Visual Recognition: Examples of Graphical Models

Raquel Urtasun

TTI Chicago

March 8, 2012

Example: Segmentation from Scribles

($\mathrm{n}=$ number of pixels)

$x \in\{0,1\}^{n}$

$$
P(x \mid z)=P(z \mid x) \quad P(x) / P(z) \sim P(z \mid x) P(x)
$$

Posterior
Probability

Likelihood
(data-dependent)

Prior
(data- independent)
(MAP Solution) $x^{*}=\arg \max P(x \mid z)=\arg \min E(x)$ x
x

Image Segmentation

$$
\begin{aligned}
& \text { Posterior } \text { Likelihood } \\
& P(x \mid z) P(z \mid x) \\
& \downarrow \\
& \prod_{x_{i}} P\left(z_{i} \mid x_{i}\right)
\end{aligned}
$$

Prior
$P(x)$
[Source: P. Kohli]

Likelihood $\quad P(x \mid z) \sim P(z \mid x) P(x)$

$$
P(z \mid x)=F_{G M M}(z, x)
$$

Red
[Source: P. Kohli]

Likelihood $\quad P(x \mid z) \sim P(z \mid x) P(x)$

$\log P\left(z_{i} \mid x_{i}=0\right)$

$$
P\left(z_{i} \mid x_{i}=1\right)
$$

MAP Solution

$$
\begin{aligned}
x^{*} & =\underset{x}{\operatorname{argmax}} P(z \mid x) \\
& =\underset{x}{\operatorname{argmax}} \prod_{x_{i}} P\left(z_{i} \mid x_{i}\right)
\end{aligned}
$$

[Source: P. Kohli]

Image Segmentation

$$
\begin{array}{ll}
\text { Posterior } & \text { Likelihood } \\
P(x \mid z)= & P(z \mid x)
\end{array}
$$

Prior
 $P(x)$
 $\prod f\left(x_{i}, x_{j}\right)$
 x_{i}, x_{j}

Encourages consistency between labelling of adjacent pixels
[Source: P. Kohli]

Prior

$P(x \mid z) \sim P(z \mid x) P(x)$

$$
\begin{aligned}
P(x) & =\prod_{i, j \in N} f_{i j}\left(x_{i}, x_{j}\right) \\
& =\prod_{i, j \in N} \exp \left\{-\left|x_{i}-x_{j}\right|\right\} \quad \text { "MRF Ising prior" }
\end{aligned}
$$

Posterior and Energy Functions

$$
E(x, z, w)=\sum_{i} \theta_{i}\left(x_{i}, z_{i}\right)+w \sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}, z_{i}, z_{j}\right)
$$

Energy

Results of the Ising Model

[Source: P. Kohli]

Conditional Random Fields

$$
P(x \mid z)=\prod_{x_{i}} P\left(z_{i} \mid x_{i}\right) \quad \prod_{x_{i}, x_{j}} P\left(x_{i}, x_{j}, z_{i}, z_{j}\right)
$$

$$
E(x, z, w)=\sum_{i} \theta_{i}\left(x_{i}, z_{i}\right)+w \sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}, z_{i}, z_{j}\right)
$$

[Boykov and Jolly ' 01] [Blake et al. '04] [Rother, Kolmogorov and Blake '04]
[Source: P. Kohli]

Conditional Random Fields

$$
E(x, z, w)=\sum_{i} \theta_{i}\left(x_{i}, z_{i}\right)+w \sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}, z_{i}, z_{j}\right)
$$

Pairwise Cost

[Boykov and Jolly ' 01] [Blake et al. '04] [Rother, Kolmogorov and Blake '04] [Source: P. Kohli]

Conditional Random Fields

$$
E(x, z, w)=\sum_{i} \theta_{i}\left(x_{i}, z_{i}\right)+w \sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}, z_{i}, z_{j}\right)
$$

Pairwise Cost

[Boykov and Jolly ' 01] [Blake et al. '04] [Rother, Kolmogorov and Blake '04]

Example: Supervised Semantic Segmentation

- Assign a label to every pixel

Different Approaches

Building Unitary Potentials

Image Window (W)
Pixel to be classified (P)

Image

Segmentation

Image Segmentation

$$
\left.\begin{array}{c}
\mathrm{n}= \\
\mathrm{E} \text { number of pixels } \\
\\
\\
\\
0 \rightarrow f(0,1\}^{n} \rightarrow R
\end{array}\right) 1 \rightarrow b g
$$

$$
E(X)=\sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j}\left|x_{i}-x_{j}\right|
$$

