Two Scenarios

• For CNNs on graphs, we have two distinct scenarios:
 • Scenario 1: Each data point lives in \mathbb{R}^d, but the dataset has an underlying graph structure
 • Scenario 2: Each data point is itself a graph (Example regression task: Molecules as input, boiling points as output)
Two Scenarios

For CNNs on graphs, we have two distinct scenarios:

- **Scenario 1:** Each data point lives in \mathbb{R}^d, but the dataset has an underlying graph structure
 - Each coordinate is a value associated with a vertex of the underlying graph

- **Scenario 2:** Each data point is itself a graph (Example regression task: Molecules as input, boiling points as output)
 - Each graph can be of different size
 - Sub-problem: Given a graph G, find an embedding $\phi: G \rightarrow \mathbb{R}^p$
Two Scenarios

- For CNNs on graphs, we have two distinct scenarios:
 - **Scenario 1:** Each data point lives in \mathbb{R}^d, but the dataset has an underlying graph structure
 - Each coordinate is a value associated with a vertex of underlying graph
 - For images: The underlying graph is always a grid of fixed dimensions
 - **Scenario 2:** Each data point is itself a graph (Example regression task: Molecules as input, boiling points as output)
 - Each graph can be of different size
 - Sub-problem: Given a graph \mathcal{G}, find an embedding $\phi : \mathcal{G} \rightarrow \mathbb{R}^p$
Scenario 1

CNNs on data in irregular domains
So far we have defined CNNs on grids
CNNs on Grids

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain
CNNs on Grids

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain
 \[f : \mathbb{Z}^2 \rightarrow \mathbb{R}^K \]
- In general the grid can be \(\mathbb{Z}^d \)
- CNNs are able to exploit various structures that reduce sample complexity
So far we have defined CNNs on grids.

We model images and feature maps as functions on a rectangular domain:

$$ f : \mathbb{Z}^2 \to \mathbb{R}^K $$

In general the grid can be \mathbb{Z}^d.

CNNs are able to exploit various structures that reduce sample complexity:
- Translation structure (allowing use of filters)
So far we have defined CNNs on grids

We model images and feature maps as functions on a rectangular domain

$$f : \mathbb{Z}^2 \rightarrow \mathbb{R}^K$$

In general the grid can be \mathbb{Z}^d

CNNs are able to exploit various structures that reduce sample complexity

- Translation structure (allowing use of filters)
- Metric on the grid (allows compactly supported filters)
CNNs on Grids

- So far we have defined CNNs on grids
- We model images and feature maps as functions on a rectangular domain
 \[f : \mathbb{Z}^2 \rightarrow \mathbb{R}^K \]
- In general the grid can be \(\mathbb{Z}^d \)
- CNNs are able to exploit various structures that reduce sample complexity
 - Translation structure (allowing use of filters)
 - Metric on the grid (allows compactly supported filters)
 - Multiscale structure of the grid (allows subsampling)
The translation group acts on \mathbb{Z}^2

We are able to exploit this symmetry of the grid in CNNs
The translation group acts on \(\mathbb{Z}^2 \)
The translation group acts on \mathbb{Z}^2

We are able to exploit this symmetry of the grid in CNNs
If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly $O(n^2)$. With k filters, each with support S, we have $O(kS)$ (independent of n). Using multiscale nature, we can pool, and reduce the number of parameters further.
If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly $O(n^2)$.

With k filters, each with support S we have $O(kS)$ (independent of n).
If we have n input pixels, a fully connected network with m outputs has nm parameters, roughly $O(n^2)$.

With k filters, each with support S we have $O(kS)$ (independent of n).

Using multiscale nature, we can pool, and reduce the number of parameters further.
Data on Irregular Domains

- Often we can have *structured* data defined over coordinates that does not enjoy any of these properties

- Example: 3-D mesh data (each coordinate might be surface tension)
- More: Social network data, protein interaction networks etc.
Often we can have *structured* data defined over coordinates that does not enjoy any of these properties.

Example: 3-D mesh data (each coordinate might be surface tension)

More: Social network data, protein interaction networks etc.

In each case we again have \(n \) coordinates but which don’t live on a regular grid.

