Parsing Speech: A Neural Approach to Integrating Lexical and Acoustic-Prosodic Information

Shubham Toshniwal
TTI Chicago
May 10, 2018
Challenges in Parsing Speech

- Why not recognize speech (ASR) & then use a text parser?
 - ASR transcriptions lack punctuation and can have errors
 - Even assuming perfect transcriptions, need to deal with disfluencies
 - Interjections: hmm, uh, um
 - Speech repair: Why didn't he, why didn't she do it?
 - Parentheticals: I mean, I don't need a car
 - Why is conversational speech parsing important? Google Duplex!
Challenges in Parsing Speech

- Why not recognize speech (ASR) & then use a text parser?
- ASR transcriptions lack punctuation and can have errors
- Even assuming perfect transcriptions, need to deal with disfluencies
 - Interjections: hmm, uh, um
 - Speech repair: Why didn’t he, why didn’t she do it?
 - Parentheticals: I mean, I don’t need a car
- Why is conversational speech parsing important?
Challenges in Parsing Speech

- Why not recognize speech (ASR) & then use a text parser?
- ASR transcriptions lack punctuation and can have errors
- Even assuming perfect transcriptions, need to deal with disfluencies
 - Interjections: hmm, uh, um
 - Speech repair: Why didn’t he, why didn’t she do it?
 - Parentheticals: I mean, I don’t need a car
- Why is conversational speech parsing important? Google Duplex!
Prosodic boundaries found to co-occur with syntactic boundaries (Schepman, 2000)

Prosodic cues such as, pause length, pitch patterns, intensity etc can be useful
- Pauses can act like commas
- Rising pitch at the end of sentence can indicate question

Chicago cops arrest man *(pause)* *with knife*

Chicago cops arrest man with knife
Task

- Constituency parsing of conversational speech
- Assume transcription and word-level alignment of speech signal are given
- Follow the setup of (Vinyals, 2015) to linearize parse tree:

```
(S (S (PRN (S (NP (PRP I) ) (VP (VBP mean) ))) (INTJ (UH uh) ) (EDITED (NP (PRP you) )) (NP (PRP you) ) (VP (VBP try) (S (VP (TO to) ))))))
```

Linearized Parse Tree
(S (S (PRN (S (NP (PRP I)) (VP (VBP mean)))) (INTJ (UH uh)) (EDITED (NP (PRP you))) (NP (PRP you)) (VP (VBP try) (S (VP (TO to))))))))

Final POS-normalized linearized parse tree
(S (S (PRN (S (NP XX) (VP XX))) (INTJ XX) (EDITED (NP XX)) (NP XX) (VP XX (S (VP XX))))))

```
 Linearized Parse Tree
(S (S (PRN (S (NP (PRP I) ) (VP (VBP mean) ))) (INTJ (UH uh) ) (EDITED (NP (PRP you) )) (NP (PRP you) ) (VP (VBP try) (S (VP (TO to) ))))))
```
Encoder-Decoder Models

- Use attention-based encoder-decoder model for outputting linearized parsed trees (Vinyals, 2015)
- Also experiment with location-aware attention models (Chorowski, 2015)
Acoustic-Prosodic Features

- Pause (p)
- Word duration (d)
- Fundamental frequency and Energy contours (f_0/E)
Proposed Model
Experimental Setup

- Switchboard-NXT corpus
- Roughly 100K sentences
- Operate at sentence level - remove punctuation and lowercase words (simulating speech recognition output)
- **Baselines:**
 - Text-only encoder-decoder model
 - Berkeley parser: Latent-variable probabilistic context-free grammar (PCFG) parser
- **Evaluation metric:** PARSEVAL F-score
Text-only Models

Dev set results for text-only model

- Refer to the best text-only model, location-aware attention model, referred to as “Best Text” model from hereon.
Text + Acoustic-Prosodic feature Models

Test set results

- Acoustic-Prosodic features improve parsing performance, in particular on disfluent sentences
Ablation on Acoustic-Prosodic Features

- A combination of all acoustic-prosodic features on top of text features gives the best result.
Effect of Sentence Length

Acoustic-Prosodic features help more on longer sentences
Cherrypicked Example
Performance Gain Categorization

Relative error reduction by adding acoustic-prosodic features

- Only analyze disfluent sentences for this analysis
- Analysis done using Berkeley Parser Analyzer (Kummerfeld, 2012)
Conclusion

• Acoustic-prosodic features are useful for constituency parsing
• Particularly useful for disfluent sentences and long sentences
• Future work:
 ◦ Removing the assumption of known sentence boundaries
 ◦ Cleaning up wrong transcriptions in Switchboard
 ◦ Extending this to dependency parsing