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Inference with graph cuts
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St-mincut and Energy Minimization

[Source: P. Kohli]
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How are they equivalent?
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Our energy minimization

Construct a graph such that

1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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Graph Construction

[Source: P. Kohli]
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How does the code look like

[Source: P. Kohli]
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Graph cuts for multi-label problems

Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

Very high computational cost

[Source: P. Kohli]
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Computing the Optimal Move

[Source: P. Kohli]
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Move Making Algorithms

[Source: P. Kohli]
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Energy Minimization

Consider pairwise MRFs

E (f ) =
∑

{p,q}∈N

Vp,q(fp, fq) +
∑
p

Dp(fp)

with N defining the interactions between nodes, e.g., pixels

Dp non-negative, but arbitrary.

Same as before, where Vp,q ≡ −θα and Dp ≡ −θp.

This is the graph-cuts notation.

Important to notice it’s the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions

Metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0

V (α, β) ≤ V (α, γ) + V (γ, β)

Semi-metric if it satisfies for any set of labels α, β, γ

V (α, β) = 0 ↔ α = β

V (α, β) = V (β, α) ≥ 0
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Binary Moves

α− β moves works for semi-metrics

α expansion works for V being a metric

Figure: Figure from P. Kohli tutorial on graph-cuts

For certain x1 and x2, the move energy is sub-modular QPBF

[Source: P. Kohli]Raquel Urtasun (TTI-C) Visual Recognition March 1, 2012 14 / 46



Swap Move

[Source: P. Kohli]
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Swap Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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Expansion Move

[Source: P. Kohli]
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More formally

Any labeling can be uniquely represented by a partition of image pixels
P = {Pl |l ∈ L}, where Pl = {p ∈ P|fp = l} is a subset of pixels assigned
label l .

There is a one to one correspondence between labelings f and partitions P.

Given a pair of labels α, β, a move from a partition P (labeling f ) to a new
partition P’ (labeling f ′) is called an α− β swap if Pl = P ′ for any label
l 6= α, β.

The only difference between P and P ′ is that some pixels that were labeled
in P are now labeled in P ′, and vice-versa.

Given a label l , a move from a partition P (labeling f ) to a new partition P ′
(labeling f ′) is called an α-expansion if Pα ⊂ P ′α and P ′l ⊂ Pl .

An α-expansion move allows any set of image pixels to change their labels
to α.
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Example

Figure: (a) Current partition (b) local move (c) α− β-swap (d) α-expansion.
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Algorithms
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Finding optimal Swap move

Given an input labeling f (partition P) and a pair of labels α, β we want to
find a labeling f̂ that minimizes E over all labelings within one α− β-swap
of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gαβ = (Vαβ , Eαβ).

The structure of this graph is dynamically determined by the current
partition P and by the labels α, β.
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Graph Construction

The set of vertices includes the two terminals α and β, as well as image
pixels p in the sets Pα and Pβ (i.e., fp ∈ {α, β}).

Each pixel p ∈ Pαβ is connected to the terminals α and β, called t-links.

Each set of pixels p, q ∈ Pαβ which are neighbors is connected by an edge
ep,q
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Computing the Cut

Any cut must have a single t-link not cut.

This defines a labeling

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.
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Properties

For any cut, then
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Finding the optimal α expansion

Given an input labeling f (partition P) and a label α we want to find a
labeling f̂ that minimizes E over all labelings within one α-expansion of f .

This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gα = (Vα, Eα).

The structure of this graph is dynamically determined by the current
partition P and by the label α.

Different graph than the α− β swap.
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Graph Construction

The set of vertices includes the two terminals α and ᾱ, as well as all image
pixels p ∈ P.

Additionally, for each pair of neighboring pixels p, q such that fp 6= fq we
create an auxiliary node ap,q.

Each pixel p is connected to the terminals α and ᾱ, called t-links.

Each set of pixels p, q which are neighbors and fp = fq, we connect with and
n-link.

For each pair of neighboring pixels such that fp 6= fq, we create a triplet
{ep,a, ea,q, tᾱa }.

The set of edges is then
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The set of edges is then

Raquel Urtasun (TTI-C) Visual Recognition March 1, 2012 25 / 46



Graph Construction

The set of vertices includes the two terminals α and ᾱ, as well as all image
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Graph Construction
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Properties

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, ”fast approximate energy minimization via graph cuts”
PAMI 2001.
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Learning in graphical models
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Parameter learning

The MAP problem was defined as

max
y1,··· ,yn

∑
i

θi (yi ) +
∑
α

θα(yα)

Learn parameters w for more accurate prediction

max
y1,··· ,yn

∑
i

wiφi (yi ) +
∑
α

wαφα(yα)
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Loss functions

Regularized loss minimization: Given input pairs (x , y) ∈ S, minimize∑
(x,y)∈S

ˆ̀(w, x , y) +
C

p
‖w‖pp,

Different learning frameworks depending on the surrogate loss ˆ̀(w, x , y)

Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04]
log-loss for Conditional Random Fields [Lafferty et al. 01]

Unified by [Hazan and Urtasun, 10]
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Recall SVM

In SVMs we minimize the following program

min
w

1

2
‖w‖2 +

∑
i

ξi

subject to yi (b + wTxi )− 1 + ξi ≥ 0, ∀i = 1, . . . ,N.

with yi ∈ {−1, 1} binary.

