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What did we see in class last week?
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Last week

Image formation.

Filtering: convolution vs correlation

Separable filters.

Computing edges.

Steerable filters.

Midwest Vision Workshop.
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First Recognition System:Template matching

What if the template is not identical to some subimage in the scene?

Match can be meaningful, if scale, orientation, and general appearance is
right.

How can I find the right scale?

[Source: K. Grauman]
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Today’s lecture ...

Additional transformations

Local features: Interest point detection and descriptors

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 5 / 88



Material

Chapter 3 and 4 of Rich Szeliski book

Available online here

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 6 / 88

http://szeliski.org/Book/
http://szeliski.org/Book/


Other transformations
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Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]
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Example of Integral Images
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Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.
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Example of non-linear filters

(Median filter) (α-trimmed mean)
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Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k, l)w(i , j , k, l)∑

k,l w(i , j , k, l)

Data-dependent bilateral weight function

w(i , j , k, l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.
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Example Bilateral Filtering

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b)
domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d)
bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]
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Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.
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Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
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Example of Distance Transform

More complicated in the Euclidean case.

Example of a distance transform

The ridges is the skeleton or medial axis.

Extension: Signed distance transform.

[Source: P. Felzenszwalb]
Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 16 / 88



Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi ) = sin(ωx + φi )

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)
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Filtering and Fourier

Convolution can be expressed as a weighted summation of shifted input
signals (sinusoids); so it is just a single sinusoid at that frequency.

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

A is the gain or magnitude of the filter, while the phase difference
∆φ = φo − φi i is the shift or phase
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Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).
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Properties Fourier Transform

[Source: R. Szeliski]
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2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy ) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−jωxx+ωy ydxdy

and in the discrete domain

H(kx , ky ) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.
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Example of 2D Fourier Transform

[Source: A. Jepson]
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Pyramids

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face in
an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.
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Image Pyramid

[Source: R. Szeliski]
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Interpolation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

[Source: R. Szeliski]
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Decimation

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.
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Multi-Resolution Representations

The most used one is the Laplacian pyramid:

We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

They then subtract this low-pass version from the original to yield the
band-pass Laplacian image.

The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

How do we reconstruct back?
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Local features for instance-level recognition
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Application Example: Image stitching

[Source: K. Grauman]
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

Tracking: alternative to matching that only searches a small neighborhood
around each detected feature.

[Source: K. Grauman]
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Goal: interest operator repeatability

We want to detect (at least some of) the same points in both images.

We have to be able to run the detection procedure independently per image.

Figure: No chance to find the true matches

[Source: K. Grauman]
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Goal: descriptor distinctiveness

We want to be able to reliably determine which point goes with which.

Must provide some invariance to geometric and photometric differences
between the two views.

[Source: K. Grauman]
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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What points to choose?

[Source: K. Grauman]
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What points to choose?

Textureless patches are nearly impossible to localize.

Patches with large contrast changes (gradients) are easier to localize.

But straight line segments at a single orientation suffer from the aperture
problem, i.e., it is only possible to align the patches along the direction
normal to the edge direction.

Gradients in at least two (significantly) different orientations are the easiest,
e.g., corners.
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Corners as distinctive interest points

We should easily recognize the point by looking through a small window.

Shifting a window in any direction should give a large change in intensity.

Figure: (left) flat region: no change in all directions, (center) edge: no change
along the edge direction, (right) corner: significant change in all directions

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 38 / 88



A Simple Matching Criteria

Compare two image patches using (weighted) summed square difference

EWSSD(u) =
∑
i

w(pi )[I1(pi + u)− I0(pi )]2

with I0 and I1 two images being compared, u(ux , uy ) a displacement vector,
w(p) a spatially varying weighting function, and the summation i is over all
the pixels in the patch.

We do not know which other image locations the feature will end up being
matched against.

We can only compute how stable this metric is with respect to small
variations in position u by comparing an image patch against itself.

This is the auto-correlation function

EAC (∆u) =
∑
i

w(pi )[I0(pi + ∆u)− I0(pi )]2
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Which one is better?

[Source: R. Szeliski]
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How to select?

