Visual Recognition: Combining Features

Raquel Urtasun

TTI Chicago
Feb 14, 2012

Which detectors?

BOW, pyramids
e.g., [Grauman et al.]
Part-based

ISM: voting e.g., [Leibe \& Shiele]

deformable parts
e.g., [Felzenszwalb et al.]

poselets
[Bourdev et al.]

Models of local features

- How is spatial information encoded for models with bad of features?
- See [Carneiro et al. 06] for a comprehensive study of all possibilities.

a) Constellation [13]

(x6)
e) Bag of features $[10,21]$

b) Star shape $[9,14]$
c) k-fan $(k=2)[9]$
d) Tree [12]

$\mathrm{k}=1$

g) Sparse flexible model

Constellation Model

Object Class Recognition by Unsupervised Scale-Invariant Learning

R. Fergus ${ }^{1} \quad$ P. Perona ${ }^{2} \quad$ A. Zisserman ${ }^{1}$
${ }^{1}$ Dept. of Engineering Science
University of Oxford
Parks Road, Oxford
OX1 3PJ, U.K.
\{fergus,az\}@robots.ox.ac.uk
${ }^{2}$ Dept. of Electrical Engineering California Institute of Technology
MC 136-93, Pasadena
CA 91125, U.S.A.
perona@vision.caltech.edu

Abstract

We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and relative scale. An entropy-based feature detector is used to select regions and their scale within the image. In learnino the narameters of the scale-imvariant abiest model

in the background of the object, scale normalization of the training sample) should be reduced to a minimum or eliminated.

The problem of describing and recognizing categories, as opposed to specific objects (e.g. $[6,9,11]$), has recently gained some attention in the machine vision literature $[1,2,3,4,13,14,19]$ with an emphasis on the detection of faces $[12,15,16]$. There is broad agreement on the issue of representation: object categories are rep-

Main idea

- An object model consists of a number of parts.
- Each part has an appearance, relative scale and can be occluded or not.

Main idea

- An object model consists of a number of parts.
- Each part has an appearance, relative scale and can be occluded or not.
- Shape is represented by the mutual position of the parts.

Main idea

- An object model consists of a number of parts.
- Each part has an appearance, relative scale and can be occluded or not.
- Shape is represented by the mutual position of the parts.
- The entire model is generative and probabilistic, so appearance, scale, shape and occlusion are all modeled by pdf, i.e., Gaussians.

Main idea

- An object model consists of a number of parts.
- Each part has an appearance, relative scale and can be occluded or not.
- Shape is represented by the mutual position of the parts.
- The entire model is generative and probabilistic, so appearance, scale, shape and occlusion are all modeled by pdf, i.e., Gaussians.
- Learning: first detecting regions and their scales, and then estimating the parameters of the above densities from these regions using max. likelihood.

Main idea

- An object model consists of a number of parts.
- Each part has an appearance, relative scale and can be occluded or not.
- Shape is represented by the mutual position of the parts.
- The entire model is generative and probabilistic, so appearance, scale, shape and occlusion are all modeled by pdf, i.e., Gaussians.
- Learning: first detecting regions and their scales, and then estimating the parameters of the above densities from these regions using max. likelihood.
- Recognition by first detecting regions and their scales, and then evaluating the regions in a Bayesian manner, using the model parameters estimated in the learning.
- In this setting we do not know where the object of interest is in the image.

Main idea

- An object model consists of a number of parts.
- Each part has an appearance, relative scale and can be occluded or not.
- Shape is represented by the mutual position of the parts.
- The entire model is generative and probabilistic, so appearance, scale, shape and occlusion are all modeled by pdf, i.e., Gaussians.
- Learning: first detecting regions and their scales, and then estimating the parameters of the above densities from these regions using max. likelihood.
- Recognition by first detecting regions and their scales, and then evaluating the regions in a Bayesian manner, using the model parameters estimated in the learning.
- In this setting we do not know where the object of interest is in the image.

Detecting Feature Points

- Kadir \& Brady saliency region detector

Constellation Model

- Find regions within image
- Use salient region operator
(Kadir \& Brady 01)

Location

(x, y) coords. of region centre Scale

Radius of region (pixels)

Appearance

Generative probabilistic model

- We have identified N image features, with locations \mathbf{X}, scales \mathbf{S} and appearances A.
- We define a generative model with P parts and parameters θ as

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) & =\sum_{\mathbf{h} \in \mathcal{H}} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} \mid \theta) \\
& =\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel.scale }} p(\mathbf{h} \mid \theta)
\end{aligned}
$$

with \mathbf{h} an indexing variable, called hypothesis.

Generative probabilistic model

- We have identified N image features, with locations \mathbf{X}, scales \mathbf{S} and appearances A.
- We define a generative model with P parts and parameters θ as

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) & =\sum_{\mathbf{h} \in \mathcal{H}} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} \mid \theta) \\
& =\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel.scale }} p(\mathbf{h} \mid \theta)
\end{aligned}
$$

with \mathbf{h} an indexing variable, called hypothesis.

- \mathbf{h} is a vector of length P where each entry is between 0 and $N(0$ is occlusion).

Generative probabilistic model

- We have identified N image features, with locations \mathbf{X}, scales \mathbf{S} and appearances A.
- We define a generative model with P parts and parameters θ as

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) & =\sum_{\mathbf{h} \in \mathcal{H}} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} \mid \theta) \\
& =\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel.scale }} p(\mathbf{h} \mid \theta)
\end{aligned}
$$

with \mathbf{h} an indexing variable, called hypothesis.

- \mathbf{h} is a vector of length P where each entry is between 0 and $N(0$ is occlusion).
- The set \mathcal{H} has complexity $O\left(N^{P}\right)$.

