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Which detectors?

Window-based

Part-based

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.] [Bourdev et al.]
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Bag-of-words model

Summarize entire image based on its distribution (histogram) of word
occurrences.

Total freedom on spatial positions, relative geometry.

Vector representation easily usable by most classifiers

[Source: K. Grauman]
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Visual Categorization with Bags of Keypoints

Figure: Database of 1776 images of 7 classes: faces, building, trees, cars, phones,
bikes and books
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Visual Categorization with Bags of Keypoints

Figure: (left) All features detected. (Right) Features from 2 clusters.
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Classification

They try both SVM and Naive Bayes model which computes

max
c

p(c |w) ∝ p(c)p(w |c) = p(c)
N∏

n=1

p(wn|c)

for N patches

p(c) is the prior probability of the object classes

p(w |c) is the image likelihood given the class
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Is machine learning important?

As expected the SVM outperformed Nave Bayes, reducing the overall error rate

from 28 to 15
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Category vs Background?

Most of the interest points are in background some times.

[Source: K. Grauman]
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Sampling Strategies

To find specific, textured objects, sparse sampling from interest points more
reliable

Multiple complementary interest points offer more coverage

For object categorization, dense sampling offers better coverage

(IP) (Dense) (Random) (Multiple)

[Source: K. Grauman]
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Local feature correspondence

Comparing bags of words histograms coarsely reflects agreement between
local parts (patches, words).

But choice of quantization directly determines what we consider to be similar

[Source: K. Grauman]
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Matching local features

Matching kernel that makes it practical to compare large sets of features
based on their partial correspondences

min
π:X→Y

∑
xi∈X

||xi − π(xi )||

[Source: K. Grauman]
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Pyramid match idea

Feature space partitions serve to match the local descriptors within
successively wider regions.

Histogram intersection counts number of matches at a given partitioning

I(Hx ,HY ) =
∑
j

min(Hx(j),HY (j))
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Pyramid Match Kernel

We can construct a kernel

KX ,Y =
L∑

i=0

2−i
(
I(H

(i)
X ,H

(i)
Y )− I(H

(i−1)
X ,H

(i−1)
Y )

)
We multiply the new matches with a measure of difficulty of level i

For similarity, weights inversely proportional to bin size (or may be learned)

Normalize these kernel values to avoid favoring large sets

Develop by [Grauman & Darrell, 05]

[Source: K. Grauman]
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Pyramid match kernel

[Source: K. Grauman]
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Caltech 101 Era

101 categories with 40-800 images per class
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Accuracy
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Too much flexibility?

Unordered sets of local features: No spatial layout preserved!

[Source: K. Grauman]
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Spatial pyramid match

Make a pyramid of bag-of-words histograms [Lazebnik et al. 06]

Provides some loose (global) spatial layout information

Sum over PMKs computed in image coordinate space, one per word.

K (X ,Y ) =
M∑

m=1

kL(Xm,Ym)
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Spatial Pyramid

Captures scene categories well—texture-like patterns but with some
variability in the positions of all the local pieces.

[Source: K. Grauman]
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More results

Better results than the PMK

The spatial division of the image is very naive.

What can we do to partition the space better?

[Source: K. Grauman]
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Which detectors?

Window-based

Part-based

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.] [Bourdev et al.]
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Implicit Shape Model
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Implicit Shape Model

Detect interest points and form descriptors.

Learn an appearance codebook

Learn a star-topology structural model where features are considered
independent given obj. center

x1 

x3 

x4 

x6 

x5 

x2 

Algorithm: probabilistic Gen. Hough Transform
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Basic Idea

Visual vocabulary is used to index votes for object position [a visual word =
part].

Training image 
Visual codeword with 

displacement vectors 

[Leibe et al. IJCV 2008]
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Implicit Shape Model: Basic Idea

Objects are detected as consistent configurations of the observed parts
(visual words).

Advantages:

Great flexibility

Requires small number of training examples.