Image

Segmentation
[Boykov and Jolly ' 01] [Blake et al. '04] [Rother, Kolmogorov and Blake '04]

High order patch potentials

Patch Dictionary (Tree)

[Source: P. Kohli]

Image Segmentation

$$
\begin{aligned}
& E:\{0,1\}^{n} \rightarrow R \\
& 0 \rightarrow f g, 1 \rightarrow b g
\end{aligned}
$$

$$
E(X)=\sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j}\left|x_{i}-x_{j}\right|+\sum_{p} h_{p}\left(X_{p}\right)
$$

$$
h\left(X_{p}\right)= \begin{cases}C_{1} & \text { if } x_{i}=0, i \in p \\ C_{\text {max }} & \text { otherwise }\end{cases}
$$

[Kohli et al. 'o7]
[Source: P. Kohli]

Image Segmentation

n = number of pixels

$$
\begin{aligned}
& E:\{0,1\}^{n} \rightarrow R \\
& 0 \rightarrow f g, 1 \rightarrow b g
\end{aligned}
$$

$E(X)=\sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j}\left|x_{i}-x_{j}\right|+\sum_{p} h_{p}\left(X_{p}\right)$

Image

Pairwise Segmentation

Final Segmentation
[Kohli et al. 'o7]
[Source: P. Kohli]

Minimizing higher order terms

Higher Order Submodular Functions

Exact
 Transformation

Pairwise Submodular Function

Billionnet and M. Minoux [DAM 1985]
Kolmogorov \& Zabih [PAMI 2004]
Freedman \& Drineas [CVPR2005]
Kohli Kumar Torr [CVPRz2007, PAMI 2008] Kohli Ladicky Torr [CVPR 2008, IJCV 2009] Ramalingam Kohli Alahari Torr [CVPR 2008] Zivny et al. [CP 2008]

[Source: P. Kohli]

Qualitative Results

Image
 (MSRC-21)

Pairwise CRF

Higher order CRF

Ground Truth

[Source: P. Kohli]

Example: Holistic Scene Understanding

For an image we would like to reason about:

- Objects: which class, where, how many?
- Segmentation: which semantic label does each pixel take?
- Scene classification: which scene am I looking at?

Why Holistic?

Let's use a classifier for each task independently. What's in the patch?

- detector: bird
- seg classif.: water
- scene: boat

Why Holistic?

Let's use a classifier for each task independently. What's in the patch?

- detector: bird
- seg classif.: water
- scene: boat

Why Holistic?

Let's use a classifier for each task independently. What's in the patch?

- detector: bird
- seg classif.: water
- scene: boat

Why Holistic?

Let's use a classifier for each task independently. What's in the patch?

- detector: bird
- seg classif.: water
- scene: boat

Holistic Scene Understanding

We want to reason about the scene as a whole.

- Joint inference of scene type, 2D objects and semantic segmentation
- Efficient learning and inference with structure prediction

Compact Holistic Model

- Define the problem as hierarchical CRF
- Compatibility potentials + evidence + shape prior

Compact Holistic Model

We define the problem as a holistic conditional random field

$$
p(\mathbf{a})=p(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{b}, \mathbf{s})=\frac{1}{Z} \prod_{i} \psi_{i}\left(\mathbf{a}_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(\mathbf{a}_{\alpha}\right)
$$

where $\mathbf{a}=(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{b}, \mathbf{s})$ represents the set of all random variables

- $x_{i} \in\{1, \ldots, \mathcal{C}\}$: class label of the i-th super-pixel (first layer of the hierarchy)
- $y_{i} \in\{1, \ldots, \mathcal{C}\}$: class label of the i -th super-segment (second layer)
- $b_{i} \in\{0,1\}$: binary variable indicating whether an object detection is on or off
- $z_{i} \in\{0,1\}$: binary variable indicating the presence of class i in the image
- $s \in\{1, \ldots, \mathcal{S}\}$: scene type label

Compact Holistic Model

- Learning the weights w_{i}, where $w_{i} \phi_{i}=\log \left(\psi_{i}\right)$, is done with primal-dual approximated learning algorithm
- Joint inference is performed by computing the MAP estimate:

$$
\max _{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{b}, \mathbf{s}} \frac{1}{Z} \prod_{i} \psi_{i}\left(\mathbf{a}_{i}\right) \prod_{\alpha} \psi_{\alpha}\left(\mathbf{a}_{\alpha}\right)
$$

We use a convergent message-passing algorithm without restriction to submodularity and potential specific moves