Figure source: Eurocom Face Modeling
Functions on Graphs

- We can think of an n dimensional image as a function defined on the vertices of a graph $\mathcal{G} = (\Omega, E)$ with $|\Omega| = n$.
We can think of an n dimensional image as a function defined on the vertices of a graph $\mathcal{G} = (\Omega, E)$ with $|\Omega| = n$.

\mathcal{G} just happens to be a grid graph with strong local structure which makes CNNs useful.
Functions on Graphs

We can think of a \(n \) dimensional image as a function defined on the vertices of a graph \(G = (\Omega, E) \) with \(|\Omega| = n \).

\(G \) just happens to be a grid graph with strong local structure which makes CNNs useful.

In general we can have signals defined over a general graph:
Ω is the vertex set (input coordinates), $W_{i,j}$ the similarity between any two coordinates i and j
Functions on Graphs

- Ω is the vertex set (input coordinates), $W_{i,j}$ the similarity between any two coordinates i and j

- Note: $W_{i,j}$ is similarity between coordinates, not datapoints
If the underlying graph structure is known, $W_{i,j}$ will be available.
If the underlying graph structure is known, $W_{i,j}$ will be available.

If unknown: Need to estimate it from training data.
Spatial Construction

Locally Connected Networks
Spatial Construction

So we replace a grid by a general graph $\mathcal{G} = (\Omega, E)$
Spatial Construction

- So we replace a grid by a general graph $\mathcal{G} = (\Omega, E)$
- The notion of locality can be generalized easily via W
Spatial Construction

- So we replace a grid by a general graph $\mathcal{G} = (\Omega, E)$.
- The notion of locality can be generalized easily via W.
- For given W and threshold δ, we have neighborhoods:

$$N_\delta(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

Can have filters with receptive fields given by these neighborhoods.

Number of parameters: $O(Sn)$ (where S is average neighborhood size).
Spatial Construction

- So we replace a grid by a general graph \(G = (\Omega, E) \)
- The notion of locality can be generalized easily via \(W \)
- For given \(W \) and threshold \(\delta \), we have neighborhoods:

\[
N_\delta(j) = \{i \in \Omega : W_{i,j} > \delta\}
\]
Spatial Construction

So we replace a grid by a general graph \(G = (\Omega, E) \)

The notion of locality can be generalized easily via \(W \)

For given \(W \) and threshold \(\delta \), we have neighborhoods:

\[
N_\delta(j) = \{ i \in \Omega : W_{i,j} > \delta \}
\]

Can have filters with receptive fields given by these neighborhoods
Spatial Construction

- So we replace a grid by a general graph $\mathcal{G} = (\Omega, E)$
- The notion of locality can be generalized easily via W
- For given W and threshold δ, we have neighborhoods:

$$N_\delta(j) = \{i \in \Omega : W_{i,j} > \delta\}$$

- Can have filters with receptive fields given by these neighborhoods
- Number of parameters: $O(Sn)$ (S is average neighborhood size)
To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales).
Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}
Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}
- Ω_k is a partition of Ω_{k-1} in d_k clusters
Spatial Construction

- To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)
- Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}
- Ω_k is a partition of Ω_{k-1} in d_k clusters
- Around every element of Ω_{k-1}, we can define the neighborhood
Spatial Construction

To mimic subsampling and pooling, we can do a multiscale clustering of the graph (K scales)

Set $\Omega_0 = \Omega$, at each level $k = 1, \ldots, K$ define Ω_k and Ω_{k-1}

Ω_k is a partition of Ω_{k-1} in d_k clusters

Around every element of Ω_{k-1}, we can define the neighborhood

$$N_k = \{N_{k,i} : i = 1 \ldots d_{k-1}\}$$
To mimic subsampling and pooling, we can do a multiscale clustering of the graph \((K\) scales)

Set \(\Omega_0 = \Omega\), at each level \(k = 1, \ldots, K\) define \(\Omega_k\) and \(\Omega_{k-1}\)

\(\Omega_k\) is a partition of \(\Omega_{k-1}\) in \(d_k\) clusters

Around every element of \(\Omega_{k-1}\), we can define the neighborhood

\[
N_k = \{N_{k,i} : i = 1 \ldots d_{k-1}\}
\]
Let number of filters at layer be given by f_k.
Defining the Network