[Source: B. Leibe]
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Representation of Implicit Shape Model

Learn appearance codebook

Extract local features at interest points

Agglomerative clustering to learn codebook instead of classical k-means

Represent each cluster by the mean.

Training images 

(+reference segmentation) 

Appearance codebook 
… 

… 
… 
… 

… 

[Source: B. Leibe]
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Implicit Shape Model (ISM)

Is defined by ISM(C ,Pc), with C a class specific alphabet, and Pc the
spatial probability distribution.

Pc specifies where each codebook entry may be found on the object.

Two explicit design choices

The distribution is defined independently for each codebook entry: star
model
Spatial probability distribution is estimated in a non-parametric form.

x1 

x3 

x4 

x6 

x5 

x2 

[Source: B. Leibe]
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More on representation

Learn spatial distributions representing uncertainty

Match codebook to training images

Record matching positions on object

Use neighboring clusters up to a thresholded distance.

Spatial occurrence distributions 
x 

y 

s 
x 

y 

s 

x 

y 

s 
x 

y 

s 

[Source: B. Leibe]
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Recognition

[Source: B. Leibe]
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Recognition Summary

Apply interest points and extract features around selected locations.

Match those to the codebook.

Collect consistent configurations using Generalized Hough Transform.

Each entry votes for a set of possible positions and scales in continuous
space.

Extract maxima in the continuous space using Mean Shift.

Refinement can be done by sampling more local features.

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 30 / 78



Example

Original image 

[Source: B. Leibe]
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Example

Interest points 

[Source: B. Leibe]
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Example

Matched patches 

[Source: B. Leibe]

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 31 / 78



Example

[Source: B. Leibe]
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Example

1st hypothesis 

[Source: B. Leibe]
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Example

2nd hypothesis 

[Source: B. Leibe]
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Example

3rd hypothesis 

[Source: B. Leibe]
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Scale Invariant Voting

Scale-invariant feature selection

Scale-invariant interest points

Rescale extracted patches

Match to constant-size codebook

Generate scale votes

Scale as 3rd dimension in voting space

xvote = ximg − xocc(simg/socc)

yvote = yimg − yocc(simg/socc)

svote = simg/socc

Search for maxima in 3D voting space

[Source: B. Leibe]
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Scale Invariant Voting

Search  

window 

x 

y 

s 
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Scale Voting: Efficient Computation

Continuous Generalized Hough Transform

Binned accumulator array similar to standard Gen. Hough Transf.

Quickly identify candidate maxima locations

Refine locations by Mean-Shift search only around those points

Avoid quantization effects by keeping exact vote locations.

y 

s 

x 

Refinement 

(Mean-Shift) 

y 

s 

x 

Candidate 

maxima 

y 

s 

Scale votes 

x 

y 

s 

Binned  

accum. array 

x 

[Source: B. Leibe]
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Extension: Rotation-Invariant Detection

Polar instead of Cartesian voting scheme

Recognize objects under image-plane rotations

Possibility to share parts between articulations

But also increases false positive detections

[Source: B. Leibe]
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Sometimes it’s necessary

20 
B. Leibe Figure from [Mikolajczyk et al., CVPR’06] 

[Source: B. Leibe]
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Top-Down Segmentation: Basic Idea

During initial voting

When we first observe a feature, we do not know its context.

Different figure-ground labels may be consistent with the appearance.

Strategy: we cast votes for many locations.

x 

y 

s 

[Source: B. Leibe]

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 37 / 78



Top-Down Segmentation: Basic Idea

After Voting

Voting groups features that are consistent with the same object.

We can now consider each feature conditioned on the selected object
location hypothesis.

This allows us to backproject a local figure-ground label from selected votes.

