Day 3: Classification, logistic regression
Topics so far

• Supervised learning, linear regression

• Yesterday
 o Overfitting,
 o Ridge and lasso Regression
 o Gradient descent

• Today
 o Bias variance trade-off
 o Classification
 o Logistic regression
 o Regularization for logistic regression
 o Classification metrics
Bias-variance tradeoff
Empirical vs population loss

- **Population distribution** Let \((x, y) \sim \mathcal{D}\)
- We have
 - Loss function \(\ell(\hat{y}, y)\)
 - Hypothesis class \(\mathcal{H}\)
 - Training data \(S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\} \sim_{\text{iid}} \mathcal{D}^N\)
 - Think of \(S\) as random variable
- What we really want \(f \in \mathcal{H}\) to minimize **population loss**
 \[
 L_{\mathcal{D}}(f) \triangleq \mathbb{E}_{\mathcal{D}}[\ell(f(x), y)] = \int_{(x,y)} \ell(f(x), y) \Pr(x, y)
 \]
- ERM minimizes **empirical loss**
 \[
 L_{\mathcal{S}}(f) \triangleq \hat{\mathbb{E}}_{\mathcal{S}}[\ell(f(x), y)] = \frac{1}{N} \sum_{i=1}^{N} \ell(f(x^{(i)}), y^{(i)})
 \]

e.g, \(\Pr(x) = \text{uniform}(0,1)\)
\(y = w^* x + \epsilon\) where \(\epsilon = \mathcal{N}(0, 0.1)\)
\(\Rightarrow \Pr(y|x) = \mathcal{N}(w^* x, 0.1)\)
\(\Pr(x, y) = \Pr(x) \Pr(y|x)\)
Empirical vs population loss

\[L(f) \triangleq \mathbb{E}_D[\ell(f(x), y)] = \int_{(x,y)} \ell(f(x), y) \Pr(x, y) \]

\[L_S(f) \triangleq \hat{\mathbb{E}}_S[\ell(f(x), y)] = \frac{1}{N} \sum_{i=1}^{N} \ell(f(x^{(i)}), y^{(i)}) \]

- \(\hat{f}_S \) from some model **overfits** to \(S \) if there is \(f^* \in \mathcal{H} \) with

 \[\hat{\mathbb{E}}_S[\ell(\hat{f}_S(x), y)] \leq \hat{\mathbb{E}}_S[\ell(f^*(x), y)] \text{ but } \mathbb{E}_D[\ell(\hat{f}_S(x), y)] \gg \mathbb{E}_D[\ell(f^*(x), y)] \]

- If \(f \) is independent of \(S_{train} \) then both \(L_{S_{train}}(f) \) and \(L_{S_{test}}(f) \) are good approximations of \(L_D(f) \)

- But generally, \(\hat{f} \) depends on \(S_{train} \). Why?
 - \(L_{S_{train}}(\hat{f}_{S_{train}}) \) is no more a good approximation of \(L_D(f) \)
 - \(L_{S_{test}}(\hat{f}_{S_{train}}) \) is still a good approximation of \(L_D(f) \) since \(\hat{f}_{S_{train}} \) is independent of \(S_{test} \)
Optimum Unrestricted Predictor

• Consider population squared loss

\[
\arg\min_{f \in \mathcal{H}} L(f) \triangleq \mathbb{E}_D[\ell(f(x), y)] = \mathbb{E}_{(x,y)}[(f(x) - y)^2]
\]

• Say \(\mathcal{H} \) is unrestricted – any function \(f: x \rightarrow y \) is allowed

\[
L(f) = \mathbb{E}_{(x,y)}[(f(x) - y)^2] = \mathbb{E}_x\left[\mathbb{E}_y[(f(x) - y)^2 | x]\right]
\]

\[
= \mathbb{E}_x\left[\mathbb{E}_y\left[(f(x) - \mathbb{E}_y[y|x] + \mathbb{E}_y[y|x] - y)^2 | x\right]\right]
\]

\[
= \mathbb{E}_x\left[\mathbb{E}_y\left[(f(x) - \mathbb{E}_y[y|x])^2 | x\right]\right] + \mathbb{E}_x\left[\mathbb{E}_y\left[(\mathbb{E}_y[y|x] - y)^2 | x\right]\right]
\]

\[
+ 2 \mathbb{E}_x\left[\mathbb{E}_y\left[(f(x) - \mathbb{E}_y[y|x])(\mathbb{E}_y[y|x] - y)|x\right]\right]
\]

\[
= 0
\]

\[
= \mathbb{E}_x[(f(x) - \mathbb{E}_y[y|x])^2] + \mathbb{E}_{x,y}[(\mathbb{E}_y[y|x] - y)^2]
\]

minimized for \(f = \mathbb{E}_y[y|x] \)