Unitary Potentials

- Super-pixel and super-segment:
$\phi_{i}\left(x_{i}\right)$ and $\phi_{j}\left(y_{j}\right)$: average of TextonBoost pixel potentials inside each region
- Object detection:

$$
\phi_{l}^{B B o x}\left(b_{i}\right)= \begin{cases}\sigma\left(r_{i}-\lambda_{l}\right) & \text { if } b_{i}=1 \wedge c_{i}=l \\ 0 & \text { otherwise }\end{cases}
$$

Here r_{i} is the score from Felzenswalb et al. detector, λ_{l} is the threshold of the detector for that class, c_{i} is the detector class, and $\sigma(x)=1 /(1+\exp (-1.5 x))$ is a logistic function that converts the classifier score into probability.

- Scene:

$$
\phi^{S c e n e}(s=k)=\sigma\left(t_{k}\right)
$$

where t_{k} denotes the classifier score for scene class k

Pairwise potentials

- Super-pixel - Super-segment: we use the P^{n} potentials by Kohli et al.,CVPR'07:

$$
\phi_{i, j}\left(x_{i}, y_{j}\right)= \begin{cases}-\infty & \text { if } x_{i} \neq y_{j} \\ 0 & \text { otherwise }\end{cases}
$$

- Super-segment - Class:

$$
\phi_{i, j}\left(y_{i}, z_{j}\right)= \begin{cases}-\infty & \text { if } y_{i}=j \wedge z_{j}=0 \\ 0 & \text { otherwise }\end{cases}
$$

- Class - Scene:
$\phi^{S C}\left(s, z_{j}\right)= \begin{cases}f_{s, z_{j}} & \text { if } z_{j}=1 \wedge f_{s, z_{j}}>0 \\ -\tau & \text { if } z_{j}=1 \wedge f_{s, z_{j}}=0 \\ 0 & \text { otherwise. }\end{cases}$

where $f_{s, z_{j}}$ represents the probability of occurrence of class z_{j} for scene type s

Pairwise potentials

- Detection - Class:

$$
\phi_{i, j}^{B \text { Class }}\left(\beta_{i}, b_{i}, z_{j}\right)= \begin{cases}-\infty & \text { if } z_{j}=0 \wedge c_{i}=j \wedge b_{i}=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Detection - Super-pixel (shape prior):

aeroplane

chair

car

bird

cow

flower

Loss function

Structure prediction problems require a specification for the loss. We define it as a weighted sum of task-specific losses, each of order at most 2.

- Super-pixel and super-segment layers: loss is the total number of pixels that were wrongly predicted.
- Class: $0-1$ loss
- Scene: $0-1$ loss
- Detection:

$$
\Delta_{B}\left(b_{i}, \hat{b}_{i}\right)= \begin{cases}1-\frac{\text { intersection }}{\text { Lnion }} & \text { if } b_{i}=1 \\ \frac{\text { intersection }}{\text { union }} & \text { otherwise }\end{cases}
$$

Inference example

iteration 0000 , accuracy $=82.36 \%$

Joint Inference Results

Segmentation Results MSRC-21

[J. Yao, S. Fidler and R. Urtasun, CVPR12]
Table: MSRC-21 segmentation results

	-	$\begin{aligned} & \tilde{\pi} \\ & \frac{\tilde{\omega}}{60} \end{aligned}$	$\begin{aligned} & \mathbb{\#} \\ & \pm \end{aligned}$	3	$\begin{aligned} & \stackrel{\circ}{\otimes} \\ & \frac{N}{n} \end{aligned}$	$\frac{\pi}{n}$	$\begin{aligned} & \stackrel{\sim}{\Gamma} \\ & \frac{\pi}{0} \\ & \hline \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{N}{0} \end{aligned}$	$\underset{\substack{0 \\ \hline \multirow{2}{*}{\hline}\\ \hline}}{ }$	牙	$\frac{0}{\grave{u}}$	$\begin{aligned} & \bar{\otimes} \\ & \sum_{0}^{2} \\ & \stackrel{0}{4} \end{aligned}$	$\frac{c}{60}$	믈	$\begin{aligned} & \text { ㄴ } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \cdot \frac{1}{\pi} \\ & \frac{1}{U} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \underline{0} \end{aligned}$	范	$\begin{aligned} & 60 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ते } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \stackrel{N}{0} \\ & 0 \end{aligned}$	¢	7 $\frac{0}{0}$ $\frac{0}{60}$
	origMSRC dataset																						
Shotton et al	49	88	79	97	97	78	82	54	87	74	72	74	36	24	93	51	78	75	35	66	18	67	72
Jiang and Tu	53	97	83	70	71	98	75	64	74	64	88	67	46	32	92	61	89	59	66	64	13	68	78
Pixel-CRF	73	92	85	75	78	92	75	76	86	79	87	96	95	31	81	34	84	53	61	60	15	72	81
Hierarch. CRF	80	96	86	74	87	99	74	87	86	87	82	97	95	30	86	31	95	51	69	66	9	75	86
HCRF+Coocc.	74	98	90	75	86	99	81	84	90	83	91	98	75	49	95	63	91	71	49	72	18	77.8	86.5
Harmony pot.	60	78	77	91	68	88	87	76	73	77	93	97	73	57	95	81	76	81	46	56	46	75	77
Segm.+Class	72	98	91	77	82	93	86	86	82	82	93	97	71	50	96	59	88	78	51	67	0	76.2	85.1
Det 15 class	69	98	90	78	86	93	88	83	90	83	94	97	73	50	96	71	89	79	54	64	8	77.8	85.3
full model	71	98	90	79	86	93	88	86	90	84	94	98	76	53	97	71	89	83	55	68	17	79.3	86.2