[Source: B. Leibe]
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Recognition and segmentation

Training images 

(+reference segmentation) 

Appearance codebook 
… 

… 
… 
… 

… 

Spatial occurrence distributions 
x 

y 

s 
x 

y 

s 

x 

y 

s 
x 

y 

s 

+ local figure-ground labels 
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Recognition and segmentation

Backprojected 
Hypotheses 

Local Features Matched Codebook  
Entries 

Probabilistic  
Voting 

Segmentation 
3D Voting Space 

(continuous) 

x 

y 

s 

Backprojection 
of Maxima 

Pixel 
Contributions 

Backproject 
Meta- 

information 
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Segmentation

Interpretation of p(figure) map

Per-pixel confidence in object hypothesis

Use for hypothesis verification

p(figure) 
p(ground) 

Segmentation 

p(figure) 

p(ground) 

Original image 

[Source: B. Leibe]
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Top-Down Segmentation: Motivation

Secondary hypotheses (mixtures of cars/cows/etc.)

We want robustness to occlusion

Standard solution: reject based on bounding box overlap

Problematic - may lead to missing detections!
Use segmentations to resolve ambiguities instead.

Basic idea: each pixel can only be explained by (at most) one detection.

[Source: B. Leibe]
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Top-Down Segmentation Algorithm
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Results

[Source: B. Leibe]
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Results

Office chairs 

Dining room chairs 

[Source: B. Leibe]
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Inferring other information: Part labels

Training 

Test Output 

[Source: B. Leibe]
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Inferring other information: Part labels

[Source: B. Leibe]
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Inferring other information: Depth

“Depth from a single image” 

[Source: B. Leibe]
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Conclusion

Exploits a lot of parts (as many as interest points)

Very simple Voting scheme: generalized hough transform

Works well, but no as well as Deformable part-based models with latent
SVM training

Extensions: train the weights discriminatively.

Code, datasets & several pre-trained detectors available at
http://www.vision.ee.ethz.ch/bleibe/code

[Source: B. Leibe]
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Beyond Sliding Window
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Sliding Window: Example

0.1
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Sliding Window: Example

-0.2
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Sliding Window: Example

-0.1
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Sliding Window: Example

0.1
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Sliding Window: Example

. . .
1.5
. . .
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Sliding Window: Example

0.5
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Sliding Window: Example

0.4
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Sliding Window: Example

0.3
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Sliding Window: Example

0.1
-0.2
-0.1
0.1
. . .
1.5
. . .
0.5
0.4
0.3

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 51 / 78



Sliding Window Classifier

Approach: sliding window classifier

evaluate classifier at candidate regions in an image

for a 640× 480 pixel image, there are over 10 billion possible regions
to evaluate

Sample a subset of regions to
evaluate

scale

aspect ratio

grid size

[Source: C. Lampert]
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Sliding Window Classifier

Approach: sliding window classifier

evaluate classifier at candidate regions in an image

for a 640× 480 pixel image, there are over 10 billion possible regions
to evaluate

Sample a subset of regions to
evaluate

scale

aspect ratio

grid size

We need a better way to search the space of possible windows

[Source: C. Lampert]
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Mathematically...

We can view the sliding window procedure as

B∗ = arg max
B∈B

f (B)

where B ranges over the all rectangular regions in the image.

f is a quality function, e.g., classifier score.

For n × n image, complexity is n4.

Heuristics to speed up and prune the number of candidates, e.g., coarse
grid, fix size.

Inherent assumption is that the function is smooth and slowly varying.

But we want to have a sharply picked function to have good localization!
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Efficient Object Localization

Problem: Exhaustive evaluation of arg maxB∈B f (B) is too slow.
Solution: Use the problem’s geometric structure.

Similar boxes have similar scores.

Calculate scores for sets of boxes
jointly (upper bound).

If no element can contain the
object, discard the set.

Else, split the set into smaller
parts and re-check, etc.

⇒ efficient branch & bound algorithm
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Efficient Object Localization

Hierarchically split the parameters space into disjoint subsets, keeping
bounds for the maximal quality for each of the subsets.

Explore first promising parts.

Large parts of the parameter space do not have to be explored further
if the upper-bound says that they cannot contain the maximum.

Param space is the set of all possible rectangles.

