Massart’s Finite Class Lemma and Growth Function

1 Growth function

Consider the case $Y = \{\pm 1\}$ (classification). Let ϕ be the 0-1 loss function and F be a class of ± 1-valued functions. We can relate the Rademacher average of ϕ_F to that of F as follows.

Lemma 1.1. Suppose $F \subseteq \{\pm 1\}^X$ and let $\phi(y', y) = 1[y' \neq y]$ be the 0-1 loss function. Then we have,

$$R_m(\phi_F) = \frac{1}{2} R_m(F).$$

Proof. Note that we can write $\phi(y', y)$ as $(1 - yy')/2$. Then we have,

$$R_m(\phi_F) = \mathbb{E} \left[\sup_{f \in F} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i \left(1 - \frac{Y_i f(X_i)}{2}\right) X_i^m, Y_i^m \right]
= \mathbb{E} \left[\sup_{f \in F} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i Y_i f(X_i) \left| X_i^m, Y_i^m \right| \right]
= \frac{1}{2} \mathbb{E} \left[\sup_{f \in F} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i f(X_i) \left| X_i^m, Y_i^m \right| \right]
= \frac{1}{2} \mathbb{E} \left[\sup_{f \in F} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i f(X_i) \right| X_i^m, Y_i^m \right]
= \frac{1}{2} R_m(F).$$

Equation (1) follows because $\mathbb{E} [\epsilon_i | X_i^m, Y_i^m] = 0$. Equation (2) follows because $-\epsilon_i Y_i$‘s jointly have the same distribution as ϵ_i‘s.

Note that the Rademacher average of the class F can also be written as

$$R_m(F) = \mathbb{E} \left[\sup_{a \in F_1^m} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i a_i \right],$$

where F_1^m is the function class F restricted to the set X_1, \ldots, X_m. That is,

$$F_1^m := \{(f(X_1), \ldots, f(X_m)) | f \in F\}.$$

Note that F_1^m is finite and

$$|F_1^m| \leq \min\{|F|, 2^m\}.$$

Thus we can define the *growth function* as

$$\Pi_F(m) := \max_{x^m \in X^m} |F_1^m|.$$

The following lemma due to Massart allows us to bound the Rademacher average in terms of the growth function.
Finite Class Lemma (Massart). Let \(A \) be some finite subset of \(\mathbb{R}^m \) and \(\epsilon_1, \ldots, \epsilon_m \) be independent Rademacher random variables. Let \(r = \sup_{a \in A} \|a\| \). Then, we have,

\[
E \left[\sup_{a \in A} \frac{1}{m} \sum_{i=1}^{m} \epsilon_i a_i \right] \leq r \sqrt{\frac{2 \ln |A|}{m}}.
\]

Proof. Let

\[
\mu = E \left[\sup_{a \in A} \sum_{i=1}^{m} \epsilon_i a_i \right].
\]

We have, for any \(\lambda > 0 \),

\[
e^{\lambda \mu} \leq E \left[\exp \left(\lambda \sup_{a \in A} \sum_{i=1}^{m} \epsilon_i a_i \right) \right]\quad \text{Jensen’s inequality}
= E \left[\sup_{a \in A} \exp \left(\lambda \sum_{i=1}^{m} \epsilon_i a_i \right) \right]
\leq E \left[\sum_{a \in A} \exp \left(\lambda \sum_{i=1}^{m} \epsilon_i a_i \right) \right]
= \sum_{a \in A} E \left[\exp \left(\lambda \sum_{i=1}^{m} \epsilon_i a_i \right) \right]
= \sum_{a \in A} \prod_{i=1}^{m} E \left[\exp (\lambda \epsilon_i a_i) \right]
= \sum_{a \in A} \prod_{i=1}^{m} e^{\lambda a_i} + e^{-\lambda a_i} / 2
\leq \sum_{a \in A} \prod_{i=1}^{m} e^{\lambda^2 a_i^2 / 2}
\leq \sum_{a \in A} e^{\lambda^2 \|a\|^2 / 2}
\leq |A| e^{\lambda^2 r^2 / 2}
\]

Taking logs and dividing by \(\lambda \), we get that, for any \(\lambda > 0 \),

\[
\mu \leq \frac{\ln |A|}{\lambda} + \frac{\lambda r^2}{2}.
\]

Setting \(\lambda = \sqrt{2 \ln |A| / r^2} \) gives,

\[
\mu \leq r \sqrt{2 \ln |A|},
\]

which proves the lemma. \(\square \)