Detection and Scene Classification Results

［J．Yao，S．Fidler and R．Urtasun，CVPR12］
Table：MSRC－21 object detection results

	Z	$\begin{aligned} & \stackrel{\text { O}}{む} \\ & \frac{ֻ}{\omega} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{\sigma}} \\ & \frac{\pi}{0} \\ & \stackrel{O}{0} \\ & \underset{\sim}{\omega} \end{aligned}$	$\underset{\sim}{\text { U }}$	¢ัర	$\begin{aligned} & \frac{0}{U} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { 亠凶 } \\ & \stackrel{3}{3} \\ & \frac{0}{4} \end{aligned}$	$\frac{c}{60}$	믈	$\begin{aligned} & \text { 등 } \end{aligned}$	$\begin{aligned} & \cdot \frac{1}{\pi} \\ & \frac{\pi}{U} \end{aligned}$	$\stackrel{\sim}{0}$	$\begin{aligned} & 60 \\ & 0 \\ & 0 \end{aligned}$	ते	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \hline 0 \end{aligned}$	0 0 00 0 0 0
	Recall at equal FPPI															
FPPI rate	0.03	0.02	0.00	0.01	0.05	0.03	0.04	0.02	0.02	0.01	0.00	0.02	0.04	0.04	0.02	0.02
LSVM	84.6	73.9	84.6	59.4	50.0	63.6	16.9	40.0	16.2	23.7	50.0	20.0	20.0	43.2	18.8	44.3
cont．LSVM	76.9	17.4	23.1	50.0	50.0	68.2	15.3	40.0	8.1	18.4	50.0	30.0	33.3	38.6	21.9	36.1
Detection	88.5	78.3	100.0	43.8	52.4	63.6	20.3	53.3	16.2	42.1	62.5	50.0	26.7	38.6	6.3	49.5
full model	88.5	82.6	100.0	46.9	52.4	63.6	20.3	53.3	16.2	44.7	62.5	40.0	26.7	38.6	12.5	49.9
							Avera	ge Prec	ision							
LSVM	78.6	76.5	96.2	56.4	54.1	61.7	19.9	45.0	18.5	30.0	59.2	31.4	28.0	45.5	22.1	48.2
cont．LSVM	75.8	37.0	85.1	58.2	52.1	60.8	19.1	38.5	12.3	28.6	60.5	32.1	32.1	41.7	26.2	44.0
Detection	78.1	72.7	100.0	45.5	53.1	60.9	22.9	48.9	18.2	42.9	63.6	46.0	27.3	34.3	9.1	48.2
full model	78.1	81.8	100.0	45.5	53.1	60.9	22.9	48.9	18.2	44.4	63.6	45.6	27.3	34.3	16.4	49.4

Table：MSRC－21 scene classification

	classifier	full m.
accuracy	79.5	$\mathbf{8 0 . 6}$

More Results ...

Figure: Segmentation examples: (image, groundtruth, our holistic scene model)

Figure: Examples of failure modes.

