Visual Recognition: Examples of Graphical Models

Raquel Urtasun

TTI Chicago

March 6, 2012

Graphical models

- Applications
- Representation
- Inference
- message passing (LP relaxations)
- graph cuts
- Learning

Learning in graphical models

Parameter learning

- The MAP problem was defined as

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \theta_{i}\left(y_{i}\right)+\sum_{\alpha} \theta_{\alpha}\left(y_{\alpha}\right)
$$

- Learn parameters w for more accurate prediction

$$
\max _{y_{1}, \cdots, y_{n}} \sum_{i} \mathbf{w}_{i} \phi_{i}\left(y_{i}\right)+\sum_{\alpha} \mathbf{w}_{\alpha} \phi_{\alpha}\left(y_{\alpha}\right)
$$

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- Different learning frameworks depending on the surrogate loss $\hat{\ell}(\mathbf{w}, x, y)$
- Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04] - log-loss for Conditional Random Fields [Lafferty et al. 01]
- Unified by [Hazan and Urtasun, 10]

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p},
$$

- Different learning frameworks depending on the surrogate loss $\hat{\ell}(\mathbf{w}, x, y)$
- Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04]
- log-loss for Conditional Random Fields [Lafferty et al. 01]
- Unified by [Hazan and Urtasun, 10]

Recall SVM

- In SVMs we minimize the following program

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i} \xi_{i} \\
\text { subject to } y_{i}\left(b+\mathbf{w}^{T} \mathbf{x}_{i}\right)-1+\xi_{i} \geq 0, \quad \forall i=1, \ldots, N .
\end{gathered}
$$

with $y_{i} \in\{-1,1\}$ binary.

- We need to extend this to reason about more complex structures, not just binary variables.

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced
- $\Delta\left(y_{i}, f\left(x_{i}, w\right)\right)$ is the "task loss" which depends on the application
- segmentation: per pixel segmentation error
- detection: intersection over the union

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced
- $\Delta\left(y_{i}, f\left(x_{i}, w\right)\right)$ is the "task loss" which depends on the application
- segmentation: per pixel segmentation error
- detection: intersection over the union
- Typically, $\Delta\left(y, y^{\prime}\right)=0$ if $y=y^{\prime}$

Structural SVM [Tsochantaridis et al., 05]

- We want to construct a function

$$
f(x, y)=\arg \max _{y \in \mathcal{Y}} \mathbf{w}^{T} \phi(x, y)
$$

which is parameterized in terms of \mathbf{w}, the parameters to learn.

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- This is the expected loss under the empirical distribution induced
- $\Delta\left(y_{i}, f\left(x_{i}, w\right)\right)$ is the "task loss" which depends on the application
- segmentation: per pixel segmentation error
- detection: intersection over the union
- Typically, $\Delta\left(y, y^{\prime}\right)=0$ if $y=y^{\prime}$

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{w^{\top} \phi\left(x_{i}, y\right)\right\} \leq w^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)\right\} \leq \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

- This can be replaced by $|\mathcal{Y}|-1$ inequalities

$$
\forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}: \quad \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 0
$$

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)\right\} \leq \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

- This can be replaced by $|\mathcal{Y}|-1$ inequalities

$$
\forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}: \quad \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 0
$$

- What's the problem of this?

Separable case

- We will like to minimize the empirical risk

$$
R_{s}(f, w)=\frac{1}{n} \sum_{i=1}^{n} \Delta\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

- We will have 0 train error if we satisfy

$$
\max _{y \in \mathcal{Y} \backslash y_{i}}\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)\right\} \leq \mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)
$$

since $\Delta\left(y_{i}, y_{i}\right)=0$ and $\Delta\left(y_{i}, y\right)>0, \forall y \in \mathcal{Y} \backslash y_{i}$.

- This can be replaced by $|\mathcal{Y}|-1$ inequalities

$$
\forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}: \quad \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 0
$$

- What's the problem of this?

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the w with the maximum margin.

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1 \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{gathered}
$$

- This is a quadratic program, so it's convex

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1 \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{gathered}
$$

- This is a quadratic program, so it's convex
- But it involves exponentially many constraints!

Separable case

- Satisfying the inequalities might have more than one solution.
- Select the \mathbf{w} with the maximum margin.
- We can thus form the following optimization problem

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1 \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{gathered}
$$

- This is a quadratic program, so it's convex
- But it involves exponentially many constraints!

Non-separable case

Multiple formulations

- Multi-class classification [Crammer \& Singer, 03]
- Slack re-scaling [Tsochantaridis et al. 05]
- Margin re-scaling [Taskar et al. 04]

Let's look at them in more details

Multi-class classification [Crammer \& Singer, 03]

- Enforce a large margin and do a batch convex optimization
- The minimization program is then

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i} \\
& \text { s.t. } \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\xi_{i} \quad \forall i \in\{1, \cdots, n\}, \forall y \neq y_{i}
\end{aligned}
$$

- Can also be written in terms of kernels

Structured Output SVMs

- Frame structured prediction as a multiclass problem to predict a single element of Y and pay a penalty for mistakes
- Not all errors are created equally, e.g. in an HMM making only one mistake in a sequence should be penalized less than making 50 mistakes

Structured Output SVMs

- Frame structured prediction as a multiclass problem to predict a single element of Y and pay a penalty for mistakes
- Not all errors are created equally, e.g. in an HMM making only one mistake in a sequence should be penalized less than making 50 mistakes
- Pay a loss proportional to the difference between true and predicted error (task dependent)

$$
\Delta\left(y_{i}, y\right)
$$

[Source: M. Blaschko]

Structured Output SVMs

- Frame structured prediction as a multiclass problem to predict a single element of Y and pay a penalty for mistakes
- Not all errors are created equally, e.g. in an HMM making only one mistake in a sequence should be penalized less than making 50 mistakes
- Pay a loss proportional to the difference between true and predicted error (task dependent)

$$
\Delta\left(y_{i}, y\right)
$$

[Source: M. Blaschko]

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss
- The minimization program is then

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi_{i}}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss
- The minimization program is then

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi_{i}}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- The justification is that $\frac{1}{n} \sum_{i=1}^{n} \xi_{i}$ is an upper-bound on the empirical risk.
- Easy to proof