Generative probabilistic model

- We have identified N image features, with locations \mathbf{X}, scales \mathbf{S} and appearances A.
- We define a generative model with P parts and parameters θ as

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) & =\sum_{\mathbf{h} \in \mathcal{H}} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} \mid \theta) \\
& =\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel.scale }} p(\mathbf{h} \mid \theta)
\end{aligned}
$$

with \mathbf{h} an indexing variable, called hypothesis.

- \mathbf{h} is a vector of length P where each entry is between 0 and $N(0$ is occlusion).
- The set \mathcal{H} has complexity $O\left(N^{P}\right)$.
- Decision made base on the ratio

$$
\frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) p(\text { object })}{p\left(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta_{b g}\right) p(\text { No-object })}
$$

- Learning using EM

Generative probabilistic model

- We have identified N image features, with locations \mathbf{X}, scales \mathbf{S} and appearances A.
- We define a generative model with P parts and parameters θ as

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) & =\sum_{\mathbf{h} \in \mathcal{H}} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} \mid \theta) \\
& =\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel.scale }} p(\mathbf{h} \mid \theta)
\end{aligned}
$$

with \mathbf{h} an indexing variable, called hypothesis.

- \mathbf{h} is a vector of length P where each entry is between 0 and $N(0$ is occlusion).
- The set \mathcal{H} has complexity $O\left(N^{P}\right)$.
- Decision made base on the ratio

$$
\frac{p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta) p(\text { object })}{p\left(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta_{b g}\right) p(\text { No-object })}
$$

- Learning using EM

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel. scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel. scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.
- Appearance is represented with a Gaussian with diagonal covariance

$$
\frac{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}{p\left(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta_{b g}\right)}=\prod_{p=1}^{P}\left(\frac{\mathcal{N}\left(\mathbf{A}\left(h_{p}\right) \mid \mathbf{c}_{p}, \mathbf{V}_{p}\right)}{\mathcal{N}\left(\mathbf{A}\left(h_{p}\right) \mid \mathbf{c}_{b g}, \mathbf{V}_{b g}\right)}\right)^{d_{p}}
$$

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel. scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.
- Appearance is represented with a Gaussian with diagonal covariance

$$
\frac{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}{p\left(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta_{b g}\right)}=\prod_{p=1}^{P}\left(\frac{\mathcal{N}\left(\mathbf{A}\left(h_{p}\right) \mid \mathbf{c}_{p}, \mathbf{V}_{p}\right)}{\mathcal{N}\left(\mathbf{A}\left(h_{p}\right) \mid \mathbf{c}_{b g}, \mathbf{V}_{b g}\right)}\right)^{d_{p}}
$$

- Shape is represented by a joint Gaussian density (full covariance) of the locations of features within a hypothesis in scale-invariant space

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel.scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.
- Appearance is represented with a Gaussian with diagonal covariance

$$
\frac{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}{p\left(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta_{b g}\right)}=\prod_{p=1}^{P}\left(\frac{\mathcal{N}\left(\mathbf{A}\left(h_{p}\right) \mid \mathbf{c}_{p}, \mathbf{V}_{p}\right)}{\mathcal{N}\left(\mathbf{A}\left(h_{p}\right) \mid \mathbf{c}_{b g}, \mathbf{V}_{b g}\right)}\right)^{d_{p}}
$$

- Shape is represented by a joint Gaussian density (full covariance) of the locations of features within a hypothesis in scale-invariant space

$$
\frac{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}{p\left(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta_{b g}\right)}=\mathcal{N}(\mathbf{X}(\mathbf{h}) \mid \mu, \Sigma) \alpha^{f}
$$

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel. scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.
- Relative Scale: The scale of each part p relative to a reference frame is modeled by a Gaussian density, where the parts are assumed to be independent of one another. Background is uniform.

$$
\frac{p(\mathbf{S} \mid \mathbf{h}, \theta)}{p\left(\mathbf{S} \mid \mathbf{h}, \theta_{b g}\right)}=\prod_{p=1}^{P} \mathcal{N}\left(\mathbf{S}\left(h_{p}\right) \mid t_{p}, U_{p}\right)^{d_{p}} r^{f}
$$

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel. scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.
- Relative Scale: The scale of each part p relative to a reference frame is modeled by a Gaussian density, where the parts are assumed to be independent of one another. Background is uniform.

$$
\frac{p(\mathbf{S} \mid \mathbf{h}, \theta)}{p\left(\mathbf{S} \mid \mathbf{h}, \theta_{b g}\right)}=\prod_{p=1}^{P} \mathcal{N}\left(\mathbf{S}\left(h_{p}\right) \mid t_{p}, U_{p}\right)^{d_{p}} r^{f}
$$

- $p(\mathbf{h} \mid \theta)$ modeled using a Poisson distribution, book-keeping and a prob. table for all possible occlusion patters.

More explicitly ...

- The generative model is defined as

$$
p(\mathbf{X}, \mathbf{S}, \mathbf{A} \mid \theta)=\sum_{h \in \mathcal{H}} \underbrace{p(\mathbf{A} \mid \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{\text {appearance }} \underbrace{p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)}_{\text {shape }} \underbrace{p(\mathbf{S} \mid \mathbf{h}, \theta)}_{\text {Rel. scale }} p(\mathbf{h} \mid \theta)
$$

- Let $\mathbf{d}=\operatorname{sign}(\mathbf{h})$ tells which parts are background, n the number of background features, and f the number of foreground features.
- Relative Scale: The scale of each part p relative to a reference frame is modeled by a Gaussian density, where the parts are assumed to be independent of one another. Background is uniform.

$$
\frac{p(\mathbf{S} \mid \mathbf{h}, \theta)}{p\left(\mathbf{S} \mid \mathbf{h}, \theta_{b g}\right)}=\prod_{p=1}^{P} \mathcal{N}\left(\mathbf{S}\left(h_{p}\right) \mid t_{p}, U_{p}\right)^{d_{p}} r^{f}
$$

- $p(\mathbf{h} \mid \theta)$ modeled using a Poisson distribution, book-keeping and a prob. table for all possible occlusion patters.

