Day 2: Overfitting, regularization

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

19 June 2018
Review

• Yesterday
 o Supervised learning
 o Linear regression - polynomial curve fitting
 o Empirical risk minimization, evaluation

• Today
 o Overfitting
 o Model selection
 o Regularization
 o Gradient descent

• Schedule:
 9:00am-10:25am Lecture 2.a: Overfitting, model selection
 10:35am-noon Lecture 2.b: Regularization, gradient descent
 noon-1:00pm Lunch
 1:00pm-3:30pm Programming
 3:30pm-5:00pm Invited Talk - Mathew Walter
Overfitting
Dataset size and linear regression

• Recall linear regression
 o Input $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$, training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\}$
 o Estimate $\mathbf{w} \in \mathbb{R}^d$ and bias $w_0 \in \mathbb{R}$ by minimizing training loss

$$\hat{\mathbf{w}}, \hat{w}_0 = \operatorname{argmin}_{\mathbf{w}, w_0} \sum_{i=1}^{N} (\mathbf{w} \cdot x^{(i)} + w_0 - y^{(i)})^2$$

• What happens when we only have a single data point (in 1D)?
 o Ill-posed problem: an infinite number of lines perfectly fit the data
Dataset size and linear regression

- Recall linear regression
 - Input $x \in \mathbb{R}^d$, output $y \in \mathbb{R}$, training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$
 - Estimate $\mathbf{w} \in \mathbb{R}^d$ and bias $w_0 \in \mathbb{R}$ by minimizing training loss
 $$\hat{\mathbf{w}}, \hat{w}_0 = \operatorname{argmin}_{\mathbf{w}, w_0} \sum_{i=1}^{N} (\mathbf{w} \cdot x^{(i)} + w_0 - y^{(i)})^2$$

- What happens when we only have a single data point (in 1D)?
 - Ill-posed problem: an infinite number of lines perfectly fit the data

- Two points in 1D?
- Two points in 2D?
 - the amount of data needed to obtain a meaningful estimate of a model is related to the number of parameters in the model (its complexity)
Linear regression - generalization

Consider 1D example
- \(S_{\text{train}} = \{(x^{(i)}, y^{(i)}): i = 1,2, \ldots, N\} \) where
 - \(x^{(i)} \sim \text{uniform}(-5,5) \)
 - \(y^{(i)} = w^*x^{(i)} + \epsilon^{(i)} \) for true \(w^* \) and noise \(\epsilon^{(i)} \sim \mathcal{N}(0,1) \)
- \(S_{\text{test}} \) similarly generated
 \[
 \hat{w} = \arg\min_w \sum_{i=1}^{N} (wx^{(i)} - y^{(i)})^2
 \]
- The training error increases with the size of training data?
Model complexity vs fit for fixed N

• Recall polynomial regression of degree m in 1D

$$\hat{w} = \underset{w \in \mathbb{R}^{m+1}}{\text{argmin}} \sum_{i=1}^{N} (w_0 + w_1 \cdot x^{(i)} + w_2 \cdot x^{(i)^2} + \cdots + w_m \cdot x^{(i)^m} - y_t)^2$$

N=30
Overfitting with ERM

• For same amount of data, more complex models overfits more than simple model
 o Recall: higher degree → more number of parameters to fit

• What happens if we have more data?
Model complexity vs fit for fixed N

• Recall polynomial regression of degree m in 1D

$$\hat{w} = \arg\min_{w \in \mathbb{R}^{m+1}} \sum_{i=1}^{N} \left(w_0 + w_1 \cdot x^{(i)} + w_2 \cdot x^{(i)^2} + \cdots + w_m \cdot x^{(i)^m} - y_t \right)^2$$

![Graph](image)

N=100
Overfitting with ERM

• For same amount of data, complex models overfit more than simple models
 o Recall: higher degree \rightarrow more number of parameters to fit

• What happens if we have more data?
 o More complex models require more data to avoid overfitting
How to avoid overfitting?