Slack re-scaling

- Re-scale the slack variables according to the loss incurred in each of the linear constraints
- Violating a margin constraint involving a $y \neq y_{i}$ with high loss $\Delta\left(y_{i}, y\right)$ should be penalized more than a violation involving an output value with smaller loss
- The minimization program is then

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi_{i}}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- The justification is that $\frac{1}{n} \sum_{i=1}^{n} \xi_{i}$ is an upper-bound on the empirical risk.
- Easy to proof

Margin re-scaling

- In this case the minimization problem is formulated as

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \sum_{i=1}^{n} \xi_{i}
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi_{i} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- The justification is that $\frac{1}{n} \sum_{i=1}^{n} \xi_{i}$ is an upper-bound on the empirical risk.
- Also easy to proof.

```
Algorithm 1 Algorithm for solving \(\mathrm{SVM}_{0}\) and the loss re-scaling formulations \(\mathrm{SVM}_{1}^{*}\) and \(\mathrm{SVM}_{2}^{*}\)
    1: Input: \(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right), C, \varepsilon\)
    \(S_{i} \leftarrow \emptyset\) for all \(i=1, \ldots, n\)
    repeat
    4: \(\quad\) for \(i=1, \ldots, n\) do
    5: /* prepare cost function for optimization */
    set up cost function
    \(H(\mathbf{y}) \equiv \begin{cases}1-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle & \left(\mathrm{SVM}_{0}\right) \\ \left(1-\left\langle\delta \Psi_{i}^{\prime}(\mathbf{y}), \mathbf{w}\right\rangle\right) \Delta\left(\mathbf{y}_{i}, \mathbf{y}\right) & \left(\mathrm{SVM}_{1}^{\Delta s}\right) \\ \triangle\left(\mathbf{y}_{i}, \mathbf{y}\right)-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle & \left(\mathrm{SVM}_{1}^{\Delta m}\right) \\ \left(1-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle\right) \sqrt{\triangle\left(\mathbf{y}_{i}, \mathbf{y}\right)} & \left(\mathrm{SVM}_{2}^{\Delta s}\right) \\ \sqrt{\Delta\left(\mathbf{y}_{i}, \mathbf{y}\right)}-\left\langle\delta \Psi_{i}(\mathbf{y}), \mathbf{w}\right\rangle & \left(\mathrm{SVM}_{2}^{\Delta m}\right)\end{cases}\)
    where \(\mathbf{w} \equiv \Sigma_{j} \sum_{y^{\prime} \in S_{j}} \alpha_{\left(j y^{\prime}\right)} \delta \Psi_{j}\left(\mathbf{y}^{\prime}\right)\).
    6: /* find cutting plane */
        compute \(\hat{\mathbf{y}}=\arg _{\max }^{\mathbf{y} \in \mathcal{Y}} \boldsymbol{Y} H(\mathbf{y})\)
    7: /* determine value of current slack variable */
    compute \(\xi_{i}=\max \left\{0, \max _{\mathrm{y} \in S_{i}} H(\mathbf{y})\right\}\)
    if \(H(\hat{\mathbf{y}})>\xi_{i}+\varepsilon\) then
/* add constraint to the working set */
\(S_{i} \leftarrow S_{i} \cup\{\hat{\mathbf{y}}\}\)
10a: /* Variant (a): perform full optimization */
    \(\alpha_{S} \leftarrow\) optimize the dual of \(\mathrm{SVM}_{0}, \mathrm{SVM}_{1}^{*}\) or \(\mathrm{SVM}_{2}^{*}\) over \(S, S=\cup_{i} S_{i}\).
10b: /* Variant (b): perform subspace ascent */
\(\alpha_{S_{i}} \leftarrow\) optimize the dual of \(\mathrm{SVM}_{0}, \mathrm{SVM}_{1}^{*}\) or \(\mathrm{SVM}_{2}^{*}\) over \(S_{i}\)
        end if
        end for
14: until no \(S_{i}\) has changed during iteration
```


Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{T} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}

Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}
- Use Graph-cuts or message passing

Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}
- Use Graph-cuts or message passing
- When the MAP cannot be computed exactly, but only approximately, this algorithm does not behave well [Fidley et al., 08]

Constraint Generation

- To find the most violated constraint, we need to maximize w.r.t. y for margin rescaling

$$
\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+\Delta\left(y_{i}, y\right)
$$

and for slack rescaling

$$
\left\{\mathbf{w}^{\top} \phi\left(x_{i}, y\right)+1-\mathbf{w}^{\top} \phi\left(x_{i}, y_{i}\right)\right\} \Delta\left(y_{i}, y\right)
$$

- For arbitrary output spaces, we would need to iterate over all elements in \mathcal{Y}
- Use Graph-cuts or message passing
- When the MAP cannot be computed exactly, but only approximately, this algorithm does not behave well [Fidley et al., 08]

One Slack Formulation

- Margin rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \text { s.t. } \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \text { s } \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Slack rescaling

$$
\begin{aligned}
& \min _{\mathrm{w}} \\
& \frac{1}{2}\|\mathrm{w}\|^{2}+\frac{C}{n} \xi \\
\text { s.t. } & \mathrm{w}^{\top} \phi\left(x_{i}, y_{i}\right)-\mathrm{w}^{\top} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

One Slack Formulation

- Margin rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \text { s.t. } \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \text { s } \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Slack rescaling

$$
\min _{w} \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi
$$

s.t. $\mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}$

- Same optima as previous formulation [Joachims et al, 09]

One Slack Formulation

- Margin rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \text { s.t. } \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
& \\
& \\
&\text { (} \left.x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq \Delta\left(y_{i}, y\right)-\xi \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Slack rescaling

$$
\begin{aligned}
& \min _{\mathbf{w}} \\
& \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{n} \xi \\
\text { s.t. } & \mathbf{w}^{T} \phi\left(x_{i}, y_{i}\right)-\mathbf{w}^{T} \phi\left(x_{i}, y\right) \geq 1-\frac{\xi}{\Delta\left(y_{i}, y\right)} \quad \forall i \in\{1, \cdots, n\}, \forall y \in \mathcal{Y} \backslash y_{i}
\end{aligned}
$$

- Same optima as previous formulation [Joachims et al, 09]

Example: Handwritten Recognition

- Predict text from image of handwritten characters

$$
\arg \max _{\mathrm{y}} \mathbf{w}^{\top} \mathbf{f}\left(\|_{\mathrm{NA}}, \mathrm{y}\right)=\text { "brace" }^{\prime}
$$