Generative probabilistic model

Foreground model based on Burl, Weber et al. [ECCV '98, '00]

Clutter model
Uniform shape pdf

Gaussian part appearance pdf

1

Results

- Simple datasets in 2003

Dataset	Ours	Others	Ref.
Motorbikes	92.5	84	$[17]$
Faces	96.4	94	$[19]$
Airplanes	90.2	68	$[17]$
Cars(Side)	88.5	79	$[1]$

Model examples

Model examples

Model examples

保

Model examples

Extensions

- Complexity of the costellation mdoel is too high, i.e., $O\left(N^{P}\right)$
- Use a star model to reduce this to $O\left(N^{2} P\right)$

$$
p(\mathbf{X} \mid \mathbf{S}, \mathbf{h}, \theta)=p\left(x_{L} \mid h_{L}\right) \prod_{j \neq L} p\left(x_{j} \mid x_{L}, s_{L}, h_{j}, \theta_{j}\right)
$$

with L the anchor point.

"Star" model

- This can be further improve using distance transform to $O(N P)$

What now?

- We are done with part-based models.
- Let's see something on how to compute multiple sources of information...
- ... and how to learn good representations

Combining information

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.

Combining information

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?

Combining information

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?
- In general there is not a single one that it's always best.

Combining information

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?
- In general there is not a single one that it's always best.
- Even if it was, maybe we can perform better by unifying forces ;)

Combining information

- We have a lot of different descriptors focusing on, e.g., shape, gradients, texture.
- We have multiple ways to computer similarity (distance) between images (bounding boxes), e.g., histograms, intersection kernels, pyramids.
- Which one should we use?
- In general there is not a single one that it's always best.
- Even if it was, maybe we can perform better by unifying forces ;)

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning
- Random forest

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning
- Random forest
- etc

Let's look into some of this strategies.

Combining information

Multiple ways to combine information

- Stack the feature vectors
- Information fusion
- Boosting inherently incorporates multiple features
- Use NN with sum of distances or something more clever
- Voting via generalized hough transform, with votes coming from different feature types
- Multiple kernel learning
- Random forest
- etc

Let's look into some of this strategies.

Simple combinations: stacking

- Let $\mathbf{x}_{t}^{(f)}$ be example t of feature type f.
- We can combine this information by creating a new feature representation $\mathbf{x}_{t}=\left[\mathbf{x}_{t}^{(1)}, \cdots, \mathbf{x}_{t}^{(F)}\right]$ for F feature types.

Simple combinations: stacking

- Let $\mathbf{x}_{t}^{(f)}$ be example t of feature type f.
- We can combine this information by creating a new feature representation $\mathbf{x}_{t}=\left[\mathbf{x}_{t}^{(1)}, \cdots, \mathbf{x}_{t}^{(F)}\right]$ for F feature types.
- Problem: features can be of very different mean and variance.

Simple combinations: stacking

- Let $\mathbf{x}_{t}^{(f)}$ be example t of feature type f.
- We can combine this information by creating a new feature representation $\mathbf{x}_{t}=\left[\mathbf{x}_{t}^{(1)}, \cdots, \mathbf{x}_{t}^{(F)}\right]$ for F feature types.
- Problem: features can be of very different mean and variance.
- Typically normalize them to have mean 0 and variance 1 before stacking them.

Simple combinations: stacking

- Let $\mathbf{x}_{t}^{(f)}$ be example t of feature type f.
- We can combine this information by creating a new feature representation $\mathbf{x}_{t}=\left[\mathbf{x}_{t}^{(1)}, \cdots, \mathbf{x}_{t}^{(F)}\right]$ for F feature types.
- Problem: features can be of very different mean and variance.
- Typically normalize them to have mean 0 and variance 1 before stacking them.
- Problem: Dimensionality increases with the number of features.

Simple combinations: stacking

- Let $\mathbf{x}_{t}^{(f)}$ be example t of feature type f.
- We can combine this information by creating a new feature representation $\mathbf{x}_{t}=\left[\mathbf{x}_{t}^{(1)}, \cdots, \mathbf{x}_{t}^{(F)}\right]$ for F feature types.
- Problem: features can be of very different mean and variance.
- Typically normalize them to have mean 0 and variance 1 before stacking them.
- Problem: Dimensionality increases with the number of features.

Ad-hoc Information fusion

- Train a classifier for each feature type (using kernels if wanted)
- Fuse their responses typically by summing the responses

$$
f(\mathbf{x})=\frac{1}{F} \sum_{i=1}^{F} f^{(i)}\left(\mathbf{x}^{(i)}\right)
$$

with f the i-th classifier, which takes as input the i-th feature type.

Ad-hoc Information fusion

- Train a classifier for each feature type (using kernels if wanted)
- Fuse their responses typically by summing the responses

$$
f(\mathbf{x})=\frac{1}{F} \sum_{i=1}^{F} f^{(i)}\left(\mathbf{x}^{(i)}\right)
$$

with f the i-th classifier, which takes as input the i-th feature type.

- Typically done in the probabilistic setting $f^{(i)}(\mathbf{x})=p\left(y \mid \mathbf{x}^{(i)}\right)$.

Ad-hoc Information fusion

- Train a classifier for each feature type (using kernels if wanted)
- Fuse their responses typically by summing the responses

$$
f(\mathbf{x})=\frac{1}{F} \sum_{i=1}^{F} f^{(i)}\left(\mathbf{x}^{(i)}\right)
$$

with f the i-th classifier, which takes as input the i-th feature type.

- Typically done in the probabilistic setting $f^{(i)}(\mathbf{x})=p\left(y \mid \mathbf{x}^{(i)}\right)$.
- Advantage: We can use any classifier we want.

Ad-hoc Information fusion

- Train a classifier for each feature type (using kernels if wanted)
- Fuse their responses typically by summing the responses

$$
f(\mathbf{x})=\frac{1}{F} \sum_{i=1}^{F} f^{(i)}\left(\mathbf{x}^{(i)}\right)
$$

with f the i-th classifier, which takes as input the i-th feature type.