Subsets are formed by imposing restrictions on the values that the
rectangles can take.
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Branch & Bound Search

Form a priority queue that stores sets
of boxes.

Optimality check is O(1).

Split is O(1).

Bound calculation depends on
quality function. For us: O(1)

No pruning step necessary

n ×m images: empirical performance O(nm) instead of O(n2m2).

No approximations, solution is globally optimal
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Branch & Bound

Branch & bound algorithms have three main design choices

Parametrization of the search space

Technique for splitting regions of the search space

Bound used to select the most promising regions

[Source: C. Lampert]
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Sliding Window Parametrization

Low dimensional parametrization of bounding box
(left, top, right, bottom)

[Source: C. Lampert]

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 58 / 78



Sets of Rectangles

Branch-and-Bound works with subsets of the search space.

Instead of four numbers [l, t, r, b], store four intervals [L,T,R,B ]:

L = [llo , lhi ]

T = [tlo , thi ]

R = [rlo , rhi ]

B = [blo , bhi ]

[Source: C. Lampert]
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Branch-Step: Splitting Sets of Boxes

rectangle set [L, R,T , B]

[L, R1,T , B] with R1 := [rlo , b
rlo+rhi

2
c] [L, R2,T , B] with R2 := [b rlo+rhi

2
c+1, rhi ]

Finish when we have the rectangle which quality is as good as the upper
bound of the remaining candidates.
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Branch-and-Bound Optimization Procedure

Require: image I ∈ Rn×m

Require: quality bounding function f
Ensure: B = argmaxB⊂B fI (B)

initialize Q as empty priority queue
initialize B = [0, n]× [0,m]× [0, n]× [0,m] indicating the top, left,
bottom, and right of the box could fall anywhere in I
repeat

split B→B1 ∪̇ B2 by splitting the range of one of the sides into two
push ( fI (B1 ), B1 ) and ( fI (B2 ), B2 ) into Q
retrieve top state, B, from Q

until B consists of only one rectangle, B

[Source: C. Lampert]
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Bound-Step: Constructing a Quality Bound

We have to construct f upper : { set of boxes } → R such that

i) f upper (B) ≥ maxB∈B f (B),

ii) f upper (B) = f (B), if B = {B}.

The first condition ensures that f upper (B) is an upper bound.

The second condition ensures the optimality of the solution to which
the algorithm converges.

f upper (B) has only to be defined for rectangle sets on a [T ,B, L,R]
representation.

For every f there is a spectrum of possible bounding functions

Select a bound that is easy to compute
Select a bound that it’s tight
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Example: SVM with Linear Bag-of-Features Kernel

Convert the images to grayscale

Extract local image descriptors in multiple scales

on interest points and on a regular 10× 10 pixel grid
10, 000− 30, 000 descriptors per images
descriptors lie in R128 (SIFT) or R64 (SURF)

Perform a k-means clustering (k = 3000) on the set of all descriptors

Keep the cluster centers as visual codewords

For each descriptor store the ID of the its nearest codebook neighbor

⇔

[Source: C. Lampert]
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Example: SVM with Linear Bag-of-Features Kernel

Each image is represented by a set of feature points dj , where for each
feature point we store its image coordinates and a BOW cluster id cj .

Given a rectangular window B we can form the k-bin histogram h where
each entry hk counts how many feature points of the cluster id k occur in B.

f (B) =
∑
j

αj〈hB , hj〉

with hB the histogram of the box B.

