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Which detectors?

Window-based

Part-based

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.] [Bourdev et al.]
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Models of local features

How is spatial information encoded for models with bad of features?

See [Carneiro et al. 06] for a comprehensive study of all possibilities.
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Constellation Model
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Main idea

An object model consists of a number of parts.

Each part has an appearance, relative scale and can be occluded or not.

Shape is represented by the mutual position of the parts.

The entire model is generative and probabilistic, so appearance, scale, shape
and occlusion are all modeled by pdf, i.e., Gaussians.

Learning: first detecting regions and their scales, and then estimating the
parameters of the above densities from these regions using max. likelihood.

Recognition by first detecting regions and their scales, and then evaluating
the regions in a Bayesian manner, using the model parameters estimated in
the learning.

In this setting we do not know where the object of interest is in the image.
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Detecting Feature Points

Kadir & Brady saliency region detector
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Constellation Model
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Generative probabilistic model

We have identified N image features, with locations X, scales S and
appearances A.

We define a generative model with P parts and parameters θ as

p(X,S,A|θ) =
∑
h∈H

p(X,S,A,h|θ)

=
∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
appearance

p(X|S,h, θ)︸ ︷︷ ︸
shape

p(S|h, θ)︸ ︷︷ ︸
Rel.scale

p(h|θ)

with h an indexing variable, called hypothesis.

h is a vector of length P where each entry is between 0 and N (0 is
occlusion).

The set H has complexity O(NP).

Decision made base on the ratio

p(X,S,A|θ)p(object)

p(X,S,A|θbg )p(No-object)

Learning using EM
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More explicitly ...

The generative model is defined as

p(X,S,A|θ) =
∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
appearance

p(X|S,h, θ)︸ ︷︷ ︸
shape

p(S|h, θ)︸ ︷︷ ︸
Rel.scale

p(h|θ)

Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

Appearance is represented with a Gaussian with diagonal covariance

p(A|X,S,h, θ)

p(A|X,S,h, θbg )
=

P∏
p=1

(
N (A(hp)|cp,Vp)

N (A(hp)|cbg ,Vbg )

)dp

Shape is represented by a joint Gaussian density (full covariance) of the
locations of features within a hypothesis in scale-invariant space

p(X|S,h, θ)

p(X|S,h, θbg )
= N (X(h)|µ,Σ)αf

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 9 / 73



More explicitly ...

The generative model is defined as

p(X,S,A|θ) =
∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
appearance

p(X|S,h, θ)︸ ︷︷ ︸
shape

p(S|h, θ)︸ ︷︷ ︸
Rel.scale

p(h|θ)

Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

Appearance is represented with a Gaussian with diagonal covariance

p(A|X,S,h, θ)

p(A|X,S,h, θbg )
=

P∏
p=1

(
N (A(hp)|cp,Vp)

N (A(hp)|cbg ,Vbg )

)dp

Shape is represented by a joint Gaussian density (full covariance) of the
locations of features within a hypothesis in scale-invariant space

p(X|S,h, θ)

p(X|S,h, θbg )
= N (X(h)|µ,Σ)αf

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 9 / 73



More explicitly ...

The generative model is defined as

p(X,S,A|θ) =
∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
appearance

p(X|S,h, θ)︸ ︷︷ ︸
shape

p(S|h, θ)︸ ︷︷ ︸
Rel.scale

p(h|θ)

Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

Appearance is represented with a Gaussian with diagonal covariance

p(A|X,S,h, θ)

p(A|X,S,h, θbg )
=

P∏
p=1

(
N (A(hp)|cp,Vp)

N (A(hp)|cbg ,Vbg )

)dp

Shape is represented by a joint Gaussian density (full covariance) of the
locations of features within a hypothesis in scale-invariant space

p(X|S,h, θ)

p(X|S,h, θbg )
= N (X(h)|µ,Σ)αf

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 9 / 73



More explicitly ...