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
Defining the Network

- Let number of filters at layer be given by f_k.
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k.
- If $x_k = (x_{k,i}; i = 1 \ldots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:
Defining the Network

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_{k,i}; i = 1 \ldots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h \left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i} \right) \text{ with } j = 1 \ldots f_k$$
Defining the Network

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_k,i; i = 1 \ldots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h \left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_k,i \right) \text{ with } j = 1 \ldots f_k$$

- $F_{k,i,j}$ is a $d_{k-1} \times d_{k-1}$ sparse matrix with \mathcal{N}_k indicated by zeros
Defining the Network

- Let number of filters at layer be given by f_k
- Every layer will transform a f_{k-1} dimensional signal, indexed by Ω_{k-1} into a f_k indexed by Ω_k
- If $x_k = (x_{k,i}; i = 1 \ldots f_{k-1})$ is the $d_{k-1} \times f_{k-1}$ dim input to layer k, the output is defined as:

$$x_{k+1,j} = L_k h \left(\sum_{i=1}^{f_{k-1}} F_{k,i,j} x_{k,i} \right) \text{ with } j = 1 \ldots f_k$$

- $F_{k,i,j}$ is a $d_{k-1} \times d_{k-1}$ sparse matrix with N_k indicated by zeros
- h is the non-linearity and L_k is the pooling operation
Locally Connected Networks: In Pictures

Level 1 clustering

This and next few illustrations are by Joan Bruna
Locally Connected Networks: In Pictures

- Pooling to get Ω_1
Locally Connected Networks: In Pictures

Pooling to get Ω_1
Locally Connected Networks: In Pictures

- Level 2 clustering
Locally Connected Networks: In Pictures

Multiple Feature maps: Level 1
Locally Connected Networks: In Pictures

- Multiple Feature maps: Level 2
Spectral Construction

Spectral Networks
Quick Digression: The Graph Laplacian
Again consider $W \in \mathbb{R}^{d \times d}$, the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$.
Spectral Networks

- Again consider $W \in \mathbb{R}^{d \times d}$, the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2}WD^{-1/2}$$
Spectral Networks

- Again consider $W \in \mathbb{R}^{d \times d}$, the weighted adjacency matrix for $G = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2}W D^{-1/2}$$

- D is a diagonal matrix; the degree matrix with $D_{i,i} = \sum_i W_{i,i}$.
Spectral Networks

- Again consider $W \in \mathbb{R}^{d \times d}$, the weighted adjacency matrix for $\mathcal{G} = (\Omega, E)$
- We consider the following definition of the Graph Laplacian:

$$L = I - D^{-1/2}WD^{-1/2}$$

- D is a diagonal matrix; the degree matrix with $D_{i,i} = \sum_i W_{i,i}$
- Let $U = [u_1, \ldots, u_d]$ be the eigenvectors of L
Define convolution of input signal x with filter g on G as:

$$x \ast_G g = U^T (Ux \odot Ug)$$
Graph Convolution in Frequency Domain

- Define convolution of input signal x with filter g on \mathcal{G} as:

$$x \ast g = U^T(Ux \odot Ug)$$

- Learning filters on a graph \implies learning spectral weights:

$$x \ast g = U^T(diag(w_g)Ux) \text{with } w_g = (w_1, \ldots, w_d)$$
Local Filters

- Notice that g has support over all vertices
Local Filters

- Notice that \(g \) has support over all vertices
- But we want filters that are local
Local Filters

- Notice that g has support over all vertices
- But we want filters that are local
- Observation: Smoothness in frequency domain \implies spatial decay
Local Filters

- Notice that g has support over all vertices
- But we want filters that are local
- Observation: Smoothness in frequency domain \implies spatial decay
- Solution: Consider a smoothing kernel $\mathcal{K} \in \mathbb{R}^{d \times d_0}$ and search for multipliers:

$$w_g = \mathcal{K} \tilde{w}_g$$
Graph Convolution Layer

- **Forward Pass:**
 - For input x, compute interpolated weights $w_{f'f} = K\tilde{w}_{f'f}$
Graph Convolution Layer