We can write
f (B) =

∑
j

αj

∑
k

hB
k hj

k =
∑
k

hB
k wk

for wk =
∑

j αjh
j
k

Thus if histogram not normalized

f (B) =
∑
xi∈B

wci

with ci the cluster ID of the feature xi .
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Example: SVM with Linear Bag-of-Features Kernel

Decompose f into f + which contains only the positive summands and f −

which contains only the negative ones.

f +(B) =
∑
xi∈B

[wi ]+ f −(B) =
∑
xi∈B

[wi ]−

Set Bmax := largest box in B, Bmin := smallest box in B.

f upper (B) := f +(Bmax) + f −(Bmin) fulfills i) and ii).

i) f upper (B) ≥ maxB∈B f (B),

ii) f upper (B) = f (B), if B = {B}.
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Branch and Bound Example: 1D maximum sum

1 2 3 4 5 6 7 8

f 5 2 -2 -4 -5 4 3 2

f + 5 2 0 0 0 4 3 2

f − 0 0 -2 -4 -5 0 0 0

[Source: C. Lampert]
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Evaluating the Quality Bound for Linear SVMs

f (B) =
∑
xi∈B

wi . f upper (B) =
∑

xi∈Bmax

[wi ]+ +
∑

xi∈Bmin

[wi ]−.

Evaluating f upper (B) has same complexity as f (B)!

Using integral images, this is O(1).
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Example: Spatial Pyramid

Construct a pyramid of grids

Build histograms for all grid cells in all levels

Sum the kernels for all histograms (possibly weighted)

[Source: C. Lampert]
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Example: Spatial Pyramid

Let hB be the histogram of the box B at level l quadrant (a, b)

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j 〈hB

l,(a,b), hj
l,(a,b)〉

We can write

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j

∑
k

hB
k,l,(a,b)h

j
k,l,(a,b) =

∑
k

L∑
l=1

∑
a,b

hB
k,l,(a,b)w

l,(a,b)
k

for w
l,(a,b)
k =

∑
j αjh

j
k,l,(a,b)

Thus if histogram not normalized

f (B) =
L∑

l=1

∑
a,b

∑
xi∈B

wci

with ci the cluster ID of the feature xi .

Bound each term in a similar manner as before for each cell

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 69 / 78



Example: Spatial Pyramid

Let hB be the histogram of the box B at level l quadrant (a, b)

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j 〈hB

l,(a,b), hj
l,(a,b)〉

We can write

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j

∑
k

hB
k,l,(a,b)h

j
k,l,(a,b) =

∑
k

L∑
l=1

∑
a,b

hB
k,l,(a,b)w

l,(a,b)
k

for w
l,(a,b)
k =

∑
j αjh

j
k,l,(a,b)

Thus if histogram not normalized

f (B) =
L∑

l=1

∑
a,b

∑
xi∈B

wci

with ci the cluster ID of the feature xi .

Bound each term in a similar manner as before for each cell

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 69 / 78



Example: Spatial Pyramid

Let hB be the histogram of the box B at level l quadrant (a, b)

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j 〈hB

l,(a,b), hj
l,(a,b)〉

We can write

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j

∑
k

hB
k,l,(a,b)h

j
k,l,(a,b) =

∑
k

L∑
l=1

∑
a,b

hB
k,l,(a,b)w

l,(a,b)
k

for w
l,(a,b)
k =

∑
j αjh

j
k,l,(a,b)

Thus if histogram not normalized

f (B) =
L∑

l=1

∑
a,b

∑
xi∈B

wci

with ci the cluster ID of the feature xi .

Bound each term in a similar manner as before for each cell

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 69 / 78



Example: Spatial Pyramid

Let hB be the histogram of the box B at level l quadrant (a, b)

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j 〈hB

l,(a,b), hj
l,(a,b)〉

We can write

f (B) =
∑
j

L∑
l=1

∑
a,b

α
l,(a,b)
j

∑
k

hB
k,l,(a,b)h

j
k,l,(a,b) =

∑
k

L∑
l=1

∑
a,b

hB
k,l,(a,b)w

l,(a,b)
k

for w
l,(a,b)
k =

∑
j αjh

j
k,l,(a,b)

Thus if histogram not normalized

f (B) =
L∑

l=1

∑
a,b

∑
xi∈B

wci

with ci the cluster ID of the feature xi .

Bound each term in a similar manner as before for each cell

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 69 / 78



Example: Non-linear Additive classifiers

The generalized intersection kernel is defined as

kGHI (h, hj) =
K∑

k=1

[min(hk , h
j
k)]γ

with γ a normalization parameter.