- Typically done in the probabilistic setting $f^{(i)}(\mathbf{x})=p\left(y \mid \mathbf{x}^{(i)}\right)$.
- Advantage: We can use any classifier we want.
- Disadvantage: We do not exploit correlation between features and the outputs are typically not in the same scale.

Ad-hoc Information fusion

- Train a classifier for each feature type (using kernels if wanted)
- Fuse their responses typically by summing the responses

$$
f(\mathbf{x})=\frac{1}{F} \sum_{i=1}^{F} f^{(i)}\left(\mathbf{x}^{(i)}\right)
$$

with f the i-th classifier, which takes as input the i-th feature type.

- Typically done in the probabilistic setting $f^{(i)}(\mathbf{x})=p\left(y \mid \mathbf{x}^{(i)}\right)$.
- Advantage: We can use any classifier we want.
- Disadvantage: We do not exploit correlation between features and the outputs are typically not in the same scale.
- Some times, people train a classifier (logistic) on the output of individual classifiers.

Ad-hoc Information fusion

- Train a classifier for each feature type (using kernels if wanted)
- Fuse their responses typically by summing the responses

$$
f(\mathbf{x})=\frac{1}{F} \sum_{i=1}^{F} f^{(i)}\left(\mathbf{x}^{(i)}\right)
$$

with f the i-th classifier, which takes as input the i-th feature type.

- Typically done in the probabilistic setting $f^{(i)}(\mathbf{x})=p\left(y \mid \mathbf{x}^{(i)}\right)$.
- Advantage: We can use any classifier we want.
- Disadvantage: We do not exploit correlation between features and the outputs are typically not in the same scale.
- Some times, people train a classifier (logistic) on the output of individual classifiers.

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Boosting

- Inherently combines features, via combination of learners.
- Our weak-learners can be using each a subset of the features.

Greedy algorithm: for $m=1, \ldots, M$

- Pick a weak classifier h_{m}
- Adjust weights: misclassified examples get "heavier"
- α_{m} set according to weighted error of h_{m}

Combining Kernels

- An alternative to information fusion a posteriori is to combine information a priori.
- We can combine the kernels by summing or multiplying them to have an AND or OR effect

$$
\begin{aligned}
K^{O R}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right) \\
K^{A N D}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\prod_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right)
\end{aligned}
$$

with element-wise sum and product.

Combining Kernels

- An alternative to information fusion a posteriori is to combine information a priori.
- We can combine the kernels by summing or multiplying them to have an AND or OR effect

$$
\begin{aligned}
K^{O R}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right) \\
K^{A N D}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\prod_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right)
\end{aligned}
$$

with element-wise sum and product.

- Sums and products of mercer kernels are still mercer.

Combining Kernels

- An alternative to information fusion a posteriori is to combine information a priori.
- We can combine the kernels by summing or multiplying them to have an AND or OR effect

$$
\begin{aligned}
K^{O R}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right) \\
K^{A N D}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\prod_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right)
\end{aligned}
$$

with element-wise sum and product.

- Sums and products of mercer kernels are still mercer.
- It will be great if we could learn the importance of each kernel in the OR setting.

Combining Kernels

- An alternative to information fusion a posteriori is to combine information a priori.
- We can combine the kernels by summing or multiplying them to have an AND or OR effect

$$
\begin{aligned}
K^{O R}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right) \\
K^{A N D}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\prod_{f=1}^{F} K^{(f)}\left(\mathbf{x}_{i}^{(f)}, \mathbf{x}_{j}^{(f)}\right)
\end{aligned}
$$

with element-wise sum and product.

- Sums and products of mercer kernels are still mercer.
- It will be great if we could learn the importance of each kernel in the OR setting.

Multiple Kernel Learning

- Introduce to the vision community by [Varma \& Ray, 07]
- Recall the SVM formulation the primal is

$$
\begin{gathered}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \\
\text { subject to } y_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right)-1+\xi_{i} \geq 0, \quad i=1, \ldots, N .
\end{gathered}
$$

and the dual

$$
\begin{array}{r}
\max \left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\} \\
\text { subject to } \sum_{i=1}^{N} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq C \text { for all } i=1, \ldots, N .
\end{array}
$$

Multiple Kernel Learning

- Varma \& Ray introduced the following primal formulation

$$
\begin{array}{ll}
\min _{\mathbf{w}, \mathbf{d}, \xi} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i}+\sigma^{t} \mathbf{d} \\
\text { subject to } & y_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right)-1+\xi_{i} \geq 0, \\
& \xi \geq 0, \mathbf{d} \geq 0, \mathbf{A d} \geq \mathbf{p} \\
\text { where } & \phi^{t}\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{j}\right)=\sum_{k} d_{k} \phi_{k}^{t}\left(\mathbf{x}_{i}\right) \phi_{k}\left(\mathbf{x}_{j}\right)
\end{array}
$$

- New: ℓ_{1} regularization on the weights \mathbf{d} to discover a minimal set
- Most of the weights will be 0 depending on σ which encode prior preferences for descriptors
- Two additional constraints have been incorporated
- d ≥ 0 ensures interpretable weights
- $\mathbf{A d} \geq \mathbf{p}$ encodes prior knowledge about the problem
- Last equation encodes $\mathbf{K}_{\text {opt }}=\sum_{k} d_{k} \mathbf{K}_{k}$
- Minimization is carried out in the dual

Regularization for multiple kernels

- Summing kernels is equivalent to concatenating feature spaces
- m feature maps
- Minimization with respect to weights
- Results in a predictor $f(x)=d_{1} \phi_{1}(\mathbf{x})+\cdots+d_{m} \phi(\mathbf{x})$
- Regularization by $\sum_{j}\left\|d_{j}\right\|_{2}$ is equivalent to $K=\sum_{j} K_{j}$
- Regularization $\sum_{j}\left\|d_{j}\right\|$ imposes sparsity
- We can regularize by blocks: structured sparsity

Is computer vision solved?