Noise
Bias variance decomposition

• Best unrestricted predictor $f^{**}(x) = E_y[y|x]$

• $L(f_S) = E_x[(f_S(x) - f^{**}(x))^2] + E_{x,y}[(f^{**}(x) - y)^2]$

• $E_S L(f_S) = E_S E_x[(f_S(x) - f^{**}(x))^2] + noise$

$$
E_S E_x [(f_S(x) - f^{**}(x))^2] = E_x [E_S [(f_S(x) - f^{**}(x))^2|x]]
= E_x E_S [(f_S(x) - E_S[f_S(x)] + E_S[f_S(x)] - f^{**}(x))^2|x]
= E_x E_S [(f_S(x) - E_S[f_S(x)])^2|x] + E_x [(E_S[f_S(x)] - f^{**}(x))^2]
+ 2E_x [E_S [(E_S[f_S(x)] - f^{**}(x))(f_S(x) - E_S[f_S(x)])|x]]
= E_{S,x}[(f_S(x) - E_S[f_S(x)])^2] + E_x [(E_S[f_S(x)] - f^{**}(x))^2]
$$

$E_S L(f_S) = E_{S,x} [(f_S(x) - E_S[f_S(x)])^2]$
$+ E_x [(E_S[f_S(x)] - f^{**}(x))^2]
+ E_{x,y}[(f^{**}(x) - y)^2] = variance$
$+ bias^2$
$+ noise$
Bias-variance tradeoff

$$E_S L(f_S) = E_{S,x} [(f_S(x) - E_S[f_S(x)])^2]$$
$$+ E_x [(E_S[f_S(x)] - f^{**}(x))^2]$$
$$+ E_{x,y} [(f^{**}(x) - y)^2]$$

- $f_S \in \mathcal{H}$
- noise is irreducible
- variance can be reduced by
 - get more data
 - make f_S less sensitive to S
 - less number of candidates in \mathcal{H} to choose from \Rightarrow less variance
 - reducing the “complexity” of model class \mathcal{H} decreases variance
- $bias^2 \geq \min_{f \in conv(\mathcal{H})} E_x [(f(x) - f^{**}(x))^2]$
 - expanding model class \mathcal{H} decreases bias
Model complexity

- reducing the complexity of model class \mathcal{H} decreases variance
- expanding model class \mathcal{H} decreases bias
- Complexity \approx number of choices in \mathcal{H}
 - For any loss L, for all $f \in \mathcal{H}$ with probability greater than $1 - \delta$
 \[L(f) \leq L_s(f) + \sqrt{\log|\mathcal{H}| + \log \frac{1}{\delta}} \frac{1}{N} \]
 - many other variants for infinite cardinality classes
 - often bounds are loose
- Complexity \approx number of degrees of freedom
 - e.g., number of parameters to estimate
 - more data \Rightarrow can fit more complex models
- Is $\mathcal{H}_1 = \{ x \rightarrow w_0 + w_1 \cdot x - w_2 \cdot x \}$ more complex than $\mathcal{H}_2 = \{ x \rightarrow w_0 + w_1 \cdot x \}$?
 - What we need is how many different “behaviors” we can get on same S
Summary

• Overfitting
 o What is overfitting?
 o How to detect overfitting?
 o Avoiding overfitting using model selection

• Bias – variance tradeoff
Classification

• Supervised learning: estimate a mapping f from input $x \in X$ to output $y \in Y$

 o **Regression** $Y = \mathbb{R}$ or other continuous variables

 o **Classification** Y takes discrete set of values

 ▪ Examples:

 □ $Y = \{\text{spam, nospam}\}$,

 □ digits (not values) $Y = \{0, 1, 2, \ldots, 9\}$

• Many successful applications of ML in vision, speech, NLP, healthcare
Classification vs Regression