We define
f (B) =

∑
j

αj

∑
k

[min(hj
k , h

B
k )]γ

We can bound by the number of keypoints that fell into Bmax and Bmin.

min(hk , h
B
k ) ≤ min(hk , h

B
k ) ≤ min(hk , h̄

B
k )

Therefore

f upper (B) =
∑
αj>0

αj [min(hk , h̄
B
k )]γ +

∑
αj<0

αj [min(hk , h
B
k )]γ
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Results: UIUC Cars Dataset

1050 training images: 550 cars, 500 non-cars

170 test images single scale

139 test images multi scale

[Source: C. Lampert]
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Results: UIUC Cars Dataset

Evaluation: Precision-Recall curves with different pyramid kernels

0.0 0.1 0.2 0.3 0.4 0.5

1-precision

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

UIUC Cars (single scale)

bag of words
2x2 pyramid
4x4 pyramid
6x6 pyramid
8x8 pyramid
10x10 pyramid

0.0 0.2 0.4 0.6 0.8 1.0

1-precision

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

UIUC Cars (multi scale)

bag of words
2x2 pyramid
4x4 pyramid
6x6 pyramid
8x8 pyramid
10x10 pyramid

[Source: C. Lampert]
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Results: UIUC Cars Dataset

Evaluation: Error Rate where precision equals recall

[Source: C. Lampert]

method \data set single scale multi scale

10× 10 spatial pyramid kernel 1.5% 1.4%
4× 4 spatial pyramid kernel 1.5 % 7.9 %
bag-of-visual-words kernel 10.0 % 71.2 %

Agarwal et al. [2002,2004] 23.5 % 60.4 %
Fergus et al. [2003] 11.5 % —
Leibe et al. [2007] 2.5 % 5.0%
Fritz et al. [2005] 11.4 % 12.2%
Mutch/Lowe [2006] 0.04 % 9.4%

UIUC Car Localization, previous best vs. our results

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 73 / 78



Results: PASCAL VOC 2007 challenge

We participated in the
PASCAL Challenge on Visual Object Categorization (VOC) 2007:

training: ≈5,000 labeled images

task: ≈5,000 new images, predict locations for 20 object classes
aeroplane, bird, bicycle, boat, bottle, bus, car, cat, chair, cow, diningtable,

dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tv/monitor

natural images, downloaded from Flickr, realistic scenes
high intra-class variance
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Results: PASCAL VOC 2007 challenge

Results:

High localization quality: first place in 5 of 20 categories.

High speed: ≈ 40ms per image (excl. feature extraction)

Example detections on VOC 2007 dog.
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Results: PASCAL VOC 2007 challenge

Results:

High localization quality: first place in 5 of 20 categories.

High speed: ≈ 40ms per image (excl. feature extraction)

Precision–Recall curves on VOC 2007 cat (left) and dog (right).

Raquel Urtasun (TTI-C) Visual Recognition Feb 7, 2012 75 / 78



Results: Prediction Speed on VOC2006

[Source: C. Lampert]
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Extensions

Branch-and-bound localization allows efficient extensions:

Multi-Class Object Localization:

(B,C )opt = arg max
B∈B,C∈C

f C
I (B)

finds best object class C ∈ C.

Localized retrieval from image
databases or videos

(I ,B)opt = arg max
B∈B, I∈D

fI (B)

find best image I in database D.

Runtime is sublinear in |C| and |D|. Nearest Neighbor query for Red Wings
Logo in 10,000 video keyframes in “Ferris
Buellers Day Off”
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Summary

For a 640× 480 pixel image, there are over 10 billion possible regions
to evaluate

Sliding window approaches trade off runtime vs. accuracy

scale
aspect ratio
grid size

Efficient subwindow search finds the
maximum that would be found by an
exhaustive search

efficiency
accuracy
flexibile

just need to come up with a
bound

Source code is available online
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