The generative model is defined as

p(X,S,A|θ) =
∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
appearance

p(X|S,h, θ)︸ ︷︷ ︸
shape

p(S|h, θ)︸ ︷︷ ︸
Rel.scale

p(h|θ)

Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

Appearance is represented with a Gaussian with diagonal covariance

p(A|X,S,h, θ)

p(A|X,S,h, θbg )
=

P∏
p=1

(
N (A(hp)|cp,Vp)

N (A(hp)|cbg ,Vbg )

)dp

Shape is represented by a joint Gaussian density (full covariance) of the
locations of features within a hypothesis in scale-invariant space

p(X|S,h, θ)

p(X|S,h, θbg )
= N (X(h)|µ,Σ)αf

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 9 / 73



More explicitly ...

The generative model is defined as

p(X,S,A|θ) =
∑
h∈H

p(A|X,S,h, θ)︸ ︷︷ ︸
appearance

p(X|S,h, θ)︸ ︷︷ ︸
shape

p(S|h, θ)︸ ︷︷ ︸
Rel.scale

p(h|θ)

Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

Relative Scale: The scale of each part p relative to a reference frame is
modeled by a Gaussian density, where the parts are assumed to be
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Generative probabilistic model
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Results

Simple datasets in 2003
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Model examples
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Model examples
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Extensions

Complexity of the costellation mdoel is too high, i.e., O(NP)

Use a star model to reduce this to O(N2P)

p(X|S,h, θ) = p(xL|hL)
∏
j 6=L

p(xj |xL, sL, hj , θj)

with L the anchor point.

This can be further improve using distance transform to O(NP)
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What now?

We are done with part-based models.

Let’s see something on how to compute multiple sources of information...

... and how to learn good representations
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Combining information

We have a lot of different descriptors focusing on, e.g., shape, gradients,
texture.

We have multiple ways to computer similarity (distance) between images
(bounding boxes), e.g., histograms, intersection kernels, pyramids.

Which one should we use?

In general there is not a single one that it’s always best.

Even if it was, maybe we can perform better by unifying forces ;)
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Combining information

Multiple ways to combine information

Stack the feature vectors

Information fusion

Boosting inherently incorporates multiple features

Use NN with sum of distances or something more clever

Voting via generalized hough transform, with votes coming from different
feature types

Multiple kernel learning

Random forest

etc

Let’s look into some of this strategies.
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Simple combinations: stacking

Let x
(f )
t be example t of feature type f .

We can combine this information by creating a new feature representation

xt = [x
(1)
t , · · · , x(F )t ] for F feature types.

Problem: features can be of very different mean and variance.

Typically normalize them to have mean 0 and variance 1 before stacking
them.

Problem: Dimensionality increases with the number of features.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 21 / 73



Simple combinations: stacking

Let x
(f )
t be example t of feature type f .

We can combine this information by creating a new feature representation

xt = [x
(1)
t , · · · , x(F )t ] for F feature types.

Problem: features can be of very different mean and variance.

Typically normalize them to have mean 0 and variance 1 before stacking
them.

Problem: Dimensionality increases with the number of features.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 21 / 73



Simple combinations: stacking

Let x
(f )
t be example t of feature type f .

We can combine this information by creating a new feature representation

xt = [x
(1)
t , · · · , x(F )t ] for F feature types.

Problem: features can be of very different mean and variance.

Typically normalize them to have mean 0 and variance 1 before stacking
them.

Problem: Dimensionality increases with the number of features.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 21 / 73



Simple combinations: stacking

Let x
(f )
t be example t of feature type f .

We can combine this information by creating a new feature representation

xt = [x
(1)
t , · · · , x(F )t ] for F feature types.

Problem: features can be of very different mean and variance.

Typically normalize them to have mean 0 and variance 1 before stacking
them.

Problem: Dimensionality increases with the number of features.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 21 / 73



Simple combinations: stacking

Let x
(f )
t be example t of feature type f .

We can combine this information by creating a new feature representation

xt = [x
(1)
t , · · · , x(F )t ] for F feature types.

Problem: features can be of very different mean and variance.

Typically normalize them to have mean 0 and variance 1 before stacking
them.

Problem: Dimensionality increases with the number of features.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 21 / 73



Ad-hoc Information fusion

Train a classifier for each feature type (using kernels if wanted)

Fuse their responses typically by summing the responses

f (x) =
1

F

F∑
i=1

f (i)(x(i))

with f the i-th classifier, which takes as input the i-th feature type.

Typically done in the probabilistic setting f (i)(x) = p(y |x(i)).

Advantage: We can use any classifier we want.