We need to extend this to reason about more complex structures, not just
binary variables.
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Structural SVM [Tsochantaridis et al., 05]

We want to construct a function

f (x , y) = arg max
y∈Y

wTφ(x , y)

which is parameterized in terms of w, the parameters to learn.

We will like to minimize the empirical risk

Rs(f ,w) =
1

n

n∑
i=1

∆(yi , f (xi ,w))

This is the expected loss under the empirical distribution induced

∆(yi , f (xi ,w)) is the ”task loss” which depends on the application

segmentation: per pixel segmentation error
detection: intersection over the union

Typically, ∆(y , y ′) = 0 if y = y ′
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Separable case

We will like to minimize the empirical risk

Rs(f ,w) =
1

n

n∑
i=1

∆(yi , f (xi ,w))

We will have 0 train error if we satisfy

max
y∈Y\yi

{wTφ(xi , y)} ≤ wTφ(xi , yi )

since ∆(yi , yi ) = 0 and ∆(yi , y) > 0,∀y ∈ Y \ yi .

This can be replaced by |Y| − 1 inequalities

∀i ∈ {1, · · · , n},∀y ∈ Y \ yi : wTφ(xi , yi )−wTφ(xi , y) ≥ 0

What’s the problem of this?
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Separable case

Satisfying the inequalities might have more than one solution.

Select the w with the maximum margin.

We can thus form the following optimization problem

min
w

1

2
‖w‖2

subject to wTφ(xi , yi )−wTφ(xi , y) ≥ 1 ∀i ∈ {1, · · · , n},∀y ∈ Y \ yi

This is a quadratic program, so it’s convex

But it involves exponentially many constraints!
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Non-separable case

Multiple formulations

Multi-class classification [Crammer & Singer, 03]

Slack re-scaling [Tsochantaridis et al. 05]

Margin re-scaling [Taskar et al. 04]

Let’s look at them in more details
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Multi-class classification [Crammer & Singer, 03]

Enforce a large margin and do a batch convex optimization

The minimization program is then

min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ 1− ξi ∀i ∈ {1, · · · , n},∀y 6= yi

Can also be written in terms of kernels
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Structured Output SVMs

Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes

Not all errors are created equally, e.g. in an HMM making only one mistake
in a sequence should be penalized less than making 50 mistakes

Pay a loss proportional to the difference between true and predicted error
(task dependent)

∆(yi , y)

[Source: M. Blaschko]
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Example: Data imbalanced

Suppose that we have highly imbalanced training data: n+ � n−

We still have a two class problem

We can use structured output formulation to pay a higher price for
misclassification of positives than misclassification of negative, e.g.,

[Source: M. Blaschko]
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Slack re-scaling

Re-scale the slack variables according to the loss incurred in each of the
linear constraints

Violating a margin constraint involving a y 6= yi with high loss ∆(yi , y)
should be penalized more than a violation involving an output value with
smaller loss

The minimization program is then

min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ 1− ξi
∆(yi , y)

∀i ∈ {1, · · · , n},∀y ∈ Y \ yi

The justification is that 1
n

∑n
i=1 ξi is an upper-bound on the empirical risk.

Easy to proof
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Margin re-scaling

In this case the minimization problem is formulated as

min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ ∆(yi , y)− ξi ∀i ∈ {1, · · · , n},∀y ∈ Y \ yi

The justification is that 1
n

∑n
i=1 ξi is an upper-bound on the empirical risk.

Also easy to proof.
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Margin vs Slack re-scaling
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Algorithm

Problem is the exponential number of constraints

Derive a cutting plane algorithm, where the most violated constraints are
added as we go

Raquel Urtasun (TTI-C) Visual Recognition March 1, 2012 42 / 46



Raquel Urtasun (TTI-C) Visual Recognition March 1, 2012 43 / 46



Constraint Generation

To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling

wTφ(xi , y) + ∆(yi , y)

and for slack rescaling

{wTφ(xi , y) + 1−wTφ(xi , yi )}∆(yi , y)

For arbitrary output spaces, we would need to iterate over all elements in Y

Use Graph-cuts or message passing

When the MAP cannot be computed exactly, but only approximately, this
algorithm does not behave well [Fidley et al., 08]
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One Slack Formulation

Margin rescaling

min
w

1

2
‖w‖2 +

C

n
ξ

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ ∆(yi , y)− ξ ∀i ∈ {1, · · · , n},∀y ∈ Y \ yi

Slack rescaling

min
w

1

2
‖w‖2 +

C

n
ξ

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ 1− ξ

∆(yi , y)
∀i ∈ {1, · · · , n},∀y ∈ Y \ yi

Same optima as previous formulation [Joachims et al, 09]
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Example: Handwritten Recognition

Predict text from image of handwritten characters

Equivalently:

Iterate

Estimate model parameters w using active constraint set
Generate the next constraint

[Source: B. Taskar]
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