Using a Taylor Series expansion I0(pi + ∆u) ≈ I0(pi ) +∇I0(pi ) we can
approximate the autocorrelation as

EAC (∆u) =
∑
i

w(pi )[I0(pi + ∆u)− I0(pi )]2

≈
∑
i

w(pi )[I0(pi ) +∇I0(pi )∆u− I0(pi )]2

=
∑
i

w(pi )[∇I0(pi )∆u]2

= ∆uTA∆u

with

∇I0(pi ) =

(
∂I0
∂x

,
∂I0
∂y

)
(pi )

the image gradient.

Gradient can be computed with the filtering techniques we saw, e.g.,
derivatives of Gaussians.
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More on selection

The autocorrelation is EAC (∆u) = ∆uTA∆u, with

A =
∑
u

∑
v

w(u, v)

[
I 2
x Ix Iy

Iy Ix I 2
y

]
= w ∗

[
I 2
x Ix Iy

Iy Ix I 2
y

]
where we have replaced the weighted summations with discrete convolutions
with the weighting kernel w .

A can be interpreted as a tensor where the outer products of the gradients
are convolved with a weighting function.

Eigenvalues a notion of uncertainty

[Source: R. Szeliski]
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Eigenvalues a notion of uncertainty

A is symmetric

A = U

[
λ0 0
0 λ1

]
UT with Aui = λiui

The eigenvalues of A reveal the amount of intensity change in the two
principal orthogonal gradient directions in the window.

How is this matrix for

[Source: R. Szeliski]
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Local Feature Selection Criteria

Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., λ
−1/2
0 .

Harris and Stephens, 88 is rotationally invariant and downweights edge-like
features where λ1 � λ0

det(A)− αtrace(A)2 = λ0λ1 − α(λ0 + λ1)2

Triggs, 04 suggested
λ0 − αλ1

also reduces the response at 1D edges, where aliasing errors sometimes
inflate the smaller eigenvalue.

Brown et al, 05 use the harmonic mean

det(A)

trace(A)
=

λ0λ1

λ0 + λ1
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Type of responses

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 45 / 88



Harris Corner detector

1 Compute A for each image window to get their cornerness scores.

2 Find points whose surrounding window gave large corner response (f >
threshold).

3 Take the points of local maxima, i.e., perform non-maximum suppression.
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Example

[Source: K. Grauman]
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1) Compute Cornerness

[Source: K. Grauman]
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2) Find High Response

[Source: K. Grauman]
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3) Non-maxima Suppresion

[Source: K. Grauman]
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Results

[Source: K. Grauman]
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Another Example

[Source: K. Grauman]
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Cornerness

[Source: K. Grauman]
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Interest Points

[Source: K. Grauman]
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Properties of Harris Corner Detector

Rotation invariant?

A = w ∗
[

I 2
x Ix Iy

Iy Ix I 2
y

]
= U

[
λ0 0
0 λ1

]
UT with Aui = λiui

Scale Invariant?

[Source: K. Grauman]
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.

When does this work?

More efficient to extract features that are stable in both location and scale.

Find scale that gives local maxima of a function f in both position and scale.

[Source: K. Grauman]
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Automatic Scale Selection

Function responses for increasing scale (scale signature).

[Source: T. Tuyttellaars]
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What can the signature function be?

Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).

Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure.

[Source: R. Szeliski]
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Blob detection

Laplacian of Gaussian: Circularly symmetric operator for blob detection in
2D

∇2g =
∂2g

∂x2
+
∂2g

∂y2

[Source: K. Grauman]
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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = blob detector

[Source: B. Leibe]
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Characteristic Scale

We define the characteristic scale as the scale that produces peak of
Laplacian response

[Source: S. Lazebnik]
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Example

[Source: K. Grauman]
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Scale invariant interest points
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Example

[Source: S. Lazebnik]
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Fast approximation

[Source: K. Grauman]
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Lowe’s DoG

Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure

[Source: R. Szeliski]
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Laplacian vs Hessian

Laplacian of Gaussians is scale invariant.

Simple and efficient.

But fires more on edges than determinant of hessian

[Source: T. Tuyttellaars]
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Properties of the ideal feature

Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

Invariant: to certain transformations, e.g, scale, rotation.

Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

Distinctive: individual features can be matched to a large database of
objects.

Quantity: many features can be generated for even small objects.

Accurate: precise localization.

Efficient: close to real-time performance.
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A lot of other interest point detectors

Hessian

Lowe: DoG

Lindeberg: scale selection

Miikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine

Tuyttelaars & Van Gool: EBR and IBR

Matas: MSER

Kadir & Brrady: Salient Regions

Speeded–Up Robust Features (SURF) of Bay et al.
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Evaluation criteria: repeatability

Repeatability rate: percentage of detected that have correct corresponding
points

What’s the problem of this?

[Source: T. Tuyttellaars]
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Evaluation criteria: repeatability

Two points are in correspondence if the intersection over union is bigger
than a certain threshold.

[Source: T. Tuyttellaars]
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient
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Invariances

[Source: T. Tuytelaars]
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Invariances

[Source: T. Tuytelaars]
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Raw Pixels as Local Descriptrs

The simplest way is to write down the list of intensities to form a feature
vector, and normalize them (i.e., mean 0, variance 1).

But this is very sensitive to even small shifts, rotations.

[Source: K. Grauman]
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SIFT descriptor [Lowe 2004]

Compute the gradient at each pixel in a 16× 16 window around the
detected keypoint, using the appropriate level of the Gaussian pyramid at
which the keypoint was detected.

Doweight gradients by a Gaussian fall-off function (blue circle) to reduce the
influence of gradients far from the center.

In each 4× 4 quadrant, compute a gradient orientation histogram using 8
orientation histogram bins.

[Source: R. Szeliski]
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SIFT descriptor [Lowe 2004]

To reduce the effects of location and dominant orientation misestimation,
each of the original 256 weighted gradient magnitudes is softly added to
2× 2× 2 histogram bins using trilinear interpolation.

The resulting 128 non-negative values form a raw version of the SIFT
descriptor vector.

To reduce the effects of contrast or gain (additive variations are already
removed by the gradient), the 128-D vector is normalized to unit length.

To further make the descriptor robust to other photometric variations,
values are clipped to 0.2 and the resulting vector is once again renormalized
to unit length.

Great engineering effort!

Why subpatches?

Why does SIFT have some illumination invariance?
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SIFT descriptor [Lowe 2004]

Extraordinarily robust matching technique

Changes in viewpoint: up to about 60 degree out of plane rotation

Changes in illumination: sometimes even day vs. night

Fast and efficientcan run in real time

Lots of code available

[Source: S. Seitz]
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Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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SIFT properties

Invariant to

Scale

Rotation

Partially invariant to

Illumination changes

Camera viewpoint

Occlusion, clutter

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 80 / 88



Making descriptor rotation invariant

Rotate patch according to its dominant gradient orientation

This puts the patches into a canonical orientation

Figure: Figure from M. Brown

[Source: K. Grauman]
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Gradient location-orientation histogram (GLOH)

Developed by Mikolajczyk and Schmid (2005): variant on SIFT that uses a
log-polar binning structure instead of the four quadrants.

The spatial bins are 11, and 15, with eight angular bins (except for the
central region), for a total of 17 spatial bins and 16 orientation bins.

The 272D histogram is then projected onto a 128D descriptor using PCA
trained on a large database.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 82 / 88



Other Descriptors

Steerable filters

moment invariants,

complex filters

shape contexts,,

PCA-SIFT,

HOG,

SURF

DAISY
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Local features

Detection: Identify the interest points.

Description: Extract vector feature descriptor around each interest point.

Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

Matching strategy: which correspondences are passed on to the next stage

Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman
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Matching local features

To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]
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Ambiguous matches

At what SSD value do we have a good match?

To add robustness, consider ratio of distance to best match to distance to
second best match

If low, first match looks good.
If high, could be ambiguous match.

[Source: K. Grauman]
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Matching SIFT Descriptors

Nearest neighbor (Euclidean distance)

Threshold ratio of nearest to 2nd nearest descriptor

Figure: Images from D. Lowe

[Source: K. Grauman]
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