• Label-values do not have meaning
 o $Y = \{\text{spam, nospam}\}$ or $Y = \{0,1\}$ or $Y = \{-1,1\}$
• Ordering of labels does not matter (for most parts)
 o $f(x) = "0"$ when $y = "1"$ is as bad as $f(x) = "9"$ when $y = "1"$
• Often $f(x)$ does not return labels y
 o e.g. in binary classification with $Y = \{-1,1\}$ we often estimate $f: \mathcal{X} \rightarrow \mathbb{R}$ and then post process to get $\hat{y}(f(x)) = 1[f(x) \geq 0]$
 o mainly for computational reasons
 ▪ remember, we need to solve $\min_{f \in \mathcal{H}} \sum_i \ell(f(x^{(i)}), y^{(i)})$
 ▪ discrete values \rightarrow combinatorial problems \rightarrow hard to solve
 o more generally $\mathcal{H} \subset \{f: \mathcal{X} \rightarrow \mathbb{R}\}$ and loss $\ell: \mathbb{R} \times Y \rightarrow \mathbb{R}$
 ▪ compare to regression, where typically $\mathcal{H} \subset \{f: \mathcal{X} \rightarrow Y\}$ and loss $\ell: Y \times Y \rightarrow \mathbb{R}$
Non-parametric classifiers
Nearest Neighbor (NN) Classifier

- Training data $S = \{(x^{(i)}, y^{(i)}) : i = 1, 2, ..., N\}$
- Want to predict label of new point x
- Nearest Neighbor Rule
 - Find the closest training point: $i^* = \arg \min_i \rho(x, x^{(i)})$
 - Predict label of x as $\hat{y}(x) = y^{(i^*)}$
- Computation
 - Training time: Do nothing
 - Test time: search the training set for a NN

Figure credit: Nati Srebro
Nearest Neighbor (NN) Classifier

• Where is the main model?
 o \(i^* = \arg \min_i \rho(x, x^{(i)}) \)
 o What is the right “distance” between images? Between sound waves? Between sentences?
 o Often \(\rho(x, x') = \|\phi(x) - \phi(x')\|_2 \) or other norms \(\|x - x'\|_1 \)

Slide credit: Nati Srebro
k-Nearest Neighbor (kNN) classifier

• Training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\}$

• Want to predict label of new point x

• k-Nearest Neighbor Rule

 o Find the k closest training point: $i_1^*, i_2^*, \ldots, i_k^*$

 o Predict label of x as

 $\hat{y}(x) = \text{majority}(y^{(i_1^*)}, y^{(i_2^*)}, \ldots, y^{(i_k^*)})$

• Computation

 o Training time: Do nothing

 o Test time: search the training set for k NNs
k-Nearest Neighbor

Advantages
- no training
- universal approximator – non-parametric

Disadvantages
- not scalable
 - test time memory requirement
 - test time computation
- easily overfits with small data
Training vs test error

1-NN
• Training error?
 • 0
• Test error?
 • Depends on Pr(\(x, y\))

k-NN
• Training error: can be greater than 0
• Test error: again depends on Pr(\(x, y\))

Figure credit: Nati Srebro
k-Nearest Neighbor: Data Fit / Complexity Tradeoff

\[S = \]

\[h^* = \]

Slide credit: Nati Srebro
Space partition

• kNN partitioning of \mathcal{X} (or \mathbb{R}^d) into regions of +1 and -1

• What about discrete valued features x?

• Even for continuous x, can we get more structured partitions?
 - easy to describe
 - e.g., $R_2 = \{x: x_1 < t_1 \text{ and } x_2 > t_2\}$
 - reduces degrees of freedom

• Any non-overlapping partition using only (hyper) rectangles
 \rightarrow representable by a tree

Figure credit: Greg Shaknarovich
Decision trees

• Focus on binary trees (trees with at most two children at each node)

• How to create trees?

• What is a “good” tree?

 o Measure of “purity” at each leaf node where each leaf node corresponding to a region R_i

 $$\text{purity}(\text{tree}) = \sum_{R_i} |\text{# blue at } R_i - \# \text{ red at } R_i|$$

 There are various metrics of (im)purity that are used in practice, but the rough idea is the same
Decision trees

• How to create trees?
• Training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\}$, where $y^{(i)} \in \{\text{blue, red}\}$
• At each point,

$$\text{purity}(\text{tree}) = \sum_{\text{leaf}} |\# \text{ blue at leaf} - \# \text{ red at leaf}|$$

• Start with all data at root
 o only one leaf = root. What is purity(tree)?
Decision trees

• How to create trees?
• Training data \(S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\} \), where \(y^{(i)} \in \{\text{blue, red}\} \)
• At each point,

\[
purity(tree) = \sum_{\text{leaf}} |\# \text{ blue at leaf} - \# \text{ red at leaf}| \]

• Start with all data at root
 o only one leaf = root. What is purity(tree)?
• Create a split based on a rule that increases the amount of “purity” of tree.
 o How complex can the rules be?
Decision trees