- We thought so for a few days as it performs great on Caltech 101

Unfortunately, there was a bug in the kernels ...

Other SVM-MKL formulations

- More standard formulation [Bach 04]

$$
\begin{gathered}
\min _{\mathbf{w}, b, \xi} \frac{1}{2}\left(\sum_{k}\left\|w_{k}\right\|_{2}\right)+C \sum_{i=1}^{N} \xi_{i} \\
\text { subject to } \xi \geq 0 \text { and } y_{i}\left(\sum_{k} \mathbf{w}_{k}^{T} \phi_{k}\left(\mathbf{x}_{i}\right)+b\right)-1+\xi_{i} \geq 0
\end{gathered}
$$

- The solution can be written as $\mathbf{w}_{k}=\beta_{k} \mathbf{w}_{k}^{\prime}$ with $\beta_{k} \geq 0$ and $\sum_{i} \beta_{k}=1$
- The dual

$$
\begin{gathered}
\min _{\gamma, \alpha} \gamma-\sum_{i=1}^{N} \alpha_{i} \\
\text { subject to } \sum_{i=1}^{N} \alpha_{i} y_{i}=0,0 \leq \alpha_{i} \leq \mathbf{1 C} \text { for all } i=1, \ldots, N . \\
\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{k}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq \gamma \forall k=1, \cdots, K
\end{gathered}
$$

Gaussian process as an alternative to SVMs

Gaussian processes (GPs)

Definition

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

- Probability Distribution over Functions
- Functions are infinite dimensional.
- Prior distribution over instantiations of the function: finite dimensional objects.
- GPs are consistent.

Gaussian processes

- A (zero mean) Gaussian process likelihood is of the form

$$
p(\mathbf{y} \mid \mathbf{X})=N(\mathbf{y} \mid \mathbf{0}, \mathbf{K}),
$$

where \mathbf{K} is the covariance function or kernel.

- Covariance samples

Figure: linear kernel, $\mathbf{K}=\mathbf{X X}^{\top}$

Gaussian processes

- A (zero mean) Gaussian process likelihood is of the form

$$
p(\mathbf{y} \mid \mathbf{X})=N(\mathbf{y} \mid \mathbf{0}, \mathbf{K}),
$$

where \mathbf{K} is the covariance function or kernel.

- Covariance samples

Figure: RBF kernel, $k_{i, j}=\alpha \exp \left(-\frac{1}{2 l}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right)$, with $I=0.32, \alpha=1$

Gaussian processes

- A (zero mean) Gaussian process likelihood is of the form

$$
p(\mathbf{y} \mid \mathbf{X})=N(\mathbf{y} \mid \mathbf{0}, \mathbf{K}),
$$

where \mathbf{K} is the covariance function or kernel.

- Covariance samples

Figure: RBF kernel, $k_{i, j}=\alpha \exp \left(-\frac{1}{2 l}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right)$, with $I=1, \alpha=1$

Gaussian processes

- A (zero mean) Gaussian process likelihood is of the form

$$
p(\mathbf{y} \mid \mathbf{X})=N(\mathbf{y} \mid \mathbf{0}, \mathbf{K}),
$$

where \mathbf{K} is the covariance function or kernel.

- Covariance samples

Figure: bias 'kernel', $\boldsymbol{k}_{i, j}=\alpha$, with $\alpha=1$ and

Gaussian processes

- A (zero mean) Gaussian process likelihood is of the form

$$
p(\mathbf{y} \mid \mathbf{X})=N(\mathbf{y} \mid \mathbf{0}, \mathbf{K}),
$$

where \mathbf{K} is the covariance function or kernel.

- Covariance samples

Figure: summed combination of: RBF kernel, $\alpha=1, I=0.3$; bias kernel, $\alpha=1$; and white noise kernel, $\beta=100$

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

Gaussian process regression

Posterior Distribution over Functions

- Gaussian processes are often used for regression.
- We are given a known inputs \mathbf{X} and targets \mathbf{Y}.
- We assume a prior distribution over functions by selecting a kernel.
- Combine the prior with data to get a posterior distribution over functions.

MKL is much simpler with Gaussian Processes

- Let \mathbf{X} be the matrix of all training inputs and let \mathbf{Y} be the associated labels.
- We assume a GP prior

$$
p(\mathbf{Y} \mid \mathbf{X}) \sim \mathcal{N}(0, \mathbf{K}) .
$$

MKL is much simpler with Gaussian Processes

- Let \mathbf{X} be the matrix of all training inputs and let \mathbf{Y} be the associated labels.
- We assume a GP prior

$$
p(\mathbf{Y} \mid \mathbf{X}) \sim \mathcal{N}(0, \mathbf{K}) .
$$

- Assuming Gaussian noise, the posterior can be computed as

$$
\left.\log p\left(\mathrm{t}_{L} \mid \mathbf{X}, \Theta\right)=-\frac{1}{2} \mathrm{t}_{L}^{\top}\left(\sigma^{2} \mid+\mathrm{K}\right)^{-1} \mathrm{t}_{L}-\frac{1}{2} \log \left|\sigma^{2}\right|+\mathrm{K} \right\rvert\,- \text { Const. }
$$

with $\mathbf{K}=\sum_{i=1}^{k} \alpha_{i} \mathbf{K}^{(i)}$,

MKL is much simpler with Gaussian Processes

- Let \mathbf{X} be the matrix of all training inputs and let \mathbf{Y} be the associated labels.
- We assume a GP prior

