Multilingual Speech Recognition With A Single End-To-End Model

Shubham Toshniwal1, Tara N. Sainath2, Ron J. Weiss2, Bo Li2, Pedro Moreno2, Eugene Weinstein2, and Kanishka Rao2

1TTI Chicago

2Google

April 18, 2017
Why Multilingual Speech Recognition Models?

- Remarkable progress in speech recognition in past few years
- Most of this success restricted to high resource languages, e.g. English
- Google Voice Search supports \(\sim 120 \) out of 7000 languages
- Multilingual models:
 - Utilize knowledge transfer across languages, and thus *alleviate data requirement*
 - Successful in Neural Machine Translation (Google NMT)
 - Easier to deploy and maintain
Conventional ASR Systems

- Traditional ASR systems are modular
- Require expert curated resources

![Diagram of ASR System]

Semantic Diagram: Speech input is processed through feature extraction, then encoded into feature vectors. The decoder combines these with acoustic models, pronunciation dictionaries, and language models to generate recognized speech output.

- Multilingual models: Focus on just the acoustic model (Lin, 2009; Ghoshal, 2013)
 - Separate language model and pronunciation model required for each language
Conventional ASR Systems

- Traditional ASR systems are modular
- Require expert curated resources

Multilingual models:
- Focus on just the acoustic model (Lin, 2009; Ghoshal, 2013)
- Separate language model and pronunciation model required for each language
End-to-end ASR Models

- Encoder-decoder models achieved state-of-the-art result on Google Voice Search task (Chiu et al. 2018)
- Encoder-Decoder models are appealing because:
 - Conceptually simple; subsume the acoustic model, pronunciation model, and language model in a single model.
 - No need for expert curated resources!

\[
\begin{align*}
 h_1 & \rightarrow h_2 & \rightarrow h_3 & \rightarrow h_T \\
 x_1 & \rightarrow x_2 & \rightarrow x_3 & \rightarrow x_T \\
 \text{Acoustic Features} & \rightarrow \text{recognize speech} & \rightarrow \text{EOS} \\
 \text{GO} & \rightarrow \text{speech} & \rightarrow \text{EOS}
\end{align*}
\]
End-to-End Multilingual ASR Models

- We use attention-based encoder-decoder models
- Decoder outputs one character per time step
- For multilingual models, take union over character sets
Multilingual Encoder-Decoder Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Training</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint model</td>
<td>No language ID</td>
<td>No language ID</td>
</tr>
</tbody>
</table>

- **Naive model;** unaware of multilingual nature of data
- **Can potentially handle code-switching**
Multilingual Encoder-Decoder Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Training</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint model</td>
<td>No language ID</td>
<td>No language ID</td>
</tr>
<tr>
<td>Multitask model</td>
<td>Language ID</td>
<td>No language ID</td>
</tr>
</tbody>
</table>

- Trained to jointly recognize language ID and speech
Multilingual Encoder-Decoder Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Training</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint model</td>
<td>No language ID</td>
<td>No language ID</td>
</tr>
<tr>
<td>Multitask model</td>
<td>Language ID</td>
<td>No language ID</td>
</tr>
<tr>
<td>Conditioned model</td>
<td>Language ID</td>
<td>Language ID</td>
</tr>
</tbody>
</table>

- Learnt embedding of language ID fed as input to condition the model
- Language ID embedding can be fed in: (a) Encoder, (b) Decoder, (c) Encoder & Decoder
Encoder-Conditioned Model

Encoder of encoder-conditioned model
Task

- Recognize 9 Indian languages with a single model

<table>
<thead>
<tr>
<th>Language</th>
<th>Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bengali</td>
<td>আমার বাবা ওদেরকে বলতেন</td>
</tr>
<tr>
<td>Gujarati</td>
<td>હું ધરણી ખંધુ ન મરં અને બદલ પણ ન મરં</td>
</tr>
<tr>
<td>Hindi</td>
<td>पहले वीडियोग्राफी होगी</td>
</tr>
<tr>
<td>Kannada</td>
<td>ನಮ್ಮ ನಾಗರ್‌ಜುತ್ತು ಹೇಳು</td>
</tr>
<tr>
<td>Malayalam</td>
<td>ശ്രീകൃഷ്ണ്ണാച്യ ഗോകുലതലയ മലയാളം</td>
</tr>
<tr>
<td>Marathi</td>
<td>श्रीकृष्णाच्या गोकुलतल्या</td>
</tr>
<tr>
<td>Tamil</td>
<td>நின்று நாடககுறுமாது</td>
</tr>
<tr>
<td>Telugu</td>
<td>నా నిష్ఠితే 'అమృతసర' నిష్టారభాగం జ్ఞాసాం</td>
</tr>
<tr>
<td>Urdu</td>
<td>شیخ عبیدالرحوم گرو هوری جو کلام مصنف</td>
</tr>
</tbody>
</table>

- Very little script overlap, except for Hindi and Marathi.
- The union of character sets is close to 1000 characters!
- But the languages have large overlap in phonetic space (Lavanya et al. 2005).
Experimental Setup

- Training data consists of dictated queries
- Average 230K queries (∼170 hrs) per language

Baseline: Encoder-decoder models trained for individual languages
Joint vs Individual

- Joint model outperforms individual models on all languages!!
- The joint model is not even language aware at test time
- Overall a 21% relative reduction in Word Error Rate (WER)
Picking the Right Script

Rarely confused between languages
Joint vs Multitask

Insignificant gains from multitask training
As expected, conditioning the model on the language ID of speech helps

Encoder conditioning:
- Performs better than decoder conditioning
- Potential acoustic model adaptation happening
Magic of Conditioning
Testing the Limits: Code Switching

- Can the joint model code switch between 2 Indian languages (trained for recognizing them separately)

- The model does not code-switch :(
- Picks one of the two scripts and sticks with it
- From manual inspection:
 - Transcribes either the Hindi/Tamil part in corresponding script
 - Transliteration in rare cases
Can the joint model code switch between 2 Indian languages (trained for recognizing them separately)

Artificial test set of 1000 utterances of Tamil query followed by Hindi with 50ms silence in between

The model does not code-switch :(

Picks one of the two scripts and sticks with it

From manual inspection:
 - Transcribes either the Hindi/Tamil part in corresponding script
 - Transliteration in rare cases
Feeding the Wrong Language ID

- Does the model obey acoustics or is it faithful to language ID?
Feeding the Wrong Language ID

- Does the model obey acoustics or is it faithful to language ID?
- Artificial dataset of 1000 Urdu queries tagged as Hindi
- Transliterates Urdu queries in Hindi’s script
- Learns to disentangle the acoustic-phonetic content from the language identity
- Transliterator as a byproduct!
Conclusion

- Encoder-Decoder models:
 - Elegant and simple framework for multilingual models
 - Outperform models trained for specific languages
 - Rarely confused between individual languages
 - Fail at code-switching

- Recent work along similar lines got promising results as well (Kim, 2017; Watanabe, 2017; Tong, 2018; Dalmia, 2018)

- Questions?
Conditioning decoder on top of conditioning the encoder doesn’t buy us much

Possibly because the attention mechanism feeds in information from the encoder to the decoder