- Equivalently:
- Iterate
- Estimate model parameters w using active constraint set
- Generate the next constraint
[Source: B. Taskar]

Conditional Random Fields

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; w) & =\frac{1}{Z(x, y)} \exp \left(\ell(y, \hat{y})+w^{\top} \Phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\ell(y, \hat{y})+w^{\top} \Phi(x, \hat{y})\right)
\end{aligned}
$$

where $\ell(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\bar{\ell}_{\log }(w, x, y)=\ln \frac{1}{p_{x, y}(y ; w)}
$$

Conditional Random Fields

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; \mathbf{w}) & =\frac{1}{Z(x, y)} \exp \left(\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
\end{aligned}
$$

where $\ell(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\bar{\ell}_{\log }(\mathbf{w}, x, y)=\ln \frac{1}{p_{x, y}(y ; \mathbf{w})}
$$

CRF learning

- In CRFs one aims to minimize the regularized negative log-likelihood of the conditional distribution
(CRF)

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

where $(x, y) \in \mathcal{S}$ ranges over the training pairs and

$$
\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)
$$

is the vector of empirical means.

- In coordinate descent methods, each coordinate w_{r} is iteratively updated in the direction of the negative gradient, for some step size η.

CRF learning

- In CRFs one aims to minimize the regularized negative log-likelihood of the conditional distribution
(CRF)

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

where $(x, y) \in \mathcal{S}$ ranges over the training pairs and

$$
\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)
$$

is the vector of empirical means.

- In coordinate descent methods, each coordinate w_{r} is iteratively updated in the direction of the negative gradient, for some step size η.
- The gradient of the log-partition function corresponds to the probability distribution $p(\hat{y} \mid x, y ; \mathbf{w})$, and the direction of descent takes the form

$$
\sum_{(x, y) \in \mathcal{S}} \sum_{\hat{y}} p(\hat{y} \mid x, y ; \mathbf{w}) \phi_{r}(x, \hat{y})-d_{r}+\left|w_{r}\right|^{p-1} \operatorname{sign}\left(w_{r}\right)
$$

CRF learning

- In CRFs one aims to minimize the regularized negative log-likelihood of the conditional distribution
(CRF)

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

where $(x, y) \in \mathcal{S}$ ranges over the training pairs and

$$
\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)
$$

is the vector of empirical means.

- In coordinate descent methods, each coordinate w_{r} is iteratively updated in the direction of the negative gradient, for some step size η.
- The gradient of the log-partition function corresponds to the probability distribution $p(\hat{y} \mid x, y ; \mathbf{w})$, and the direction of descent takes the form

$$
\sum_{(x, y) \in \mathcal{S}} \sum_{\hat{y}} p(\hat{y} \mid x, y ; \mathbf{w}) \phi_{r}(x, \hat{y})-d_{r}+\left|w_{r}\right|^{p-1} \operatorname{sign}\left(w_{r}\right)
$$

- Problem: Requires computing the partition function!

CRF learning

- In CRFs one aims to minimize the regularized negative log-likelihood of the conditional distribution
(CRF)

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

where $(x, y) \in \mathcal{S}$ ranges over the training pairs and

$$
\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)
$$

is the vector of empirical means.

- In coordinate descent methods, each coordinate w_{r} is iteratively updated in the direction of the negative gradient, for some step size η.
- The gradient of the log-partition function corresponds to the probability distribution $p(\hat{y} \mid x, y ; \mathbf{w})$, and the direction of descent takes the form

$$
\sum_{(x, y) \in \mathcal{S}} \sum_{\hat{y}} p(\hat{y} \mid x, y ; \mathbf{w}) \phi_{r}(x, \hat{y})-d_{r}+\left|w_{r}\right|^{p-1} \operatorname{sign}\left(w_{r}\right)
$$

- Problem: Requires computing the partition function!

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- In structure SVMs

$$
\bar{\ell}_{\text {hinge }}(\mathbf{w}, x, y)=\max _{\hat{y} \in \mathcal{Y}}\left\{\ell(y, \hat{y})+w^{\top} \Phi(x, \hat{y})-w^{\top} \Phi(x, y)\right\}
$$

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- In structure SVMs

$$
\bar{\ell}_{\text {hinge }}(\mathbf{w}, x, y)=\max _{\hat{y} \in \mathcal{Y}}\left\{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; w) & =\frac{1}{Z(x, y)} \exp \left(\ell(y, \hat{y})+w^{\top} \phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\ell(y, \hat{y})+w^{\top} \phi(x, \hat{y})\right)
\end{aligned}
$$

where $\ell(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\bar{\ell}_{\log }(w, x, y)=\ln \frac{1}{p_{x, y}(y ; w)} .
$$

Loss functions

- Regularized loss minimization: Given input pairs $(x, y) \in \mathcal{S}$, minimize

$$
\sum_{(x, y) \in \mathcal{S}} \hat{\ell}(\mathbf{w}, x, y)+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
$$

- In structure SVMs

$$
\bar{\ell}_{\text {hinge }}(\mathbf{w}, x, y)=\max _{\hat{y} \in \mathcal{Y}}\left\{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})-\mathbf{w}^{\top} \Phi(x, y)\right\}
$$

- CRF loss: The conditional distribution is

$$
\begin{aligned}
p_{x, y}(\hat{y} ; \mathbf{w}) & =\frac{1}{Z(x, y)} \exp \left(\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right) \\
Z(x, y) & =\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
\end{aligned}
$$

where $\ell(y, \hat{y})$ is a prior distribution and $Z(x, y)$ the partition function, and

$$
\bar{\ell}_{\log }(\mathbf{w}, x, y)=\ln \frac{1}{p_{x, y}(y ; \mathbf{w})} .
$$

Relation between loss functions

- The CRF program is

$$
\text { (CRF) } \quad \min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

where $(x, y) \in \mathcal{S}$ ranges over training pairs and $\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)$ is the vector of empirical means, and

$$
Z(x, y)=\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
$$

- In structured SVMs
(structured SVM)

Relation between loss functions

- The CRF program is

$$
\text { (CRF) } \quad \min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

where $(x, y) \in \mathcal{S}$ ranges over training pairs and $\mathbf{d}=\sum_{(x, y) \in \mathcal{S}} \Phi(x, y)$ is the vector of empirical means, and

$$
z(x, y)=\sum_{\hat{y} \in \mathcal{Y}} \exp \left(\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right)
$$

- In structured SVMs
(structured SVM)

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \max _{\hat{\mathcal{Y}} \in \mathcal{Y}}\left\{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})\right\}-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\},
$$

A family of structure prediction problems

- One parameter extension of CRFs and structured SVMs

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z_{\epsilon}(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

d is the empirical means, and

$$
\ln Z_{\epsilon}(x, y)=\epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\frac{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})}{\epsilon}\right)
$$

- CRF if $\epsilon=1$, Structured SVM if $\epsilon=0$ respectively.