$$
p(\mathbf{Y} \mid \mathbf{X}) \sim \mathcal{N}(0, \mathbf{K}) .
$$

- Assuming Gaussian noise, the posterior can be computed as

$$
\log p\left(\mathbf{t}_{L} \mid \mathbf{X}, \Theta\right)=-\frac{1}{2} \mathbf{t}_{L}^{T}\left(\sigma^{2} \mathbf{I}+\mathbf{K}\right)^{-1} \mathbf{t}_{L}-\frac{1}{2} \log \left|\sigma^{2} \mathbf{I}+\mathbf{K}\right|-\text { Const. }
$$

with $\mathbf{K}=\sum_{i=1}^{k} \alpha_{i} \mathbf{K}^{(i)}$,

- Learning can then be formulated as

$$
\begin{aligned}
& \quad \arg \min _{\alpha}-\log p\left(\mathbf{t}_{l} \mid \mathbf{X}, \boldsymbol{\alpha}\right)+\gamma_{1}\|\alpha\|_{1}+\gamma_{2}\|\alpha\|_{2} \\
& \text { subject to: } \quad \alpha_{i} \geq 0 \text { for } i \in\{0, \ldots, k\} .
\end{aligned}
$$

MKL is much simpler with Gaussian Processes

- Let \mathbf{X} be the matrix of all training inputs and let \mathbf{Y} be the associated labels.
- We assume a GP prior

$$
p(\mathbf{Y} \mid \mathbf{X}) \sim \mathcal{N}(0, \mathbf{K}) .
$$

- Assuming Gaussian noise, the posterior can be computed as

$$
\log p\left(\mathbf{t}_{L} \mid \mathbf{X}, \Theta\right)=-\frac{1}{2} \mathbf{t}_{L}^{T}\left(\sigma^{2} \mathbf{I}+\mathbf{K}\right)^{-1} \mathbf{t}_{L}-\frac{1}{2} \log \left|\sigma^{2} \mathbf{I}+\mathbf{K}\right|-\text { Const. }
$$

with $\mathbf{K}=\sum_{i=1}^{k} \alpha_{i} \mathbf{K}^{(i)}$,

- Learning can then be formulated as

$$
\arg \min _{\boldsymbol{\alpha}}-\log p\left(\mathbf{t}_{L} \mid \mathbf{X}, \boldsymbol{\alpha}\right)+\gamma_{1}\|\alpha\|_{1}+\gamma_{2}\|\alpha\|_{2}
$$

subject to: $\quad \alpha_{i} \geq 0$ for $i \in\{0, . ., k\}$.

- Prediction using $\mathbf{y}=\mathrm{k}\left(\mathrm{x}_{*}\right)^{\top}\left(\sigma^{2} \mathbf{I}+\mathrm{K}\right)^{-1} \mathrm{t}$

MKL is much simpler with Gaussian Processes

- Let \mathbf{X} be the matrix of all training inputs and let \mathbf{Y} be the associated labels.
- We assume a GP prior

$$
p(\mathbf{Y} \mid \mathbf{X}) \sim \mathcal{N}(0, \mathbf{K}) .
$$

- Assuming Gaussian noise, the posterior can be computed as

$$
\log p\left(\mathbf{t}_{L} \mid \mathbf{X}, \Theta\right)=-\frac{1}{2} \mathbf{t}_{L}^{T}\left(\sigma^{2} \mathbf{I}+\mathbf{K}\right)^{-1} \mathbf{t}_{L}-\frac{1}{2} \log \left|\sigma^{2} \mathbf{I}+\mathbf{K}\right|-\text { Const. }
$$

with $\mathbf{K}=\sum_{i=1}^{k} \alpha_{i} \mathbf{K}^{(i)}$,

- Learning can then be formulated as

$$
\arg \min _{\boldsymbol{\alpha}}-\log p\left(\mathbf{t}_{L} \mid \mathbf{X}, \boldsymbol{\alpha}\right)+\gamma_{1}\|\alpha\|_{1}+\gamma_{2}\|\alpha\|_{2}
$$

subject to: $\quad \alpha_{i} \geq 0$ for $i \in\{0, . ., k\}$.

- Prediction using $\mathbf{y}=\mathbf{k}\left(\mathbf{x}_{*}\right)^{T}\left(\sigma^{2} \mathbf{I}+\mathbf{K}\right)^{-1} \mathbf{t}$

Results: Caltech 101

Comparison with SVM kernel combination [Kapoor et al. 09]

Figure: Average precision.

Figure: Time of computation.

Results: Caltech 101 for real ;)

Figure: Comparison with the state of the art [Kapoor et al. 09].

Is learning the weights important?

- Unfortunately not really...
- In general very similar performance if you learn or not the weights.
- If you don't learn the weights, for GP you don't have to do training, just invert a matrix!
- Life is simple ;)

NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al. 08] argue that this is due to

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.

NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al. 08] argue that this is due to

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).

NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al. 08] argue that this is due to

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.

NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al. 08] argue that this is due to

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.
- No learning/training phase.

NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al. 08] argue that this is due to

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.
- No learning/training phase.
- Similarities with ISM but now for classification.

NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al. 08] argue that this is due to

- Quantization of local image descriptors (used to generate bags-of-words, codebooks).
- Computation of Image-to-Image distance, instead of Image-to-Class distance.
- They proposed an effective NN-based classifier NBNN, (Naive-Bayes Nearest-Neighbor), which employs NN distances in the space of the local image descriptors (not images).
- NBNN computes direct Image to- Class distances without descriptor quantization.
- No learning/training phase.
- Similarities with ISM but now for classification.

Algortithm of NBNN

- Given a query image, compute all its local image descriptors d_{1}, \cdots, d_{n}.
- Search for the class C which minimizes

$$
\sum_{i=1}^{n}\left\|d_{i}-N N_{C}\left(d_{i}\right)\right\|^{2}
$$

with $N N_{C}\left(d_{i}\right)$ the NN descriptor of d_{i} in class C.

- Requires fast NN search.

Why quantization is bad

- When densely sampled image descriptors are divided into fine bins, the bin-density follows a power-law.
- There are almost no clusters in the descriptor space.
- Therefore, any clustering to a small number of clusters (even thousands) will inevitably incur a very high quantization error.
- Informative descriptors have low database frequency, leading to high quantization error.