• How to create trees?
• Training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\}$, where $y^{(i)} \in \{\text{blue, red}\}$
• At each point,

 \[
 \text{purity}(\text{tree}) = \sum_{\text{leaf}} |\# \text{ blue at leaf} - \# \text{ red at leaf}|
 \]
• Start with all data at root
 o only one leaf = root. What is purity(tree)?
• Create a split based on a rule that increases the amount of “purity” of tree.
 o How complex can the rules be?
• Repeat

When to stop?
what is the complexity of a DT?
• Limit the number of leaf nodes
Decision trees

• **Advantages**
 - interpretable
 - easy to deal with non-numeric features
 - natural extensions to multi-class, multi-label

• **Disadvantages**
 - not scalable
 - hard decisions – non-smooth decisions
 - often overfits in spite of regularization

• Check CART package in scikit-learn
Parametric classifiers

• What is the equivalent of linear regression?
 o something easy to train
 o something easy to use at test time

• \(f(x) = f_w(x) = w \cdot x + w_0 \)

• \(\mathcal{H} = \{f_w = x \rightarrow w \cdot x + w_0 : w \in \mathbb{R}^d, w_0 \in \mathbb{R}\} \)

• but \(f(x) \notin \{-1,1\}! \) how do we get labels?
 o reasonable choice
 \(\hat{y}(x) = 1 \) if \(f_{\hat{w}}(x) \geq 0 \) and \(\hat{y}(x) = -1 \) otherwise
 o linear classifier: \(\hat{y}(x) = \text{sign}(\hat{w} \cdot x + \hat{w}_0) \)
Parametric classifiers

- $\mathcal{H} = \{ f_w = x \rightarrow w \cdot x + w_0 : w \in \mathbb{R}^d, w_0 \in \mathbb{R} \}$

- $\hat{y}(x) = \text{sign}(\hat{w} \cdot x + \hat{w}_0)$

- $\hat{w} \cdot x + \hat{w}_0 = 0$ (linear) decision boundary or separating hyperplane
 - that separates \mathbb{R}^d into two halfspaces (regions)
 - $\hat{w} \cdot x + \hat{w}_0 > 0$ and $\hat{w} \cdot x + \hat{w}_0 < 0$

- more generally, $\hat{y}(x) = \text{sign} \left(\hat{f}(x) \right)$
 - decision boundary is $\hat{f}(x) = 0$
Linear classifier
Classification vs Regression

• Label-values do not have meaning
 o $\mathcal{Y} = \{\text{spam, nospam}\}$ or $\mathcal{Y} = \{0,1\}$ or $\mathcal{Y} = \{-1,1\}$

• Ordering of labels does not matter (for most parts)
 o $f(x) = “0”$ when $y = “1”$ is as bad as $f(x) = “9”$ when $y = “1”$

• Often $f(x)$ does not return labels y
 o e.g. in binary classification with $\mathcal{Y} = \{-1,1\}$ we often estimate
 $f: \mathcal{X} \to \mathbb{R}$ and then post process to get $\hat{y}(f(x)) = 1[f(x) \geq 0]$
 o mainly for computational reasons
 ▪ remember, we need to solve $\min_{f \in \mathcal{H}} \sum_i \ell(f(x^{(i)}), y^{(i)})$
 ▪ discrete values \rightarrow combinatorial problems \rightarrow hard to solve
 o more generally $\mathcal{H} \subset \{f: \mathcal{X} \to \mathbb{R}\}$ and loss $\ell: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R}$
 ▪ compare to regression, where typically $\mathcal{H} \subset \{f: \mathcal{X} \rightarrow \mathcal{Y}\}$ and
 loss $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$
Classification vs Regression

• Label-values do not have meaning
 o \(y = \{ \text{spam}, \text{nospam} \} \) or \(y = \{ 0, 1 \} \) or \(y = \{ -1, 1 \} \)

• Ordering of labels does not matter (for most parts)
 o \(f(\mathbf{x}) = \text{"0" when } y = \text{"1"} \)

• Often \(f(\mathbf{x}) \) does not return labels
 o e.g. in binary classification with \(y = \{ -1, 1 \} \) we often estimate \(f: \mathcal{X} \rightarrow \mathbb{R} \) and then post-process to get \(y(\mathbf{x}) = 1 \text{ if } f(\mathbf{x}) \geq 0 \) mainly for computational reasons

What if we ignore above and solve classification using regression?