A family of structure prediction problems

- One parameter extension of CRFs and structured SVMs

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z_{\epsilon}(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

d is the empirical means, and

$$
\ln Z_{\epsilon}(x, y)=\epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\frac{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})}{\epsilon}\right)
$$

- CRF if $\epsilon=1$, Structured SVM if $\epsilon=0$ respectively.
- Introduces the notion of loss in CRFs.

A family of structure prediction problems

- One parameter extension of CRFs and structured SVMs

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z_{\epsilon}(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

d is the empirical means, and

$$
\ln Z_{\epsilon}(x, y)=\epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\frac{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})}{\epsilon}\right)
$$

- CRF if $\epsilon=1$, Structured SVM if $\epsilon=0$ respectively.
- Introduces the notion of loss in CRFs.
- Dual takes the form
$\max _{p_{x, y}(\hat{y}) \in \Delta \mathcal{Y}} \sum_{(x, y) \in \mathcal{S}}\left(\epsilon H\left(\mathbf{p}_{x, y}\right)+\sum_{\hat{y}} p_{x, y}(\hat{y}) \ell(y, \hat{y})\right)-\frac{C^{1-q}}{q}\left\|\sum_{(x, y) \in \mathcal{S}} \sum_{\hat{y} \in Y} p_{x, y}(\hat{y}) \Phi(x, \hat{y})-\mathbf{d}\right\|_{q}^{q}$
over the probability simplex over \mathcal{Y}.

A family of structure prediction problems

- One parameter extension of CRFs and structured SVMs

$$
\min _{\mathbf{w}}\left\{\sum_{(x, y) \in \mathcal{S}} \ln Z_{\epsilon}(x, y)-\mathbf{d}^{\top} \mathbf{w}+\frac{C}{p}\|\mathbf{w}\|_{p}^{p}\right\}
$$

d is the empirical means, and

$$
\ln Z_{\epsilon}(x, y)=\epsilon \ln \sum_{\hat{y} \in \mathcal{Y}} \exp \left(\frac{\ell(y, \hat{y})+\mathbf{w}^{\top} \Phi(x, \hat{y})}{\epsilon}\right)
$$

- CRF if $\epsilon=1$, Structured SVM if $\epsilon=0$ respectively.
- Introduces the notion of loss in CRFs.
- Dual takes the form

$$
\max _{p_{x, y}(\hat{y}) \in \Delta y} \sum_{(x, y) \in \mathcal{S}}\left(\epsilon H\left(\mathbf{p}_{x, y}\right)+\sum_{\hat{y}} p_{x, y}(\hat{y}) \ell(y, \hat{y})\right)-\frac{C^{1-q}}{q}\left\|\sum_{(x, y) \in \mathcal{S}} \sum_{\hat{y} \in Y} p_{x, y}(\hat{y}) \Phi(x, \hat{y})-\mathbf{d}\right\|_{q}^{q}
$$

over the probability simplex over \mathcal{Y}.

Primal-Dual approximated learning algorithm

[T. Hazan and R. Urtasun, NIPS 2010]

- In many applications the features decompose

$$
\phi_{r}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{n}\right)=\sum_{v \in V_{r, x}} \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{\alpha \in E_{r, x}} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)
$$

- Using this we can write the approximate program as

Primal-Dual approximated learning algorithm

> [T. Hazan and R. Urtasun, NIPS 2010]

- In many applications the features decompose

$$
\phi_{r}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{n}\right)=\sum_{v \in V_{r, x}} \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{\alpha \in E_{r, x}} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)
$$

- Using this we can write the approximate program as

$$
\begin{aligned}
& \min _{\lambda x, y, v \rightarrow \alpha, \mathbf{w}} \sum_{(x, y) \in \mathcal{S}, v} \epsilon c_{v} \ln \sum_{\hat{y}_{v}} \exp \left(\frac{\ell_{v}\left(y_{v}, \hat{y}_{v}\right)+\sum_{r: v \in V_{r, x}} w_{r} \phi_{r, v}\left(x, \hat{y}_{v}\right)-\sum_{\alpha \in N(v)} \lambda_{x, y, v \rightarrow \alpha}\left(\hat{y}_{v}\right)}{\epsilon c_{v}}\right) \\
&+\sum_{(x, y) \in \mathcal{S}, \alpha} \epsilon c_{\alpha} \ln \sum_{\hat{y} \alpha} \exp \left(\frac{\left.\sum_{r: \alpha \in E_{r}} w_{r} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)+\sum_{v \in N(\alpha)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}^{\epsilon c_{\alpha}}\right)-\mathbf{d}^{\top} \mathbf{w}-\frac{C}{p}\|\mathbf{w}\|_{p}^{p}}{}\right.
\end{aligned}
$$

- Coordinate descent algorithm that alternates between sending messages and updating parameters.

Primal-Dual approximated learning algorithm

> [T. Hazan and R. Urtasun, NIPS 2010]

- In many applications the features decompose

$$
\phi_{r}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{n}\right)=\sum_{v \in V_{r, x}} \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{\alpha \in E_{r, x}} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right) .
$$

- Using this we can write the approximate program as

$$
\begin{aligned}
& \min _{\lambda_{x, y, v \rightarrow \alpha, \mathbf{w}}} \sum_{(x, y) \in \mathcal{S}, v} \epsilon c_{v} \ln \sum_{\hat{y}_{v}} \exp \left(\frac{\left.\ell_{v}\left(y_{v}, \hat{y}_{v}\right)+\sum_{r: v \in v_{r, x}} w_{r} \phi_{r, v}\left(x, \hat{y}_{v}\right)-\sum_{\alpha \in N(v)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}^{\epsilon c_{v}}\right)}{\epsilon c_{\alpha}}\right) \\
&+\sum_{(x, y) \in \mathcal{S}, \alpha} \epsilon c_{\alpha} \ln \sum_{\hat{y}_{\alpha}} \exp \left(\frac{\left.\sum_{r: \alpha \in E_{r}} w_{r} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)+\sum_{v \in N(\alpha)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}\right)-\mathbf{d}^{\top} \mathbf{w}-\frac{C}{p}\|\mathbf{w}\|_{p}^{p}}{}\right.
\end{aligned}
$$

- Coordinate descent algorithm that alternates between sending messages and updating parameters.
- Advantage: doesn't need the MAP or marginal at each gradient step.