• How to **detect** overfitting?

 ![Graph showing model, true function, and samples with Degree 15 and Train MSE = 0.005.]

• How to **avoid** overfitting?
 - Look at test error and pick $m=5$?
 - Split $S = S_{\text{train}} \cup S_{\text{val}} \cup S_{\text{test}}$
 - Use performance on S_{val} as proxy for test error

![Graph showing training error and test error with degree m, $N=30$.]
Model selection

- \(S = S_{\text{train}} \cup S_{\text{val}} \cup S_{\text{test}} \)
- m model classes \(\{ \mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_m \} \)
 - Recall each \(\mathcal{H}_r \) is a set of candidate functions mapping \(x \to y \)
 - e.g., \(\mathcal{H}_r = \{ x \to w_0 + w_1 x + w_2 x^2 + \cdots + w_r x^r \} \)
- Minimize training loss \(L_{S_{\text{train}}} \) on \(S_{\text{train}} \) to pick best \(\hat{f}_r \in \mathcal{H}_r \)
 - e.g., \(\hat{f}_r(x) = \hat{w}_0 + \hat{w}_1 x + \hat{w}_2 x^2 + \cdots \hat{w}_r x^r \) where \(\hat{w}_0, \hat{w}_1, \hat{w}_2, \ldots, \hat{w}_r \)

\[
= \arg\min_{w_0, \ldots, w_r} \sum_{(x(i), y(i)) \in S_{\text{train}}} \left(w_0 + w_1 x^{(i)} + w_2 x^{(i)^2} + \cdots + w_r x^{(i)^r} - y^{(i)} \right)^2
\]

- Compute validation loss \(L_{S_{\text{val}}} (\hat{f}_r) \) on \(S_{\text{val}} \) for each \(\{ \hat{f}_1, \hat{f}_2, \ldots, \hat{f}_m \} \)
- Pick \(\hat{f}^* = \min \{ L_{S_{\text{val}}} (\hat{f}_1), L_{S_{\text{val}}} (\hat{f}_2), \ldots, L_{S_{\text{val}}} (\hat{f}_m) \} = \min_r L_{S_{\text{val}}} (\hat{f}_r) \)
- Evaluate test loss \(L_{S_{\text{test}}} (\hat{f}^*) \)
Model selection

• Can we overfit to validation data?
 ○ How much data to keep aside for validation?
• What if we don’t have enough data?
Cross validation

Split \(S = S_1 \cup S_2 \cup \ldots \cup S_K \cup S_{test} \)

<table>
<thead>
<tr>
<th></th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_{test})</th>
</tr>
</thead>
</table>

- \(m \) model classes \(\{\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_m\} \)
- For each \(k \):
 - **Training loss** \(L_{S_{train}^k} \) is loss on \(S_{train}^k = S_1 \cup S_2 \ldots \cup S_{k-1} \cup S_{k+1} \ldots S_K \)
 - Let best \(\hat{f}_r^{(k)} \in \mathcal{H}_r \) by \(\hat{f}_r^{(k)} = \arg\min_{f \in \mathcal{H}_r} L_{S_{train}^k} (f) \)
 - Compute **validation loss** \(L_{S_k} (\hat{f}_r^{(k)}) \) on \(S_k \) for each \(r \)

- **Pick model based on average validation loss** \(\hat{r}^* = \arg\min_r \sum_{k=1}^K L_{S_k} (\hat{f}_r^{(k)}) \)
 - \(\mathcal{H}_{\hat{r}^*} \) is the correct model class to use.
 - \(\hat{f}^* = \arg\min_{f \in \mathcal{H}_{\hat{r}^*}} L_{S_{train}^k \cup S_k} (f) \) or \(\hat{f}^* = \sum_k \hat{f}_r^{(k)} \) (if it makes sense)
 - Evaluate \(L_{S_{test}} (\hat{f}^*) \)

Illustration credit: Nati Srebro

Extreme case \(K = N \) (leave one out cross validation)