1 Warmup

Assume that for every $\alpha > 0$ that we have a (finite) set $\hat{\mathcal{F}}_\alpha$ such that for all $f \in \mathcal{F}$ there exists an $\hat{f} \in \hat{\mathcal{F}}_\alpha$ such that

$$|\phi(\hat{f}(x), y) - \phi(f(x), y)| \leq \alpha.$$

Such an $\hat{\mathcal{F}}_\alpha$ is a α-cover of \mathcal{F}. Clearly, this implies that:

$$|\mathcal{L}(\hat{f}(x)) - \mathcal{L}(f(x))| \leq \alpha.$$

Hence, we can view $\hat{\mathcal{F}}_\alpha$ as implicitly providing a cover for the loss class.

Intuitively, with respect to obtaining a uniform convergence rate, we could work directly with $\hat{\mathcal{F}}_\alpha$. More precisely,

Theorem 1.1. Assume that for all $f \in \mathcal{F}$ our predictions are in $[-1, 1]$. With probability greater than $1 - \delta$

$$\sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(f) - \mathcal{L}(f)| \leq \inf_{\alpha} 2\sqrt{\log |\hat{\mathcal{F}}_\alpha| + \log \frac{1}{\delta}} + 2\alpha$$

Proof. Fix α. Using the union bound, we have:

$$\sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(\hat{f}) - \mathcal{L}(\hat{f})| \leq 2\sqrt{\log |\hat{\mathcal{F}}_\alpha| + \log \frac{1}{\delta}}$$

Let $c(f)$ be the function $\hat{\mathcal{F}}_\alpha$ which covers f. Following from the definition of $c(f)$ and $\hat{\mathcal{F}}_\alpha$, we have that for all $f \in \mathcal{F}$,

$$|\mathcal{L}(f) - \mathcal{L}(c(f))| \leq \alpha$$

$$|\hat{\mathcal{L}}(f) - \hat{\mathcal{L}}(c(f))| \leq \alpha$$

It follows that:

$$\sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(f) - \mathcal{L}(f)| = \sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(f) - \hat{\mathcal{L}}(c(f)) - (\mathcal{L}(f) - \mathcal{L}(c(f))) + \hat{\mathcal{L}}(c(f)) - \mathcal{L}(c(f))|$$

$$\leq 2\alpha + \sup_{f \in \mathcal{F}} |\hat{\mathcal{L}}(c(f)) - \mathcal{L}(c(f))|$$

$$\leq 2\alpha + \sup_{f \in \hat{\mathcal{F}}_\alpha} |\hat{\mathcal{L}}(\hat{f}) - \mathcal{L}(\hat{f})|$$

$$\leq 2\alpha + \sqrt{\log |\hat{\mathcal{F}}_\alpha| + 2\log \frac{1}{\delta}}$$

The proof is completed by noting that α is arbitrary, so we can take a inf over α. \qed
2 p-norm Covering Numbers

The problem with the previous notion of a cover is that it uniformly demands a good approximation to each \(f \) by an element in \(\hat{F}_\alpha \). Intuitively, it seems more natural to have a cover such that for each \(f \in F \) there is an element in the cover which is only on average close \(f \). We now formalize this.

Assume that all hypotheses in our class \(F \) make real valued predictions. Let \(x_{1:n} \) be a set of \(n \) points. A set of vectors \(V \subset \mathbb{R}^n \) is an \(\alpha \)-cover, with respect to the \(p \)-norm, of \(F \) on \(x_{1:n} \) if for all \(f \in F \) there exists a \(v \in V \) such that:

\[
\left(\frac{1}{n} \sum_{i=1}^{n} |v_i - f(x_i)|^p \right)^{\frac{1}{p}} \leq \alpha
\]

We define the \(p \)-norm covering number \(N_p(\alpha, F, x_{1:n}) \) as the size of the minimal such cover \(V \), i.e.:

\[
N_p(\alpha, F, x_{1:n}) = \min \{ |V| : V \text{ is an } \alpha \text{-cover, under the } p \text{-norm, of } F \text{ on } x_{1:n} \}
\]

Also define:

\[
N_p(\alpha, F, n) = \sup x_{1:n} N_p(\alpha, F, x_{1:n})
\]

In other words, \(N_p(\alpha, F, n) \) is the worst case covering number over \(x_{1:n} \).

Observe that:

\[
N_p(\alpha, F, \infty) \leq N_q(\alpha, F, \infty)
\]

for \(p \leq q \). This is consequence of using the (normalized) \(p \)-norm in the definition of the covering number.

Note that:

\[
N_\infty(\alpha, F, \infty) \leq |\hat{F}_\alpha|
\]

which follows directly from the definition of \(\hat{F}_\alpha \).

3 Rademacher Bounds

Theorem 3.1. (Discretization) Assume that all \(f \in F \) make predictions in \([-1, 1]\). Let \(\hat{R}_n(F) \) be the empirical Rademacher number of \(F \) on \(x_{1:n} \). We have:

\[
\hat{R}_n(F) \leq \inf_{\alpha} \sqrt{\frac{2\log N_1(\alpha, F, x_{1:n})}{n}} + \alpha
\]

Proof. Fix \(\alpha \) and fix a minimal cover \(V \). Define \(B_\alpha(v) \) to be the hypothesis in \(F \) that are \(\alpha \)-covered by \(v \). Using that \(\cup_{v \in V} B_\alpha(v) = F \),

\[
\hat{R}_n(F) = \mathbb{E} \left[\sup_{f \in F} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right) \right]
\]

\[
= \mathbb{E} \left[\sup_{v \in V} \sup_{f \in B_\alpha(v)} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right) \right]
\]

\[
= \mathbb{E} \left[\sup_{v \in V} \sup_{f \in B_\alpha(v)} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_i v_i + \frac{1}{n} \sum_{i=1}^{n} \epsilon_i (f(x_i) - v_i) \right) \right]
\]

\[
\leq \mathbb{E} \left[\sup_{v \in V} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i v_i \right] + \mathbb{E} \left[\sup_{v \in V} \sup_{f \in B_\alpha(v)} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i (f(x_i) - v_i) \right]
\]
Using Holder’s inequality for the second term,

\[
E \left[\sup_{v \in V} \sup_{f \in B_\alpha(v)} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i (f(x_i) - v_i) \right] \leq E \left[\sup_{v \in V} \sup_{f \in B_\alpha(v)} \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - v_i| \right] \leq \alpha
\]

Using Massart’s finite lemma for the first term:

\[
E \left[\sup_{v \in V} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i v_i \right] \leq \sup_{v \in V} \|v\|_2 \sqrt{\frac{2 \log |V|}{n}} \leq \sqrt{\frac{2 \log |V|}{n}} = \sqrt{\frac{2 \log N_1(\alpha, \mathcal{F}, x_{1:n})}{n}}
\]

The proof is completed by combining these last two bounds and noting that \(\alpha \) was arbitrary (so we can take an inf over all \(\alpha > 0 \)).

The following is immediate:

Corollary 3.2. Assume that all \(f \in \mathcal{F} \) make predictions in \([-1, 1]\). We have:

\[
\mathcal{R}_n(\mathcal{F}) \leq \inf_{\alpha} \sqrt{\frac{2 \log N_1(\alpha, \mathcal{F}, n)}{n}} + \alpha
\]