Primal-Dual approximated learning algorithm

> [T. Hazan and R. Urtasun, NIPS 2010]

- In many applications the features decompose

$$
\phi_{r}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{n}\right)=\sum_{v \in V_{r, x}} \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{\alpha \in E_{r, x}} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right) .
$$

- Using this we can write the approximate program as

$$
\begin{aligned}
& \min _{\lambda_{x, y, v \rightarrow \alpha, \mathbf{w}}} \sum_{(x, y) \in \mathcal{S}, v} \epsilon c_{v} \ln \sum_{\hat{y}_{v}} \exp \left(\frac{\left.\ell_{v}\left(y_{v}, \hat{y}_{v}\right)+\sum_{r: v \in v_{r, x}} w_{r} \phi_{r, v}\left(x, \hat{y}_{v}\right)-\sum_{\alpha \in N(v)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}^{\epsilon c_{v}}\right)}{\epsilon c_{\alpha}}\right) \\
&+\sum_{(x, y) \in \mathcal{S}, \alpha} \epsilon c_{\alpha} \ln \sum_{\hat{y}_{\alpha}} \exp \left(\frac{\sum_{r: \alpha \in E_{r}} w_{r} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)+\sum_{v \in N(\alpha)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}}{}\right)-\mathbf{d}^{\top} \boldsymbol{w}-\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
\end{aligned}
$$

- Coordinate descent algorithm that alternates between sending messages and updating parameters.
- Advantage: doesn't need the MAP or marginal at each gradient step.
- Can learn a large set of parameters.

Primal-Dual approximated learning algorithm

> [T. Hazan and R. Urtasun, NIPS 2010]

- In many applications the features decompose

$$
\phi_{r}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{n}\right)=\sum_{v \in V_{r, x}} \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{\alpha \in E_{r, x}} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right) .
$$

- Using this we can write the approximate program as

$$
\begin{aligned}
\min _{\lambda_{x, y, v \rightarrow \alpha, \mathbf{w}}} & \sum_{(x, y) \in \mathcal{S}, v} \epsilon c_{v} \ln \sum_{\hat{y}_{v}} \exp \left(\frac{\left.\ell_{v}\left(y_{v}, \hat{y}_{v}\right)+\sum_{r: v \in v_{r, x}} w_{r} \phi_{r, v}\left(x, \hat{y}_{v}\right)-\sum_{\alpha \in N(v)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}^{\epsilon c_{v}}\right)}{\epsilon c_{\alpha}}\right) \\
& +\sum_{(x, y) \in \mathcal{S}, \alpha} \epsilon c_{\alpha} \ln \sum_{\hat{y}_{\alpha}} \exp \left(\frac{\sum_{r: \alpha \in E_{r}} w_{r} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)+\sum_{v \in N(\alpha)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}}{}\right)-\mathbf{d}^{\top} \boldsymbol{w}-\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
\end{aligned}
$$

- Coordinate descent algorithm that alternates between sending messages and updating parameters.
- Advantage: doesn't need the MAP or marginal at each gradient step.
- Can learn a large set of parameters.
- Code will be available soon, including parallel implementation.

Primal-Dual approximated learning algorithm

> [T. Hazan and R. Urtasun, NIPS 2010]

- In many applications the features decompose

$$
\phi_{r}\left(x, \hat{y}_{1}, \ldots, \hat{y}_{n}\right)=\sum_{v \in V_{r, x}} \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{\alpha \in E_{r, x}} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right) .
$$

- Using this we can write the approximate program as

$$
\begin{aligned}
\min _{\lambda_{x, y, v \rightarrow \alpha, \mathbf{w}}} & \sum_{(x, y) \in \mathcal{S}, v} \epsilon c_{v} \ln \sum_{\hat{y}_{v}} \exp \left(\frac{\left.\ell_{v}\left(y_{v}, \hat{y}_{v}\right)+\sum_{r: v \in v_{r, x}} w_{r} \phi_{r, v}\left(x, \hat{y}_{v}\right)-\sum_{\alpha \in N(v)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}^{\epsilon c_{v}}\right)}{\epsilon c_{\alpha}}\right) \\
& +\sum_{(x, y) \in \mathcal{S}, \alpha} \epsilon c_{\alpha} \ln \sum_{\hat{y}_{\alpha}} \exp \left(\frac{\sum_{r: \alpha \in E_{r}} w_{r} \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)+\sum_{v \in N(\alpha)} \lambda_{x, y, v \rightarrow \alpha\left(\hat{y}_{v}\right)}}{}\right)-\mathbf{d}^{\top} \boldsymbol{w}-\frac{C}{p}\|\mathbf{w}\|_{p}^{p}
\end{aligned}
$$

- Coordinate descent algorithm that alternates between sending messages and updating parameters.
- Advantage: doesn't need the MAP or marginal at each gradient step.
- Can learn a large set of parameters.
- Code will be available soon, including parallel implementation.

Learning algorithm

Message-Passing algorithm for Approximated Structured Prediction:

Set $\bar{e}_{y, v}\left(\hat{y}_{v}\right)=\exp \left(e_{y, v}\left(\hat{y}_{v}\right)\right)$ and similarly $\bar{\phi}_{r, v}, \bar{\phi}_{r, \alpha}$.