Disadvantage: We do not exploit correlation between features and the
outputs are typically not in the same scale.

Some times, people train a classifier (logistic) on the output of individual
classifiers.
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Boosting

Inherently combines features, via combination of learners.

Our weak-learners can be using each a subset of the features.

Greedy algorithm: for m = 1, . . . ,M

Pick a weak classifier hm

Adjust weights: misclassified
examples get “heavier”

αm set according to weighted error
of hm
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Combining Kernels

An alternative to information fusion a posteriori is to combine information a
priori.

We can combine the kernels by summing or multiplying them to have an
AND or OR effect

KOR(xi , xj) =
F∑

f=1

K (f )(x
(f )
i , x

(f )
j )

KAND(xi , xj) =
F∏

f=1

K (f )(x
(f )
i , x

(f )
j )

with element-wise sum and product.

Sums and products of mercer kernels are still mercer.

It will be great if we could learn the importance of each kernel in the OR
setting.
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Multiple Kernel Learning

Introduce to the vision community by [Varma & Ray, 07]

Recall the SVM formulation the primal is

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi .

subject to yi (w
Tφ(xi ) + b)− 1 + ξi ≥ 0, i = 1, . . . ,N.

and the dual

max


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK (xi , xj)


subject to

N∑
i=1

αiyi = 0, 0 ≤ αi ≤ C for all i = 1, . . . ,N.
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Multiple Kernel Learning

Varma & Ray introduced the following primal formulation

min
w,d,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi + σtd

subject to yi (w
Tφ(xi ) + b)− 1 + ξi ≥ 0,

ξ ≥ 0,d ≥ 0,Ad ≥ p

where φt(xi )φ(xj) =
∑
k

dkφ
t
k(xi )φk(xj)

New: `1 regularization on the weights d to discover a minimal set

Most of the weights will be 0 depending on σ which encode prior preferences
for descriptors

Two additional constraints have been incorporated

d ≥ 0 ensures interpretable weights
Ad ≥ p encodes prior knowledge about the problem
Last equation encodes Kopt =

∑
k dkKk

Minimization is carried out in the dual
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Regularization for multiple kernels

Summing kernels is equivalent to concatenating feature spaces

m feature maps
Minimization with respect to weights
Results in a predictor f (x) = d1φ1(x) + · · ·+ dmφ(x)

Regularization by
∑

j ||dj ||2 is equivalent to K =
∑

j Kj

Regularization
∑

j ||dj || imposes sparsity

We can regularize by blocks: structured sparsity
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Is computer vision solved?

We thought so for a few days as it performs great on Caltech 101
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GP−Muti−Kernel

GP−PMK

Jain, Kulis, & Grauman (CVPR08)

Varma and Ray (ICCV07)

Bosch, Zisserman, & Munoz (ICCV07)

Frome, Singer, Sha, & Malik (ICCV07)

Zhang, Berg, Maire, & Malik(CVPR06)

Lazebnik, Schmid, & Ponce (CVPR06)

Berg (thesis)

Mutch, & Lowe(CVPR06)

Grauman & Darrell(ICCV 2005)

Berg, Berg, & Malik(CVPR05)

Zhang, Marszalek, Lazebnik, & Schmid

Wang, Zhang, & Fei−Fei (CVPR06)

Holub, Welling, & Perona(ICCV05)

Serre, Wolf, & Poggio(CVPR05)

Fei−Fei, Fergus, & Perona

SSD baseline

Unfortunately, there was a bug in the kernels ...
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Other SVM-MKL formulations

More standard formulation [Bach 04]

min
w,b,ξ

1

2

(∑
k

||wk ||2

)
+ C

N∑
i=1

ξi

subject to ξ ≥ 0 and yi

(∑
k

wT
k φk(xi ) + b

)
− 1 + ξi ≥ 0

The solution can be written as wk = βkw′k with βk ≥ 0 and
∑

i βk = 1

The dual

min
γ,α

γ −
N∑
i=1

αi

subject to
N∑
i=1

αiyi = 0, 0 ≤ αi ≤ 1C for all i = 1, . . . ,N.

1

2

N∑
i,j=1

αiαjyiyjKk(xi , xj) ≤ γ ∀k = 1, · · · ,K
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Gaussian process as an alternative to SVMs
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Gaussian processes (GPs)

Definition

A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

Probability Distribution over Functions

Functions are infinite dimensional.

