
CMSC 35900 (Spring 2008) Learning Theory Lecture: 13

Online to Batch Conversions

Instructors: Sham Kakade and Ambuj Tewari

1 Using Online Algorithms in a Batch Setting
We have recently been studying the case where have a training set T generated from an underlying distribution and
our goal is to find some good hypothesis, with respect to the true underlying distribution, using the training set T . We
now examine how to use online learning algorithms (which work on individual, arbitrary sequences) in a stochastic
setting.

Let us consider the training set T as the ordered sequence:

T = {(X1, Y1), . . . , (Xm, Ym)}

and let us run an online learning algorithm on this sequence. In particular, let us say that each round t our algorithm
chooses some θ ∈ Θ and we suffer loss `(θ; (xi, yi)). Here, the decision space/parameter space Θ could be the space
corresponding to the parameterization of our hypothesis class. The regret of our algorithm on the sequence is defined
as:

RT =
m∑
i=1

`(θi; (xi, yi))− inf
θ∈Θ

m∑
i=1

`(θ; (xi, yi))

Previously, we studied algorithms which provides bounds for this regret on arbitrary sequences T .
Now if we use an online algorithm on a sequence T , then we would like to use the algorithms behavior to find a

hypothesis that is good with respect to the distribution.

2 Martingales
A stochastic process X1, X2, . . . Xm is a martingale if E [|Xi|] ≤ ∞ and:

E [Xi|X1, . . . Xi−1] = Xi−1

If we have a filtration {Hi} (think of this like a “history”) where Xi is measurable with respect to Hi (i.e. Xi is a
deterministic function of Hi), then X1, X2, . . . Xm is a martingale with respect to this filtration if E [|Xi|] ≤ ∞ and:

E [Xi|Hi−1] = Xi−1

The process Z1, Z2, . . . Zm is a martingale difference sequence if E [|Zi|] ≤ ∞ and

E [Zi|Hi−1] = 0

Clearly, Zi = Xi −Xi−1 is a martingale difference sequence.
A useful property of martingale different sequences is that:

E [Zi] = 0

Here, we have an unconditional expectation.
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3 Online to “Batch”
Let us define

Zi = (`(θi; (xi, yi))− L(θi))− (`(θ∗; (xi, yi))− L(θ∗)) .

With respect to the history T<i, this process is a martingale difference sequence.
The following lemma is useful.

Lemma 3.1. Assume that each (xi, yi) is generated in an i.i.d manner. Assume that θi is a deterministic function of
T<i, where:

T<i = {(X1, Y1), . . . , (Xi−1, Yi−1)}

Then the process {Zi} is a martingale difference sequence, with respect to the history T<i.

Proof. To see that the process is a martingale difference sequence,

E [Zi|T<i] = E [`(θi; (xi, yi))− L(θi)|T<i]− E [`(θ∗; (xi, yi))− L(θ∗)|T<i]
= L(θi)− L(θi)− (L(θ∗)− L(θ∗))
= 0

which completes the proof.

Lemma 3.2. We have that
m∑
i=1

L(θi) ≤ L(θ∗) +RT −
m∑
i=1

Zi

Proof. To complete the proof:

m∑
i=1

L(θi)− L(θ∗) =
m∑
i=1

`(θi; (xi, yi))− `(θ∗; (xi, yi))− Zi

≤
m∑
i=1

`(θi; (xi, yi))− inf
θ∈Θ

m∑
i=1

`(θ; (xi, yi))−
m∑
i=1

Zi

= RT −
m∑
i=1

Zi

which completes the proof.

The following theorem bounds the expected performance of an online to batch conversion.

Theorem 3.3. Assume that each (xi, yi) is generated in an i.i.d manner. Assume that θi is a deterministic function of
T<i. Let θ∗ be defined as:

θ∗ ∈ argminθ∈ΘL(θ)

Let θ1, . . . θm be the random variable corresponding to the output of our online algorithm on the training sequence T
(generated in an i.i.d. manner from some distribution). Then:

E

[
1
m

m∑
i=1

L(θi)

]
≤ L(θ∗) +

1
m

E [RT ]

where the expectation is with respect to T . Furthermore, if L(·) is convex, then:

E

[
L(

1
m

m∑
i=1

θi)

]
≤ L(θ∗) +

1
m

E [RT ]

2



Proof. Since Zi is a martingale difference sequence, we have

E

[
m∑
i=1

Zi

]
= 0

where the expectation is unconditional. Now just take expectations in the previous lemma.