Image-to-Image vs. Image-to-Class distance

Results Caltech 101

Multiple descriptors by summing weighted distances.

Effects of Quantization

Impact of introducing descriptor quantization or Imageto- Image distance into NBNN (using SIFT descriptor on Caltech- 101, nlabel $=30$).

	No Quant.	With Quant.
"Image-to-Class"	$\mathbf{7 0 . 4 \%}$	$50.4 \%(-28.4 \%)$
"Image-to-Image"	$58.4 \%(-17 \%)$	-

Randomized Decision Forests

- Very fast tools for classification, clustering and regression
- Good generalization through randomized training
- Inherently multi-class: automatic feature sharing
- Simple training / testing algorithms

Randomized Forests in Vision

[Shotton et al., 08] object segmentation

[Rogez et al., 08] pose estimation

[Source: Shotton et al.]

Is the grass wet?

[Source: Shotton et al.]

Binary Decision Trees

- feature vector $\mathrm{v} \in \mathbb{R}^{N}$
- split functions $f_{n}(\mathrm{v}): \mathbb{R}^{N} \rightarrow \mathbb{R}$
- thresholds $t_{n} \in \mathbb{R}$
- classifications $P_{n}(c)$

\section*{| leaf nodes |
| :---: |
| split nodes |}

[Source: Shotton et al.]

Decision Tree Pseudo-Code

```
double[] ClassifyDT(node, v)
    if node.IsSplitNode then
        if node.f(v) >= node.t then
                return ClassifyDT(node.right, v)
        else
        return ClassifyDT(node.left, v)
        end
    else
        return node.P
    end
end
```

[Source: Shotton et al.]

Toy Example

- Try several lines, chosen at random
- Keep line that best separates data
- information gain
- Recurse

- feature vectors are x, y coordinates: $\quad v=[x, y]^{T}$
- split functions are lines with parameters $a, b: f_{n}(v)=a x+b y$
- threshold determines intercepts:
t_{n}
- four classes: purple, blue, red, green

Toy Example

- Try several lines, chosen at random
- Keep line that best separates data
- information gain
- Recurse

- feature vectors are x, y coordinates: $\quad \mathbf{v}=[x, y]^{T}$
- split functions are lines with parameters $a, b: f_{n}(v)=a x+b y$
- threshold determines intercepts:
t_{n}
- four classes: purple, blue, red, green
[Source: Shotton et al.]

Toy Example

- Try several lines, chosen at random
- Keep line that best separates data
- information gain
- Recurse

- feature vectors are x, y coordinates: $\quad \mathbf{v}=[x, y]^{T}$
- split functions are lines with parameters $a, b: f_{n}(v)=a x+b y$
- threshold determines intercepts:
t_{n}
- four classes: purple, blue, red, green

Toy Example

- Try several lines, chosen at random
- Keep line that best separates data
- information gain
- Recurse

- feature vectors are x, y coordinates: $\quad \mathbf{v}=[x, y]^{T}$
- split functions are lines with parameters $a, b: f_{n}(v)=a x+b y$
- threshold determines intercepts:
t_{n}
- four classes: purple, blue, red, green

Randomized Learning

- Recursively split examples at node n : set I_{n} indexes labeled training examples (\mathbf{v}_{i}, l_{i})

$$
\begin{aligned}
& \text { left split } \\
& \text { right } \underset{\text { split }}{\longrightarrow} I_{\mathrm{r}}=\left\{i \in I_{n} \mid f\left(\mathbf{v}_{i}\right)<t\right\} \\
& \zeta_{\text {threshold }}
\end{aligned}
$$

- At node $n, P_{n}(c)$ is histogram of example labels I_{i}.
[Source: Shotton et al.]

Randomized Learning

$$
\begin{aligned}
\text { left split } I_{1} & =\left\{i \in I_{n} \mid f\left(\mathbf{v}_{i}\right)<t\right\} \\
\text { right split } I_{\mathrm{r}} & =I_{n} \backslash I_{1}
\end{aligned}
$$

- Features $f(\mathbf{v})$ chosen at random from feature pool f 2 F
- Thresholds t chosen in range $t \in\left(\min _{i} f\left(\mathbf{v}_{i}\right), \max _{i} f\left(\mathbf{v}_{i}\right)\right)$
- Choose f and t to maximize gain in information

$$
\Delta E=-\frac{\left|I_{\mathrm{l}}\right|}{\left|I_{n}\right|} E\left(I_{\mathrm{l}}\right)-\frac{\left|I_{\mathrm{r}}\right|}{\left|I_{n}\right|} E\left(I_{\mathrm{r}}\right)
$$

Entropy E calculated from histogram of labels in I
[Source: Shotton et al.]

Details

How many features and thresholds to try?

- just one $=$ extremely randomized
- few \rightarrow fast training, may under-fit, maybe too deep
- many \rightarrow slower training, may over-fit

When to stop growing the tree?

- maximum depth
- minimum entropy gain
- delta class distribution
- pruning
[Source: Shotton et al.]

Randomized Learning Pseudo Code

```
TreeNode LearnDT(I)
    repeat featureTests times
        let f = RndFeature()
        let r = EvaluateFeatureResponses(I, f)
            repeat threshTests times
        let t = RndThreshold(r)
        let (I_l, I_r) = Split(I, r, t)
        let gain = InfoGain(I_l, I_r)
        if gain is best then remember f, t, I_l, I_r
        end
    end
    if best gain is sufficient
        return SplitNode(f, t, LearnDT(I_l), LearnDT(I_r))
    else
        return LeafNode(HistogramExamples(I))
    end
end
```

[Source: Shotton et al.]