I Prior distribution over instantiations of the function: finite dimensional
objects.

GPs are consistent.
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Gaussian processes

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.

Covariance samples

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6

Figure: linear kernel, K = XXT
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Figure: RBF kernel, ki,j = α exp
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− 1

2l ‖xi − xj‖2
)

, with l = 0.32, α = 1
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where K is the covariance function or kernel.
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Figure: bias ‘kernel’, ki,j = α, with α = 1 and
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Gaussian processes

A (zero mean) Gaussian process likelihood is of the form

p (y|X) = N (y|0,K) ,

where K is the covariance function or kernel.
Covariance samples
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Figure: summed combination of: RBF kernel, α = 1, l = 0.3; bias kernel,
α =1; and white noise kernel, β = 100

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 32 / 73



Gaussian process regression

Posterior Distribution over Functions

Gaussian processes are often used for regression.
We are given a known inputs X and targets Y.
We assume a prior distribution over functions by selecting a kernel.
Combine the prior with data to get a posterior distribution over
functions.

−2 −1 1 2

−3

−2

−1

1

2

3

Figure: Examples include WiFi localization, C14 calibration curve.
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MKL is much simpler with Gaussian Processes

Let X be the matrix of all training inputs and let Y be the associated labels.

We assume a GP prior
p(Y|X) ∼ N (0,K).

Assuming Gaussian noise, the posterior can be computed as

log p(tL|X,Θ) = −1

2
tTL (σ2I + K)−1tL −

1

2
log |σ2I + K| − Const.

with K =
∑k

i=1 αiK(i),

Learning can then be formulated as

arg min
α
− log p(tL|X,α) + γ1||α||1 + γ2||α||2

subject to: αi ≥ 0 for i ∈ {0, .., k}.

Prediction using y = k(x∗)T (σ2I + K)−1t
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Results: Caltech 101

Comparison with SVM kernel combination [Kapoor et al. 09]
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Figure: Average precision.
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Results: Caltech 101 for real ;)
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GP−Multi
Boiman et al. (CVPR08)
Jain, Kulis, & Grauman (CVPR08)
Frome, Singer, Sha, & Malik (ICCV07)
Zhang, Berg, Maire, & Malik(CVPR06)
Lazebnik, Schmid, & Ponce (CVPR06)
Berg (thesis)
Mutch, & Lowe(CVPR06)
Grauman & Darrell(ICCV 2005)
Berg, Berg, & Malik(CVPR05)
Zhang, Marszalek, Lazebnik, & Schmid
Wang, Zhang, & Fei−Fei (CVPR06)
Holub, Welling, & Perona(ICCV05)
Serre, Wolf, & Poggio(CVPR05)
Fei−Fei, Fergus, & Perona
SSD baseline

Figure: Comparison with the state of the art [Kapoor et al. 09].
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Is learning the weights important?

Unfortunately not really...

In general very similar performance if you learn or not the weights.

If you don’t learn the weights, for GP you don’t have to do training, just
invert a matrix!

Life is simple ;)
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NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al.
08] argue that this is due to

Quantization of local image descriptors (used to generate bags-of-words,
codebooks).

Computation of Image-to-Image distance, instead of Image-to-Class
distance.

They proposed an effective NN-based classifier NBNN, (Naive-Bayes
Nearest-Neighbor), which employs NN distances in the space of the local
image descriptors (not images).

NBNN computes direct Image to- Class distances without descriptor
quantization.

No learning/training phase.

Similarities with ISM but now for classification.
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Similarities with ISM but now for classification.
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Algortithm of NBNN

Given a query image, compute all its local image descriptors d1, · · · , dn.

Search for the class C which minimizes

n∑
i=1

||di − NNC (di )||2

with NNC (di ) the NN descriptor of di in class C .

Requires fast NN search.
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Why quantization is bad

When densely sampled image descriptors are divided into fine bins, the
bin-density follows a power-law.

There are almost no clusters in the descriptor space.

Therefore, any clustering to a small number of clusters (even thousands) will
inevitably incur a very high quantization error.