Let's talk about attributes

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Zero-shot learning

- Can I leaned what a mule is without seen a single instance if I know what horses and donkeys are?
- Traditional paradigm is not very appropiate

[Source: D. Parikh]

Attributes

- Long history of attributes in vision, starting in 2007.
- They are typically simple classifiers
- The score of those classifiers is an alternative representation
- They are binary

Is furry	Has four-legs
Legs shorter than horses'	Tail longer than donkeys'

Has tail
[Oliva 2001] [Ferrari 2007] [Lampert 2009] [Farhadi 2009] [Kumar 2009] [Wang 2009] [Wang 2010] [Berg 2010] [Branson 2010] [Parikh 2010] [ICCV 2011] ...
[Source: D. Parikh]

Attributes

- Long history of attributes in vision, starting in 2007.
- They are typically simple classifiers
- The score of those classifiers is an alternative representation
- They are binary

$$
\begin{array}{cc}
\text { Is furry } & \text { Has four-legs } \\
\text { Legs shorter } & \text { Tail longer } \\
\text { than horses' } & \text { than donkeys' }
\end{array}
$$

Has tail
[Source: D. Parikh]

Attributes

- Some of them are relative

> Is furry

Has four-legs
Legs shorter than horses'

Tail longer than donkeys'

Has tail

Image Search

- I want to ask about an image of Chicago
- This might bee too crowded for my taste

Image Search

- I want to ask about an image of Chicago
- This might bee too crowded for my taste

How do we think about attributes?

But it's easy to say...

Relative Attributes [Parikh et al. 11]

Relative attributes

- Allow relating images and categories to each other
- Learn ranking function for each attribute

Novel applications

- Zero-shot learning from attribute comparisons
- Automatically generating relative image descriptions

Learning Relative Attributes

For each attribute a_{m} ，open

Supervision is

$$
\begin{aligned}
& o_{m}:\{(\omega-\text { 签) })\}, \\
& S_{m}:\{\text { 長~目\}, }\}
\end{aligned}
$$

Learning Relative Attributes

$$
\text { Learn a scoring function } r_{m}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{w}_{\boldsymbol{m}}^{T} \boldsymbol{x}_{\boldsymbol{i}}
$$

that best satisfies constraints:

$$
\begin{aligned}
& \forall(i, j) \in O_{m}: \boldsymbol{w}_{\boldsymbol{m}}^{T} \boldsymbol{x}_{\boldsymbol{i}}>\boldsymbol{w}_{\boldsymbol{m}}^{T} \boldsymbol{x}_{\boldsymbol{j}} \\
& \forall(i, j) \in S_{m}: \boldsymbol{w}_{\boldsymbol{m}}^{T} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{m}}^{T} \boldsymbol{x}_{\boldsymbol{j}}
\end{aligned}
$$

Learning Relative Attributes

Max-margin learning to rank formulation

$$
\begin{array}{cc}
\min \quad\left(\frac{1}{2}\left\|\boldsymbol{w}_{\boldsymbol{m}}^{T}\right\|_{2}^{2}+C\left(\sum \xi_{i j}^{2}+\sum \gamma_{i j}^{2}\right)\right) \\
\text { s.t } \quad \boldsymbol{w}_{\boldsymbol{m}}^{T}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right) \geq 1-\xi_{i j}, \forall(i, j) \in O_{m} \\
\left|\boldsymbol{w}_{\boldsymbol{m}}^{T}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right)\right| \leq \gamma_{i j}, \forall(i, j) \in S_{m} \\
\xi_{i j} \geq 0 ; \gamma_{i j} \geq 0 \\
\text { Based on [Joachims 2002] } \\
\text { Image } \rightarrow \text { Relative Attribute Score }
\end{array}
$$

Zero Shot Learning

Training: Images from S seen categories and Descriptions of U unseen categories

Age: Hugh \succ Clive \succ Scarlett

Smiling:

Jared \succ Miley

Miley \succ Jared

Need not use all attributes, or all seen categories
Testing: Categorize image into one of $\mathbf{S}+\mathbf{U}$ categories

Automatic Relative Description

Conventional binary description: not dense

Not dense:

Automatic Relative Description

Automatic Relative Description

Results

Relative (ours):

More natural than insidecity
Less natural than highway
More open than street Less open than coast

Has more perspective than highway Has less perspective than insidecity

Results

Relative (ours):

More natural than tallbuilding Less natural than forest

More open than tallbuilding Less open than coast

Has more perspective than tallbuilding

Results

Binary (existing):
Not Young
BushyEyebrows
RoundFace
More Young than CliveOwen
Less Young than ScarlettJohansson
More BushyEyebrows than ZacEfron
Less BushyEyebrows than AlexRodriguez

Human Studies: Which Image is described?

Automatic Relative Image Description

18 subjects

Test cases: 10 OSR, 20 PubFig

There is much more... for that you need to do a PhD on vision ;)