- **Forward Pass:**
 - For input x, compute interpolated weights $w_{f'f} = \mathcal{K}\tilde{w}_{f'f}$
 - Compute the output: $y_{sf'} = U^T(\sum_f U x_{sf} \odot w_{f'f})$

- **Backward Pass:**
 - Compute gradient w.r.t input Δx_{sf}
Graph Convolution Layer

Forward Pass:
- For input x, compute interpolated weights $w_{f'f} = K\tilde{w}_{f'f}$
- Compute the output: $y_{sf'} = U^T(\sum_f U x_{sf} \odot w_{f'f})$

Backward Pass:
- Compute gradient w.r.t input Δx_{sf}
- Compute gradient w.r.t interpolated weights $\Delta w_{f'f}$
Graph Convolution Layer

- **Forward Pass:**
 - For input x, compute interpolated weights $w_{f'f} = K\tilde{w}_{f'f}$
 - Compute the output: $y_{sf'} = U^T(\sum_f U x_{sf} \odot w_{f'f})$

- **Backward Pass:**
 - Compute gradient w.r.t input Δx_{sf}
 - Compute gradient w.r.t interpolated weights $\Delta w_{f'f}$
 - Compute gradient w.r.t weight $\Delta \tilde{w}_{f'f} = K^T \Delta w_{f'f}$
What if Graph Structure is unknown?

• Estimate it from data:

 Method 1: **Unsupervised**
 - Given dataset $X \in \mathbb{R}^{N \times d}$, compute distance $d(i, j)$ between features:

$$d(i, j) = \|X_i - X_j\|_2^2$$
What if Graph Structure is unknown?

- Estimate it from data:
 - **Method 1: Unsupervised**
 - Given dataset $X \in \mathbb{R}^{N \times d}$, compute distance $d(i, j)$ between features:
 \[
 d(i, j) = \| X_i - X_j \|_2^2
 \]
 - Then compute $W_{i,j} = \exp\left(-\frac{d(i,j)}{\sigma^2}\right)$
What if Graph Structure is unknown?

- Estimate it from data:

- **Method 2: Supervised**
 - Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in \{1, \ldots, C\}^L$, train a fully connected MLP with K layers, with weights W_1, \ldots, W_K
What if Graph Structure is unknown?

- Estimate it from data:

 - **Method 2:** *Supervised*
 - Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in \{1, \ldots, C\}^L$, train a fully connected MLP with K layers, with weights W_1, \ldots, W_K
 - Pass data through network, extract K layer features $W_K \in \mathbb{R}^{N \times m_k}$, then compute:
 \[
 d(i, j) = \|W_{ki} - W_{kj}\|_2^2
 \]
What if Graph Structure is unknown?

- Estimate it from data:

 Method 2: Supervised

 - Given dataset $X \in \mathbb{R}^{N \times d}$ and labels $y \in \{1, \ldots, C\}^L$, train a fully connected MLP with K layers, with weights W_1, \ldots, W_K

 - Pass data through network, extract K layer features $W_K \in \mathbb{R}^{N \times m_k}$, then compute:

 $$d(i, j) = \|W_{ki} - W_{kj}\|^2_2$$

 - Use Gaussian kernel as before to get $W_{i,j}$
Scenario 2

Learning Embeddings of Graphs
Example Task: Regression

- **Input:** Organic Compounds (graphs)
- **Output:** Boiling point
Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding

Require: $G = (V, E)$, radius δ, Hidden Weights: H_1, \ldots, H_δ, Output Weights: W_1, \ldots, W_δ

Initialize: Embedding $\phi \leftarrow 0$

(Initialize: For every vertex $r_v \leftarrow \Psi(v)$ (local vertex features))

1: for all $L = 1$ to δ (for every layer) do
2: for each vertex v in graph do
3: $r_1, \ldots, r_N =$ neighbors(v)
4: $v \leftarrow r_v + \sum_{i=1}^{N} r_i$
5: $r_v \leftarrow \sigma(vH_L^N)$
6: $i \leftarrow \text{softmax}(r_v W_L)$
7: Update: $\phi \leftarrow \phi + i$
8: end for
9: end for
10: Output embedding ϕ