• discrete values \(\rightarrow \) combinatorial problems \(\rightarrow \) hard to solve
 o more generally \(\mathcal{H} \subset \{ f: \mathcal{X} \rightarrow \mathbb{R} \} \) and loss \(\ell: \mathbb{R} \times \mathcal{Y} \rightarrow \mathbb{R} \)
 ▪ compare to regression, where typically \(\mathcal{H} \subset \{ f: \mathcal{X} \rightarrow \mathcal{Y} \} \) and loss \(\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R} \)
Classification as regression

- Binary classification $\mathcal{Y} = \{-1, 1\}$ and $\mathcal{X} \in \mathbb{R}^d$
- Treat it as regression with squared loss, say linear regression
 - Training data $S = \{(x^{(i)}, y^{(i)}): i = 1, 2, ..., N\}$
 - ERM
 $$\hat{w}, \hat{w}_0 = \arg\min_{w, w_0} \sum_{i} (w \cdot x^{(i)} + w_0 - y^{(i)})^2$$
Classification as regression

\[\hat{y}(x) = \text{sign}(wx + w_0) \]

Example credit: Greg Shaknarovich
Classification as regression

classified correctly by
\(\hat{y}(x) = \text{sign}(w \cdot x) \)
but squared loss \((w \cdot x + 1)^2\) will be high

Example credit: Greg Shaknarovich
Classification as regression

\[x \quad y = +1 \quad y = -1 \]

Example credit: Greg Shaknarovich
Classification as regression
Surrogate Losses

• The correct loss to use is 0-1 loss \textit{after} thresholding

\[\ell^{01}(f(x), y) = 1[\text{sign}(f(x)) \neq y] \]

\[= 1[\text{sign}(f(x)y) < 0] \]
Surrogate Losses

• The correct loss to use is 0-1 loss after thresholding
 \[\ell^{01}(f(x), y) = 1[\text{sign}(f(x)) \neq y] \]
 \[= 1[\text{sign}(f(x)y) < 0] \]

• Linear regression uses \(\ell^{LS}(f(x), y) = (f(x) - y)^2 \)

• Why not do ERM over \(\ell^{01}(f(x), y) \) directly?
 - non-continuous, non-convex
Surrogate Losses

• Hard to optimize over ℓ^{01}, find another loss $\ell(\hat{y}, y)$
 o Convex (for any fixed y) \rightarrow easier to minimize
 o An upper bound of ℓ^{01} \rightarrow small $\ell \Rightarrow$ small ℓ^{01}

• Satisfied by squared loss
 \rightarrow but has “large” loss even when $\ell^{01}(\hat{y}, y) = 0$

• Two more surrogate losses in this course
 o Logistic loss
 $$\ell^{\log}(\hat{y}, y) = \log(1 + \exp(-\hat{y}y))$$
 (TODAY)
 o Hinge loss
 $$\ell^{hinge}(\hat{y}, y) = \max(0, 1 - \hat{y}y)$$
 (TOMORROW)
Logistic Regression
Logistic regression: ERM on surrogate loss

Logistic loss
\[\ell(f(x), y) = \log(1 + \exp(-f(x)y)) \]

- \(S = \{(x^{(i)}, y^{(i)}): i = 1, 2, \ldots, N\}, \ X = \mathbb{R}^d, \ Y = \{-1, 1\} \)
- Linear model \(f(x) = f_w(x) = w \cdot x + w_0 \)
- Minimize training loss
 \[\hat{w}, \hat{w}_0 = \arg\min_{w, w_0} \sum_i \log \left(1 + \exp \left(-(w \cdot x^{(i)} + w_0)y^{(i)} \right) \right) \]
- Output classifier \(\hat{y}(x) = \text{sign}(w \cdot x + w_0) \)
Logistic regression

\[\hat{w}, \hat{w}_0 = \arg\min_{w, w_0} \sum_i \log \left(1 + \exp\left(-\left(w \cdot x^{(i)} + w_0\right)y^{(i)}\right) \right) \]

- Learns a linear decision boundary
 - \(\{x: w \cdot x + w_0 = 0\} \) is a hyperplane in \(\mathbb{R}^d \) - decision boundary
 - \(\{x: w \cdot x + w_0 = 0\} \) divides \(\mathbb{R}^d \) into two halfspace (regions)
 - \(\{x: w \cdot x + w_0 \geq 0\} \) will get label +1 and
 \(\{x: w \cdot x + w_0 < 0\} \) will get label -1

- Maps \(x \) to a 1D coordinate
 \[x' = \frac{w \cdot x + w_0}{||w||} \]

Figure credit: Greg Shaknarovich
Logistic Regression

\[\hat{w}, \hat{w}_0 = \arg\min_{w, w_0} \sum_i \log(1 + \exp(-(w \cdot x + w_0)y)) \]

- Convex optimization problem
- Can solve using gradient descent
- Can also add usual regularization: \(\ell_2, \ell_1 \)
 - More details in the next session