Informative descriptors have low database frequency, leading to high
quantization error.
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Image-to-Image vs. Image-to-Class distance
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Results Caltech 101

Multiple descriptors by summing weighted distances.
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Effects of Quantization

Impact of introducing descriptor quantization or Imageto- Image distance into
NBNN (using SIFT descriptor on Caltech- 101, nlabel = 30).
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Randomized Decision Forests

Very fast tools for classification, clustering and regression

Good generalization through randomized training

Inherently multi-class: automatic feature sharing

Simple training / testing algorithms
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Randomized Forests in Vision

!"#$#%&'!"#$%&(')*+'
!"#$%&'()*"+%,'&-%')

!,-.&'/'0#-12('34+'
.&,&()*"+%,'&-%')

!5667-122'!"#$%&(')*+'
/&0123)4%*.)+310("*&',)

!896:62'!"#$%&(');+'
%56"+()0",7"'(2-%')

<1&#='

>61&'
?91.='

&=##'

=61@'

!A=.-.2.7.'!"#$%&(')3+'
%*,2')."("+-%')

!B6C#D'!"#$%&(');+'
$%0")"0-72-%')

[Source: Shotton et al.]
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Is the grass wet?

!"#$%&'()(*&

+'&+(&#)+,+,-.&

+'&(/*&'0#+,1$*#&",.&
!2!*(3&
4&5678&

!2!*(3&
4&567&

"#$%&'%

"#$%&'%

!2!*(3&
4&569&

[Source: Shotton et al.]
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Binary Decision Trees

!

" #

$ %&

'

(

)

*+,-./012c 

3456,27/8-32
5-+927/8-32

v 

!:2 !!2 !"2 !#2

!&2 !(2 !$2 !%2

!!

< 

< 

!2

[Source: Shotton et al.]
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Decision Tree Pseudo-Code

!"#$%&'()*%+,,-./0123"!&4)56)
!-.)3"!&78,9:%-;<"!&);=&3)
! !-.)3"!&7.256)>?)3"!&7;);=&3)
! ! !@&;#@3)*%+,,-./0123"!&7@-A=;4)56)
) )&%,&)
) ) )@&;#@3)*%+,,-./0123"!&7%&.;4)56)
) )&3!)
)&%,&)
) )@&;#@3)3"!&7B)
)&3!)

&3!)

[Source: Shotton et al.]
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Toy Example

!"

#"

•  $%&'()%"*%+',)-"&)%"x."y"+,,)/01&'%-2 " "v = [x, y]T 

•  -340'"$(1+5,1-"&)%"401%-"60'7"3&)&8%'%)-"a."b2 "fn9v:"= ax + by 
•  '7)%-7,4/"/%'%)801%-"01'%)+%3'-2 " "tn 
•  $,()"+4&--%-2"3()34%.";4(%.")%/."<)%%1 

= !"#$%&'&"()$)*+&%,$
-./%&+$(0$"(+1/2$

= 3&&4$)*+&$0.(0$5&%0$
%&4("(0&%$1(0($
>  01$,)8&5,1"<&01"

= 6&-7"%&$

[Source: Shotton et al.]
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Randomized Learning

Recursively split examples at node n: set In indexes labeled training
examples (vi , li )

!"#$%&!'($

)'*+($%&!'($ (+)"%+,!-$
./012,0$,.$
"345&!"$i6%$

."4(/)"$7"1(,)$

At node n, Pn(c) is histogram of example labels li .

[Source: Shotton et al.]
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Randomized Learning

!  !"#$%&"'(f(v) )*+'",(#$(&#,-+.(/&+.(
(/"#$%&"(0++1(f(2(F 

!  2*&"'*+1-'(t()*+'",(3,(&#,4""

!  5*++'"(f(#,-(t($+(.#63.37"(4#3,(3,(3,/+&.#8+,(

#$%"&'#()"

*(+,)"&'#()"

-.)*/'0"E"12#13#2)$4"5*/6",(&)/+*26"/5"#27$#&"(."I 

[Source: Shotton et al.]
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Details

How many features and thresholds to try?

just one = extremely randomized

few → fast training, may under-fit, maybe too deep

many → slower training, may over-fit

When to stop growing the tree?

maximum depth

minimum entropy gain

delta class distribution

pruning

[Source: Shotton et al.]
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Randomized Learning Pseudo Code

!"##$%&#'(#)"*+!,-.'