3.1 With High Probability
The following concentration result is useful.

Theorem 3.4. (Hoeffding-Azuma) Let Z1, Z2, . . . Zm be a martingale difference sequence s.t. |Zi| ≤ B (with proba-
bility one). For all ε ≥ 0

P

(
m∑
i=1

Zi ≥ ε

)
≤ e−

ε2

2B2m

The following high probability statement is now straightforward.

Theorem 3.5. Assume that each (xi, yi) is generated in an i.i.d manner. Assume that θi is a deterministic function of
T<i. Let θ∗ be defined as:

θ∗ ∈ argminθ∈ΘL(θ)

Let θ1, . . . θm be the random variable corresponding to the output of our online algorithm on the training sequence
T (generated in an i.i.d. manner from some distribution). Assuming that the loss is bounded in [0, 1], then with
probability greater than 1− δ

1
m

m∑
i=1

L(θi) ≤ L(θ∗) +
1
m

E [RT ] + 2

√
2 log 1

δ

m

where the expectation is with respect to T .

Proof. Clearly, Zi is bounded by 2. Hence, with probability greater than 1− δ

1
m

m∑
i=1

Zi ≤ 2

√
2 log 1

δ

m

The proof follows from our earlier lemma.

4 L1 and L2 constrained problems
In the online learning setting, we restricted model complexity by bounding the decision region. We could consider
similar restrictions in the stochastic setting.

For the case with an L2 bounded decision region, we have:

θ∗2 = argminθ:||θ||2≤D2
L(θ)

where D2 is some bound on the norm of the decision region. Similarly, we could consider an L1 constrained decision
region, with optimal predictor:

θ∗1 = argminθ:||θ||2≤D1
L(θ)

where, again, D1 is a bound on the L1 norm of the decision region.
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4.1 Regularization

A natural question is to come up with an estimator θ̂, which is a function of the training sequence, in which the right
hand side of

L(θ̂2)− L(θ∗2) ≤??

L(θ̂1)− L(θ∗1) ≤??

is small.
Two natural estimators are:

θ̂2 = argminθ:||θ||2≤D2

m∑
i=1

`(θi; (xi, yi))

θ̂1 = argminθ:||θ||2≤D1

m∑
i=1

`(θi; (xi, yi))

However, it is not year clear if there estimators always perform favorably. The duals of these problem are often referred
to as regularization:

θ̂2 = argminθ
m∑
i=1

`(θi; (xi, yi)) + λ||θ||22

θ̂1 = argminθ
m∑
i=1

`(θi; (xi, yi)) + λ||θ||1

which will consider later.

4.2 Online to Batch Conversions for OLCP
Now we can apply our previous results on Gradient Descent and Exponentiated Gradient descent to this setting.

Corollary 4.1. Assuming that `(θ; (x, y)) is a convex function of θ for all (x, y), then the with probability greater than
1− δ, the output of the gradient descent algorithm satisfies:

L(
1
m

m∑
i=1

)− L(θ∗2) ≤ G2D2√
m

+ 2

√
2 log 1

δ

m

where G2 is an upper bound on ||∇`(θ; (x, y))||2 (for all (x, y)).

Corollary 4.2. Assuming that `(θ; (x, y)) is a convex function of θ for all (x, y), then the with probability greater than
1− δ, the output of the exponentiated gradient descent algorithm satisfies:

L(
1
m

m∑
i=1

)− L(θ∗2) ≤ 2
G∞D1√

m
+ 2

√
2 log 1

δ

m

where G∞ is an upper bound on ||∇`(θ; (x, y))||∞ (for all (x, y)).

Proof. The proof directly follow from the previous theorem and the fact that RT is bounded uniformly (as we saw in
an earlier lecture).
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