A forests of trees

- Forest is ensemble of several decision trees
$P_{T}(c)+\| .$.
- classification is $P(c \mid \mathbf{v})=\frac{1}{T} \sum_{t=1}^{T} P_{t}(c \mid \mathbf{v})$
[Breiman 01]
[Lepetit et al. 06]

Forest Pseudo

```
double[] ClassifyDF(forest, v)
    // allocate memory
    let P = double[forest.CountClasses]
    // loop over trees in forest
    for t = 1 to forest.CountTrees
        let P' = ClassifyDT(forest.Tree[t], v)
        P = P + P' // sum distributions
        end
    // normalise
    P = P / forest.CountTrees
end
```

[Source: Shotton et al.]

Learning

- Divide training examples into T subsets $I_{t} \mu$ I
- improves generalization
- reduces memory requirements \& training time
- Train each decision tree t on subset t_{t}
- same decision tree learning as before
- Multi-core friendly
- Subsets can be chosen at random or hand-picked
- Subsets can have overlap (and usually do)
- Can enforce subsets of images (not just examples)
- Could also divide the feature pool into subsets
[Source: Shotton et al.]

Learning

```
Forest LearnDF(countTrees, I)
    // allocate memory
    let forest = Forest(countTrees)
    // loop over trees in forest
        for t = 1 to countTrees
            let I_t = RandomSplit(I)
            forest[t] = LearnDT(I_t)
        end
    // return forest object
    return forest
end
```

[Source: Shotton et al.]

Classification

- Trees can be trained for
- classification, regression, or clustering
- Change the object function
- information gain for classification: $\quad I=H(S)-\sum_{i=1}^{2} \frac{\left|S_{i}\right|}{|S|} H\left(S_{i}\right) \quad$ measure of distribution purity

[Source: Shotton et al.]

Regression

- Real-valued output y
- Object function: maximize $\operatorname{Err}(S)-\sum_{i=1}^{2} \frac{\left|S_{i}\right|}{|S|} \operatorname{Err}\left(S_{i}\right)$
measure of fit of model

$$
\begin{aligned}
\operatorname{Err}(S)=\sum_{j \in S} & \left(y_{j}-y\left(x_{j}\right)\right)^{2} \\
& \text { e.g. linear model } \mathrm{y}=\mathrm{ax}+\mathrm{b},
\end{aligned}
$$

[Source: Shotton et al.]

Clustering

c(d)

- Output is cluster membership
- Option 1 - minimize imbalance:

$$
B=|\log | S_{1}|-\log | S_{2}| | \quad[\text { Moosmann et al. 06] }
$$

- Option 2 - maximize Gaussian likelihood:

$$
T=\left|\wedge_{S}\right|-\sum_{i=1}^{2} \frac{\left|S_{i}\right|}{|S|}\left|\wedge_{S_{i}}\right|
$$

measure of cluster tightness
(maximizing a function of info gain
for Gaussian distributions)
[Source: Shotton et al.]

Clustering example [Moosmann et al. 06]

- Visual words good for e.g. matching, recognition but \boldsymbol{k}-means clustering very slow
- Randomized forests for clustering descriptors
- e.g. SIFT, texton filter-banks, etc.
- Leaf nodes in forest are clusters
- concatenate histograms from trees in forest

[Source: Shotton et al.]

Clustering example [Moosmann et al. 06]

[Source: Shotton et al.]

Applications: keypoint detection [LePetit 06]

- Wide-baseline matching as classification problem

- Extract prominent key-points in training images
- Forest classifies
- patches -> keypoints
- Features
- pixel comparisons

- Augmented training set
- gives robustness to patch scaling, translation, rotation
[Source: Shotton et al.]

Fast Keypoint Recognition

[Source: Shotton et al.]

Classification

Classification

Object Recognition Pipeline

[Source: Shotton et al.]

Object Recognition Pipeline

[Source: Shotton et al.]

Example Semantic Texton Forest

[Source: Shotton et al.]

MSRC Dataset Results

building	grass	tree	cow	sheep	sky	airplane	water	face	car	\#if
bicycle	flower	sign	bird	book	chair	road	cat	dog	body	of

[Source: Shotton et al.]

Microsoft Kinect

$$
\begin{equation*}
P(c \mid I, \mathrm{x})=\frac{1}{T} \sum_{t=1}^{T} P_{t}(c \mid I, \mathbf{x}) \tag{2}
\end{equation*}
$$

Training. Each tree is trained on a different set of randomly synthesized images. A random subset of 2000 example pixels from each image is chosen to ensure a roughly even distribution across body parts. Each tree is trained using the following algorithm [20]:

1. Randomly propose a set of splitting candidates $\phi=$ (θ, τ) (feature parameters θ and thresholds τ).
2. Partition the set of examples $Q=\{(I, \mathbf{x})\}$ into left and right subsets by each ϕ :

$$
\begin{align*}
Q_{1}(\phi) & =\left\{(I, \mathbf{x}) \mid f_{\theta}(I, \mathbf{x})<\tau\right\} \tag{3}\\
Q_{\mathrm{r}}(\phi) & =Q \backslash Q_{1}(\phi) \tag{4}
\end{align*}
$$

3. Compute the ϕ giving the largest gain in information:

$$
\begin{align*}
\phi^{\star} & =\underset{\phi}{\operatorname{argmax}} G(\phi) \tag{5}\\
G(\phi) & =H(Q)-\sum_{s \in\{1, \mathrm{r}\}} \frac{\left|Q_{s}(\phi)\right|}{|Q|} H\left(Q_{s}(\phi)\right) \tag{6}
\end{align*}
$$

where Shannon entropy $H(Q)$ is computed on the normalized histogram of body part labels $l_{I}(\mathbf{x})$ for all $(I, \mathbf{x}) \in Q$.
4. If the largest gain $G\left(\phi^{\star}\right)$ is sufficient, and the depth in the tree is below a maximum, then recurse for left and right subsets $Q_{1}\left(\phi^{\star}\right)$ and $Q_{\mathrm{r}}\left(\phi^{\star}\right)$.

Microsoft Kinect