1. For $t=1,2, \ldots$
(a) For every $v=1, \ldots n$, every $(x, y) \in \mathcal{S}$, every $\alpha \in N(v)$, every $\hat{y}_{v} \in \mathcal{Y}_{v}$ do:

$$
\begin{aligned}
& m_{x, y, \alpha \rightarrow v}\left(\hat{y}_{v}\right)=\left\|\prod_{r: \alpha \in E_{r}} \bar{\phi}_{r, \alpha}^{\theta_{r}}\left(x, \hat{y}_{\alpha}\right) \prod_{u \in N(\alpha) \backslash v} n_{x, y, u \rightarrow \alpha}\left(\hat{y}_{u}\right)\right\|_{1 / \epsilon c_{\alpha}} \\
& n_{x, y, v \rightarrow \alpha}\left(\hat{y}_{v}\right) \propto\left(\bar{e}_{y, v}\left(\hat{y}_{v}\right) \prod_{r: v \in V_{r}} \bar{\phi}_{r, v}^{\theta_{r}}\left(x, \hat{y}_{r}\right) \prod_{\beta \in N(v)} m_{x, y, \beta \rightarrow v}\left(\hat{y}_{v}\right)\right)^{c_{\alpha} / \hat{c}_{v}} / m_{x, y, \alpha \rightarrow v}\left(\hat{y}_{v}\right)
\end{aligned}
$$

(b) For every $r=1, \ldots, d$ do:

For every $(x, y) \in \mathcal{S}$, every $v \in V_{r, x}, \alpha \in E_{r, x}$, every $\hat{y}_{v} \in \mathcal{Y}_{v}, \hat{y}_{\alpha} \in \mathcal{Y}_{\alpha}$ set:

$$
\begin{aligned}
& b_{x, y, v}\left(\hat{y}_{v}\right) \propto\left(\bar{e}_{y, r}\left(\hat{y}_{v}\right) \prod_{r: v \in V_{r, x}} \bar{\phi}_{r, v}^{\theta_{r}}\left(x, \hat{y}_{v}\right) \prod_{\alpha \in N(v)} n_{x, y, v \rightarrow \alpha}^{-1}\left(\hat{y}_{v}\right)\right)^{1 / \epsilon c_{v}} \\
& b_{x, y, \alpha}\left(\hat{y}_{\alpha}\right) \propto\left(\prod_{r: \alpha \in E_{r, x}} \bar{\phi}_{r, \alpha}^{\theta_{r}}\left(x, \hat{y}_{\alpha}\right) \prod_{v \in N(\alpha)} n_{x, y, v \rightarrow \alpha}\left(\hat{y}_{v}\right)\right)^{1 / \epsilon c_{\alpha}}
\end{aligned}
$$

$\theta_{r} \leftarrow \theta_{r}-\eta\left(\sum_{(x, y) \in \mathcal{S}, v \in V_{r, x}, \hat{y}_{v}} b_{x, y, v}\left(\hat{y}_{v}\right) \phi_{r, v}\left(x, \hat{y}_{v}\right)+\sum_{(x, y) \in \mathcal{S}, \alpha \in E_{r, x}, \hat{y}_{\alpha}} b_{x, y, \alpha}\left(\hat{y}_{\alpha}\right) \phi_{r, \alpha}\left(x, \hat{y}_{\alpha}\right)-c_{r}+C \cdot\left|\theta_{r}\right|^{p-1} \cdot \operatorname{sign}\left(\theta_{r}\right)\right)$

Examples in computer vision

Examples

- Depth estimation
- Multi-label prediction
- Object detection
- Non-maxima supression
- Segmentation
- Sentence generation
- Holistic scene understanding
- 2D pose estimation
- Non-rigid shape estimation
- 3D scene understanding
- ...

For each application ...

... what do we need to decide?

- Random variables
- Graphical model
- Potentials
- Loss for learning
- Learning algorithm
- Inference algorithm

Let's look at some examples

Depth Estimation

Image - left(a)

- Images rectified
- Ignore occlusion for now

Energy:
$E(d):\{0, \ldots, D-1\}^{n} \rightarrow R$
Labels: d (depth/shift)

Stereo matching pairwise

Energy:

$$
\begin{aligned}
& E(d):\{0, \ldots, D-1\} n \rightarrow R \\
& E(d)=\sum_{i} \theta_{i}\left(d_{i}\right)+\sum_{i, j} \theta_{N_{t}}\left(d_{i}, d_{j}\right)
\end{aligned}
$$

Unary:

$$
\theta_{i}\left(d_{i}\right)=\left(l_{j}-r_{i-d i}\right)
$$

"SAD; Sum of absolute differences"
(many others possible, NCC,...)

Pairwise:

$$
\Theta_{\mathrm{ij}}\left(\mathrm{~d}_{\mathrm{i}}, \mathrm{~d}_{\mathrm{j}}\right)=g\left(\left|\mathrm{~d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{j}}\right|\right)
$$

Stereo matching: energy

$$
\theta_{\mathrm{ij}}\left(\mathrm{~d}_{\mathrm{i}}, \mathrm{~d}_{\mathrm{j}}\right)=g\left(\left|\mathrm{~d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{j}}\right|\right)
$$

No truncation
(global min.)
[Source: P. Kohli]

Stereo matching: energy

[Source: P. Kohli]

More on pairwise [O. Veksler]

Left image

(Potts model)
$\theta_{\mathrm{ij}}\left(\mathrm{d}_{\mathrm{i}}, \mathrm{d}_{\mathrm{j}}\right)=\mathrm{g}\left(\left|\mathrm{d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{j}}\right|\right)$

- - - Potts model
[Source: P. Kohli]

Graph Structure

No MRF
Pixel independent (WTA)
 O-O-O O-mone

No horizontal links
Efficient since independent chains

Pairwise MRF
[Boykov et al. '01]

Ground truth

- see http://vision.middlebury.edu/stereo/

Learning and inference

- There is only one parameter to learn: importance of pairwise with respect to unitary!
- Sum of square differences: outliers are more important
- \% of pixels that have disparity error bigger than ϵ.
- The latter is how typically stereo algorithms are scored
- Which inference method will you choose?
- And for learning?