'"#/#)0'1#)02"#!#303'045#3'
' '6#0'1'7'8*&9#)02"#,.'
' '6#0'"'7':;)62)0#9#)02"#8#3/%*3#3,-<'1.'

' '"#/#)0'0="#3=!#303'045#3'
' ' '6#0'0'7'8*&!="#3=%6&,".'
' ' '6#0',->6<'->".'7'?/640,-<'"<'0.'
' ' '6#0'@)4*'7'-*1%A)4*,->6<'->".'
' ' '41'@)4*'43'B#30'0=#*'"#5#5B#"'1<'0<'->6<'->"'
' '#*&'
'#*&'

'41'B#30'@)4*'43'32114C4#*0''
' '"#02"*'?/640$%&#,1<'0<'(#)"*+!,->6.<'(#)"*+!,->"..'
'#63#'
' '"#02"*'(#)1$%&#,D430%@")5:E)5/6#3,-..'
'#*&'

#*&'

[Source: Shotton et al.]
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A forests of trees

!  !"#$%&'(%'$)%$*+,$'"-'
%$.$#/,'0$1(%(")'&#$$%'

"  #$%&&'(#%)*+,'&,

--,
./00,t1 ./00,tT 

#%.01*/2,c 
#%.01*/2,c 

&3$'.,+*40&,

$0%5,+*40&,

678'.,9,:08%+,;<=,
6>/0'8%+,?@=,
6A030).,!"#$%&,?B=,

v v 

[Source: Shotton et al.]
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Forest Pseudo

!"#$%&'()*%+,,-./012."3&,45)67)
)88)+%%"9+4&):&:"3/)
)%&4);)<)!"#$%&'."3&,4=*"#>4*%+,,&,()

)88)%""?)"6&3)43&&,)->)."3&,4)
)."3)4)<)@)4")."3&,4=*"#>4A3&&,)
) )%&4);B)<)*%+,,-./0A2."3&,4=A3&&'4(5)67)

) ) );)<);)C);B)88),#:)!-,43-$#4-">,)
)&>!)

)88)>"3:+%-,&)
);)<);)8)."3&,4=*"#>4A3&&,)

&>!)

[Source: Shotton et al.]
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Learning

! !"#"$%&'()"*"*+&%,)-./%0&"*'1&T&0230%'0&It"!"I 

#  "-.(1#%0&+%*%()/"4)51*&

#  $%&'(%)"-%-1(6&(%72"(%-%*'0!*"'()"*"*+&5-%&

!  8()"*&%)9:&$%9"0"1*&'(%%&t&1*&0230%'&It"
#  )+,%"&%(-)-./"0$%%"1%+$/-/2"+)"3%4.$%"

! ;2/5<91(%&=("%*$/6&

•  5'3)%0)"(+/"3%"(6.)%/"+0"$+/&.,".$"6+/&78-(9%&"
•  5'3)%0)"(+/"6+:%".:%$1+8";+/&"')'+11<"&.="
•  >+/"%/4.$(%")'3)%0)".4"!"#$%&";/.0"?')0"%@+,81%)="
•  >.'1&"+1)."&-:-&%"06%"4%+0'$%"8..1"-/0.")'3)%0)"

[Source: Shotton et al.]
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Learning

!"#$%&'($)#*+!,-".*&/#$$%0'12'
'33')44"-)&$'5$5"#6'
'4$&'7"#$%&'8'!"#$%&,-".*&/#$$%2'

'33'4""9'":$#'&#$$%';*'7"#$%&'
'7"#'&'8'<'&"'-".*&/#$$%'
' '4$&'1=&'8'>)*?"5@94;&,12'
' '7"#$%&A&B'8'($)#*+/,1=&2'
'$*?'

'33'#$&.#*'7"#$%&'"CD$-&'
'#$&.#*'7"#$%&'

$*?'

