \sum_{i=1}^{n} \xi_{i}$ is an upper-bound on the empirical risk.
- Easy to proof

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss
- The minimization program is then

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi_{i}}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- The justification is that $\frac{1}{n} \sum_{i=1}^{n} \xi_{i}$ is an upper-bound on the empirical risk.
- Easy to proof

Margin re-scaling

- In this case the minimization problem is formulated as

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi_{i} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- The justification is that $\frac{1}{n} \sum_{i=1}^{n} \xi_{i}$ is an upper-bound on the empirical risk.
- Also easy to proof.

Margin vs Slack re-scaling

Algorithm

- Problem is the exponential number of constraints
- Derive a cutting plane algorithm, where the most violated constraints are added as we go

```
Algorithm 1 Algorithm for solving \(\mathrm{SVM}_{0}\) and the loss re-scaling formulations \(\mathrm{SVM}_{1}^{*}\) and \(\mathrm{SVM}_{2}^{*}\)
    1: Input: \(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right), C, \varepsilon\)
    \(S_{i} \leftarrow \emptyset\) for all \(i=1, \ldots, n\)
    repeat
    4: \(\quad\) for \(i=1, \ldots, n\) do
    5: /* prepare cost function for optimization */
    set up cost function
    \(H(\mathbf{y}) \equiv \begin{cases}1-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle & \left(\mathrm{SVM}_{0}\right) \\ \left(1-\left\langle\delta \Psi_{i}^{\prime}(\mathbf{y}), \mathbf{w}\right\rangle\right) \Delta\left(\mathbf{y}_{i}, \mathbf{y}\right) & \left(\mathrm{SVM}_{1}^{\Delta s}\right) \\ \triangle\left(\mathbf{y}_{i}, \mathbf{y}\right)-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle & \left(\mathrm{SVM}_{1}^{\Delta m}\right) \\ \left(1-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle\right) \sqrt{\triangle\left(\mathbf{y}_{i}, \mathbf{y}\right)} & \left(\mathrm{SVM}_{2}^{\Delta s}\right) \\ \sqrt{\Delta\left(\mathbf{y}_{i}, \mathbf{y}\right)}-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle & \left(\mathrm{SVM}_{2}^{\Delta m}\right)\end{cases}\)
    where \(\mathbf{w} \equiv \Sigma_{j} \sum_{y^{\prime} \in S_{j}} \alpha_{\left(j y^{\prime}\right)} \delta \Psi_{j}\left(\mathbf{y}^{\prime}\right)\).
    6: /* find cutting plane */
        compute \(\hat{\mathbf{y}}=\arg _{\max }^{\mathbf{y} \in \mathcal{Y}} \boldsymbol{Y} H(\mathbf{y})\)
    7: /* determine value of current slack variable */
    compute \(\xi_{i}=\max \left\{0, \max _{\mathrm{y} \in S_{i}} H(\mathbf{y})\right\}\)
    if \(H(\hat{\mathbf{y}})>\xi_{i}+\varepsilon\) then
/* add constraint to the working set */
\(S_{i} \leftarrow S_{i} \cup\{\hat{\mathbf{y}}\}\)
10a: /* Variant (a): perform full optimization */
    \(\alpha_{S} \leftarrow\) optimize the dual of \(\mathrm{SVM}_{0}, \mathrm{SVM}_{1}^{*}\) or \(\mathrm{SVM}_{2}^{*}\) over \(S, S=\cup_{i} S_{i}\).
10b: /* Variant (b): perform subspace ascent */
\(\alpha_{S_{i}} \leftarrow\) optimize the dual of \(\mathrm{SVM}_{0}, \mathrm{SVM}_{1}^{*}\) or \(\mathrm{SVM}_{2}^{*}\) over \(S_{i}\)
        end if
        end for
14: until no \(S_{i}\) has changed during iteration
```


Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}

Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}
- Use Graph-cuts or message passing

Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}
- Use Graph-cuts or message passing
- When the MAP cannot be computed exactly, but only approximately, this algorithm does not behave well [Fidley et al., 08]

Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}
- Use Graph-cuts or message passing
- When the MAP cannot be computed exactly, but only approximately, this algorithm does not behave well [Fidley et al., 08]

One Slack Formulation

- Margin rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \text { s.t. } \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \text { s } \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Slack rescaling

$$
\begin{aligned}
& \min _{\mathrm{w}} \\
& \frac{1}{2}\|\mathrm{w}\|^{2}+\frac{C}{n} \xi \\
\text { s.t. } & \mathrm{w}^{\top} \phi\left(x_{i}, y_{i}\right)-\mathrm{w}^{\top} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

One Slack Formulation

- Margin rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \text { s.t. } \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \text { s } \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Slack rescaling

$$
\min _{w} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{\top} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- Same optima as previous formulation [Joachims et al, 09]

One Slack Formulation

- Margin rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \text { s.t. } \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \\
& \\
&\text { (} \left.x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Slack rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \text { s.t. } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Same optima as previous formulation [Joachims et al, 09]

Example: Handwritten Recognition

- Predict text from image of handwritten characters

$$
\arg \max _{\mathrm{y}} \mathbf{w}^{\top} \mathbf{f}\left(\|_{\mathrm{NA}}, \mathrm{y}\right)=\text { "brace" }^{\prime}
$$

- Equivalently:
- Iterate
- Estimate model parameters w using active constraint set
- Generate the next constraint
[Source: B. Taskar]