Example: Object Detection

- We can formulate object localization as a regression from an image to a bounding box

$$
g: \mathcal{X} \rightarrow \mathcal{Y}
$$

- \mathcal{X} is the space of all images
- \mathcal{Y} is the space of all bounding boxes

Joint Kernel Between bboxes

- Note: $\left.x\right|_{y}$ (the image restricted to the box region) is again an image.
- Compare two images with boxes by comparing the images within the boxes:

$$
k_{\text {joint }}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k_{\text {image }}\left(\left.x\right|_{y},\left.x^{\prime}\right|_{y^{\prime}},\right)
$$

- Any common image kernel is applicable:
- linear on cluster histograms: $k\left(h, h^{\prime}\right)=\sum_{i} h_{i} h_{i}^{\prime}$,
- χ^{2}-kernel: $k_{\chi^{2}}\left(h, h^{\prime}\right)=\exp \left(-\frac{1}{\gamma} \sum_{i} \frac{\left(h_{i}-h_{i}^{\prime}\right)^{2}}{h_{i}+h_{i}^{\prime}}\right)$
- pyramid matching kernel, ...
- The resulting joint kernel is positive definite.
[Source: M. Blascko]

Restriction Kernel example

- Note: This behaves differently from the common tensor products

$$
\left.k_{\text {joint }}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \neq k\left(x, x^{\prime}\right) k\left(y, y^{\prime}\right)\right)!
$$

[Source: M. Blascko]

Margin Rescaling

$$
\begin{gathered}
\left\langle w, \varphi\left(x_{i}, y_{i}\right)\right\rangle-\left\langle w, \varphi\left(x_{i}, y\right)\right\rangle \geq \Delta\left(y_{i}, y\right)-\xi_{i}, \forall i, \forall y \in \mathcal{Y} \backslash y_{i} \\
\mathcal{Y} \equiv\left\{(\omega, t, b, l, r) \mid \omega \in\{+1,-1\},(t, b, l, r) \in \mathbb{R}^{4}\right\}
\end{gathered}
$$

$$
\Delta\left(y_{i}, y\right)=1-\frac{\operatorname{Area}\left(y_{i} \bigcap y\right)}{\operatorname{Area}\left(y_{i} \bigcup y\right)}
$$

[Source: M. Blascko]

Constraint Generation with Branch and Bound

- As before, we must solve

$$
\max _{y \in \mathcal{Y}}\left\langle w, \varphi\left(x_{i}, y\right)\right\rangle+\Delta\left(y_{i}, y\right)
$$

where

$$
\Delta\left(y_{i}, y\right)=1-\frac{\operatorname{Area}\left(y_{i} \bigcap y\right)}{\operatorname{Area}\left(y_{i} \bigcup y\right)}
$$

- Solution: use branch-and-bound over the space of all rectangles in the image
[Source: M. Blascko]

Sets of Rectangles

Branch-and-Bound works with subsets of the search space.

- Instead of four numbers $[l, t, r, b]$, store four intervals $[L, T, R, B]$:

$$
\begin{aligned}
L & =\left[l_{l o}, l_{h i}\right] \\
T & =\left[t_{l o}, t_{h i}\right] \\
R & =\left[r_{l o}, r_{h i}\right] \\
B & =\left[b_{l o}, b_{h i}\right]
\end{aligned}
$$

[Source: M. Blascko]

Optimization

- Train using constraint generation
- Train an SVM with margin rescaling
- Identify the most violated constraint with branch and bound and add it to the constraint set

- iterate until convergence criterion is reached
[Source: M. Blascko]

Results: PASCAL VOC2006

- $\approx 5,000$ images: $\approx 2,500$ train $/ \mathrm{val}, \approx 2,500$ test
- $\approx 9,500$ objects in 10 predefined classes:
- bicycle, bus, car, cat, cow, dog, horse, motorbike, person, sheep
- Task: predict locations and confidence scores for each class
- Evaluation: Precision-Recall curves

VOC 2006 detection, class cat: old and new training vs. VOC2006 participants
[Source: M. Blascko]

Results: PASCAL VOC2006 cats

[Source: M. Blascko]

Problem

- The restriction kernel is like having tunnel vision

[Source: M. Blascko]

Problem

- The restriction kernel is like having tunnel vision

[Source: M. Blascko]

Global and Local Context Kernels

- Augment restriction kernel with contextual cues
- Global context kernel:

$$
k_{\text {global }}\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)=k_{I}\left(x_{i}, x_{j}\right)
$$

- Local context kernel:

$$
k_{\text {local }}\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right) ; \theta\right)=k_{I}\left(\left.x_{i}\right|_{\Theta\left(y_{i}\right)},\left.x_{j}\right|_{\Theta\left(y_{j}\right)}\right)
$$

- Putting it all together:

$$
\begin{aligned}
k\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right) & =\beta_{1} k_{\text {restr }}\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right) \\
& +\beta_{2} k_{\text {local }}\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right) ; \theta\right) \\
& +\beta_{3} k_{\text {global }}\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)
\end{aligned}
$$

- β can be learned using multiple kernel learning
[Source: M. Blascko]

Local Context Kernel

- Define local context as region between bounding box (l, t, r, b) and

$$
\bar{\Theta}(y)=(l-\theta(r-l), t-\theta(b-t), r+\theta(r-l), b+\theta(b-t))
$$

- The spatial extent of a local context kernel is indicated by the shaded region

- Model the statistics of an object's neighborhood
- Don't model the statistics of the object itself
[Source: M. Blascko]

Results

Context is a very busy area of research in vision!

	bicycle	bus	car	cat	dog	cow
learned	0.410	0.253	0.268	0.415	0.332	0.286
fixed	0.429	0.177	0.263	0.251	0.178	0.194
no context	0.396	0.100	0.145	0.259	0.170	0.118
	(Leane weight -0.415					

[Source: M. Blascko]

Example: 3D Indoor Scene Understanding

- Task: Given an image, predict the 3D parametric cuboid that best describes the layout.

Prediction

Variables are not independent of each other, i.e. structured prediction

- \mathbf{x} : Input image
- \mathbf{y} : Room layout
- $\phi(\mathbf{x}, \mathbf{y})$: Multidimensional feature vector
- w: Predictor
- Estimate room layout by solving inference task

$$
\hat{\mathbf{y}}=\arg \max _{\mathbf{y}} \mathbf{w}^{\top} \phi(\mathbf{x}, \mathbf{y})
$$

- Learning w via structured SVMs or CRFs

Single Variable Parameterization

- Approaches of [Hedau et al. 09] and [Lee et al. 10].
- One random variable y for the entire layout.
- Every state denotes a different candidate layout.
- Limits the amount of candidate layouts.
- Not really a structured prediction task.
- n states/3D layouts have to be evaluated exhaustively, e.g., 50^{4}.

Four Variable Parameterization

- Approach of [Wang et al. 10].
- 4 variables $y_{i} \in \mathcal{Y}, i \in\{1, \ldots, 4\}$ corresponding to the four degrees of freedom of the problem.
- One state of y_{i} denotes the angle of ray \mathbf{r}_{i}.
- High order potentials, e.g., 50^{4} for fourth-order.