[Source: Shotton et al.]
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Classification

!  !"##$%&'(%)#%*"'+(#,%-."%
"  #$%&&'(#%)*+,-./0./&&'*+,-*.-#$1&2/.'+0-

!  /0'(1#%*0#%.)2#&*%-3(&4.(%
"  '+3*.4%)*+-0%'+-3*.-#$%&&'(#%)*+5- measure of distribution purity 

[Source: Shotton et al.]
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Regression

!  "#$%!&$%'#()*'+,'+)!"
!  -./#0+)1'203*24)5$67578#)

!"#$%&"'()'*+'()'!(,"-'

"./.'-01"#&'!(,"-'2'3'#4567''
8&'9%$+':(1$+#1+'!(,"-'

[Source: Shotton et al.]
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Clustering

-  Output is cluster membership 

-  Option 1 – minimize imbalance: 

-  Option 2 – maximize Gaussian likelihood: measure of cluster tightness 
(maximizing a function of info gain 
for Gaussian distributions) 

[Moosmann et al. 06] 

[Source: Shotton et al.]
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Clustering example [Moosmann et al. 06]

!  !"#$%&'()*+#',))+'-)*'./,/'0%123"4,5'*.2),4"6)4'
!7$1'"80.%4#'2&$#1.*"4,'9.*:'#&)('

!  ;%4+)0"<.+'-)*.#1#'-)*'2&$#1.*"4,'+.#2*"=1)*#'
"  #$%$&'()*+&,#-,./&01,#2345/67+&#,8$&

!  >.%-'4)+.#'"4'-)*.#1'%*.'2&$#1.*#'
"  8./85,#/5,#&9:7,.%25;7&<2.;&,2##7&:/&<.2#7,&

=>?

@

A

B CD E

>A D@ ?

CB

FF&

,2##&t1 ,2##&tT 

E=

G':H:8&!"#$%&&I?J&
GK7L265&!"#$%&&I>J&

[Source: Shotton et al.]
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Clustering example [Moosmann et al. 06]

!"#

$

%

& '( )

"% ($ #

'&

**+

,-..+t1 ,-..+tT 

)!

/-
.0

1.
23
4!

,-..+t1 ,-..+tT 

256.+726.8+

!"#$%&'%
(&)*+,%

[Source: Shotton et al.]
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Applications: keypoint detection [LePetit 06]

! !"#$%&'($)"*$+,'-./"*0+
+'(+.)'(("1.'23*+453&)$,+

!  67-5'.-+453,"*$*-+8$9%43"*-(+"*+-5'"*"*0+",'0$(+

!  :35$(-+.)'(("1$(+
"  #$%&'()*+,*-(.#/01%)*

!  :$'-;5$(+
"  #02(3*&/4#$50)/1)*

!  <;0,$*-$#+-5'"*"*0+($-+
"  607()*5/89)%1())*%/*#$%&'*)&$3016:*%5$1)3$;/1:*5/%$;/1*

[Source: Shotton et al.]

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 63 / 73



Fast Keypoint Recognition

[Source: Shotton et al.]
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Classification
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Classification
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Object Recognition Pipeline

!"#$%&#'(!%#)$!*'

!"#$%&'()*+&,-./&

&+)*#!$,-.'

!01*-.2&

3.234*+562*7&8-.709+-:*7&

&+%**,/&%01-'%+.1$,#23'

!;<%&7*9626=.&>=+*2)%&,==2?.@&
234*+562*7&

%**,.-3!-#'

.*-+*2)&.*6@8,=3+&

[Source: Shotton et al.]
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Object Recognition Pipeline

!"#$%&'()"*+,%(-,."/+(0!)-1(
•  !"#$%$&'()&*"%+()&*(

'23/+".4%5(,('2$//46'$&,%(
•  +*""('&!"%(-./"(0".*'"!(

&12"#+(#.+"3&*4(.%%&#$.5&'%(

'2$//46'$&,%($25,.4+7#(

6789(!"#$%$&'()&*"%+9(1&&%5'3(

[Source: Shotton et al.]
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Example Semantic Texton Forest

!"#$%&!'()*& +,-$".&/,$%0&

12,3&4&52,3&6&787&1293&6&:;&

12)3&<&5293&6&=;&

12)3&<&5293&6&>7&1293&4&5293&6&=;?&

@12,3&<&5293@&6&=>&@1293&<&52)3@&6&7A&

BC
('

#D
*&

E(
%F
0*

G&

[Source: Shotton et al.]
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MSRC Dataset Results

[Source: Shotton et al.]

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 70 / 73



Microsoft Kinect
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Microsoft Kinect
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