For both parameterizations is even worst when reasoning about objects.

Integral Geometry for Features

- We follow [Wang et al. 10] and parameterize with four random variables.
- We follow [Lee et al. 10] and employ orientation map [Lee09 et al.] and geometric context [Hoiem et al. 07] as image cues.

orientation map

geometric context

Integral Geometry for Features

- Faces $\mathcal{F}=\{$ left-wall, right-wall, ceiling, floor, front-wall $\}$
- Faces are defined by four (front-wall) or three angles (otherwise)

$$
\mathbf{w}^{T} \cdot \phi(\mathbf{x}, \mathbf{y})=\sum_{\alpha \in \mathcal{F}} \mathbf{w}_{o, \alpha}^{T} \phi_{o, \alpha}\left(\mathbf{x}, \mathbf{y}_{\alpha}\right)+\sum_{\alpha \in \mathcal{F}} \mathbf{w}_{g, \alpha}^{T} \phi_{g, \alpha}\left(\mathbf{x}, \mathbf{y}_{\alpha}\right)
$$

- Features count frequencies of image cues

Orientation map and proposed left wall

Integral Geometry for Features

- Using inspiration from integral images, we decompose

$$
\begin{aligned}
\phi_{\cdot, \alpha}\left(\mathbf{x}, \mathbf{y}_{\alpha}\right) & =\phi_{\cdot,\{i, j, k\}}\left(\mathbf{x}, y_{i}, y_{j}, y_{k}\right)= \\
& =H_{\cdot,\{i, j\}}\left(\mathbf{x}, y_{i}, y_{j}\right)-H_{\cdot,\{j, k\}}\left(\mathbf{x}, y_{j}, y_{k}\right)
\end{aligned}
$$

- Integral geometry

Integral Geometry for Features

- Decomposition:

$$
H_{\cdot,\{i, j\}}\left(\mathbf{x}, y_{i}, y_{j}\right)-H_{\cdot,\{j, k\}}\left(\mathbf{x}, y_{j}, y_{k}\right)
$$

- Corresponding factor graph:

- The front-wall:

$$
\phi \cdot, \text { front-wall }=\phi(\mathbf{x})-\phi \cdot, \text { left-wall }-\phi \cdot, \text { right-wall }-\phi \cdot, \text { ceiling }-\phi \cdot, \text { floor }
$$

Integral Geometry

- Same concept as integral images, but in accordance with the vanishing points.

Figure: Concept of integral geometry

Learning and Inference

Learning

- Family of structure prediction problems including CRF and structured-SVMs as especial cases.
- Primal-dual algorithm based on local updates.
- Fast and works well with large number of parameters.
- Code coming soon!
[T. Hazan and R. Urtasun, NIPS 2010]

Inference

- Inference using parallel convex belief propagation
- Convergence and other theoretical guarantees
- Code available online: general potentials, cross-platform, Amazon EC2!
[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR 2011]

Time vs Accuracy

Learning very fast: State-of-the-art after less than a minute!

Inference as little as 10 ms per image!

Results

[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR12]
Table: Pixel classification error in the layout dataset of [Hedau et al. 09].

	OM	GC	OM + GC
[Hoiem07]	-	28.9	-
[Hedau09] (a)	-	26.5	-
[Hedau09] (b)	-	21.2	-
[Wang10]	22.2	-	-
[Lee10]	24.7	22.7	18.6
Ours (SVM ${ }^{\text {struct }}$)	$\mathbf{1 9 . 5}$	$\mathbf{1 8 . 2}$	$\mathbf{1 6 . 8}$
Ours (struct-pred)	$\mathbf{1 8 . 6}$	$\mathbf{1 5 . 4}$	$\mathbf{1 3 . 6}$

Table: Pixel classification error in the bedroom data set [Hedau et al. 10].

	[Luca11]	[Hoiem07]	[Hedau09](a)	Ours
w/o box	29.59	23.04	22.94	$\mathbf{1 6 . 4 6}$

Simple object reasoning

- Compatibility of 3D object candidates and layout

Results

> [A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR12]

Table: Pixel classification error in the layout dataset of [Hedau et al. 09].

	OM	GC	OM + GC
[Hoiem07]	-	28.9	-
Hedau09] (a)	-	26.5	-
[Hedau09] (b)	-	21.2	-
[Wang10]	22.2	-	-
[Lee10]	24.7	22.7	18.6
Ours (SVM ${ }^{\text {struct }}$)	$\mathbf{1 9 . 5}$	$\mathbf{1 8 . 2}$	$\mathbf{1 6 . 8}$
Ours (struct-pred)	$\mathbf{1 8 . 6}$	$\mathbf{1 5 . 4}$	$\mathbf{1 3 . 6}$

Table: WITH object reasoning.

	OM	GC	OM + GC
$[$ Wang10]	20.1	-	-
$[$ Lee10 $]$	19.5	20.2	16.2
Ours (SVM ${ }^{\text {struct }}$)	$\mathbf{1 8 . 5}$	$\mathbf{1 7 . 7}$	16.4
Ours (struct-pred)	$\mathbf{1 7 . 1}$	$\mathbf{1 4 . 2}$	$\mathbf{1 2 . 8}$

Results

[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR12]
Table: Pixel classification error in the layout dataset of [Hedau et al. 09] with object reasoning.

	OM	GC	OM + GC
[Wang10]	20.1	-	-
[Lee10]	19.5	20.2	16.2
Ours (SVM ${ }^{\text {struct }}$)	$\mathbf{1 8 . 5}$	$\mathbf{1 7 . 7}$	16.4
Ours (struct-pred)	$\mathbf{1 7 . 1}$	$\mathbf{1 4 . 2}$	$\mathbf{1 2 . 8}$

Table: Pixel classification error in the bedroom data set [Hedau et al. 10].

	[Luca11]	[Hoiem07]	[Hedau09](a)	Ours
w/o box	29.59	23.04	22.94	$\mathbf{1 6 . 4 6}$
w/ box	26.79	-	22.94	$\mathbf{1 5 . 1 9}$

Qualitative Results

Conclusions and Future Work

Conclusion:

- Efficient learning and inference tools for structure prediction based on primal-dual methods.
- Inference: No need for application specific moves.
- Learning: can learn large number of parameters using local updates.
- State-of-the-art results.

Future Work:

- More features.
- Better object reasoning.
- Weakly label setting.
- Better inference?

