In this lecture, we will prove a result due to Alon, Ben-David, Cesa-Bianchi and Haussler that bound the covering number of a class in terms of its fat shattering dimension. This provides a result analogous to Sauer’s lemma. As you remember, Sauer’s lemma gave us a bound on the growth function in terms of its VC dimension.

1 Functions with Finite Range

Before we prove the result we need a few definitions. Suppose X is some set and let $B = \{0, 1, \ldots, b\}$. Let $\mathcal{F} \subseteq B^X$ be a class of B-valued functions on X. Two functions $f, g \in \mathcal{F}$ are said to be separated if

$$\exists x \in X \text{ s.t. } |f(x) - g(x)| \geq 2.$$

That is, they are 2-separated in the ℓ^∞ metric where

$$\ell^\infty(f, g) := \max_{x \in X} |f(x) - g(x)|.$$

A class \mathcal{F} is said to be pairwise separated iff f, g are pairwise separated for all $f, g \in \mathcal{F}$.

Definition 1.1. Let $\mathcal{F} \subseteq B^X$. We say that \mathcal{F} strongly shatters $X = \{x_1, \ldots, x_n\} \subseteq X$ if there exists $s = (s_1, \ldots, s_n) \in B^n$ such that for all $E \subseteq \{x_1, \ldots, x_n\}$, there exists $f_E \in \mathcal{F}$ such that

$$\forall x_i \in E, \quad f_E(x_i) \geq s_i + 1$$

$$\forall x_i \in X - E, \quad f_E(x_i) \leq s_i - 1.$$

In this case we also say that \mathcal{F} strongly shatters X according to s. The strong dimension of \mathcal{F}, denoted by $\text{Sdim}(\mathcal{F})$, is the size of a largest strongly shattered set.

We will shift our attention from real valued functions to ones taking values in a finite set by a simple discretization.

Definition 1.2. Let $f : X \to [0, 1]$ be a function. For $\alpha > 0$, define its discretization f^α as,

$$f^\alpha(x) := \left\lfloor \frac{f(x)}{\alpha} \right\rfloor.$$

If \mathcal{F} is a function class, define

$$\mathcal{F}^\alpha := \{f^\alpha | f \in \mathcal{F}\}.$$

Note that f^α takes value in the set $\{0, \ldots, \lfloor 1/\alpha \rfloor\}$. The following lemma relates the combinatorial dimensions and packing numbers of the classes \mathcal{F} and \mathcal{F}^α.

Recall that we defined the covering number $\mathcal{N}_\infty(\alpha, \mathcal{F}, x_1:n)$ in an earlier lecture. We define the corresponding packing number as

$$\mathcal{M}_\infty(\alpha, \mathcal{F}, x_1:n) := \mathcal{M}_{\ell_1 \infty}(\alpha, \mathcal{F}),$$

where

$$\ell_{x_1:n}(f, g) = \max_{i \in [n]} |f(x_i) - g(x_i)|.$$
Lemma 1.3. Let $\mathcal{F} \subseteq [0, 1]^X$ and $\alpha > 0$. We have

1. $\text{Sdim}(\mathcal{F}^\alpha) \leq \text{fat}_{\alpha/2}(\mathcal{F})$

2. For any $x_{1:n}$, $\mathcal{M}_\infty(\alpha, \mathcal{F}, x_{1:n}) \leq \mathcal{M}_\infty(2, \mathcal{F}^{\alpha/2}, x_{1:n})$

To prove a result bounding the ∞-covering number in terms of the fat shattering dimension, we need the following combinatorial lemma whose proof we will give shortly.

Lemma 1.4. Let X be a finite set with $|X| = n$ and $B = \{0, 1, \ldots, b\}$. Let $\mathcal{F} \subseteq B^X$ be such that $\text{Sdim}(\mathcal{F}) = d$. Then we have,

$$\mathcal{M}_\ell(2, \mathcal{F}) < 2(\frac{n(b + 1)^2 }{\log y})$$

where $y = \sum_{i=1}^{d'} \binom{n}{i} b^i$.

Using the above lemma, we can prove a result relating covering numbers to fat shattering dimension.

Theorem 1.5. Let $\mathcal{F} \subseteq [0, 1]^X$ and $\alpha \in [0, 1]$. Suppose $d = \text{fat}_{\alpha/4}(\mathcal{F})$. Then

$$\mathcal{N}_\infty(\alpha, \mathcal{F}, n) \leq 2 \left(\frac{n(2\alpha + 1)^2}{\log(\frac{2\alpha}{\alpha})} \right)^d$$

Proof. Using the fact that covering numbers are bounded by packing numbers, Lemma 1.3, part 2 and Lemma 1.4, we get

$$\mathcal{N}_\infty(\alpha, \mathcal{F}, n) = \sup_{x_{1:n}} \mathcal{N}_\infty(\alpha, \mathcal{F}, x_{1:n})$$

$$\leq \sup_{x_{1:n}} \mathcal{M}_\infty(\alpha, \mathcal{F}, x_{1:n})$$

$$\leq \sup_{x_{1:n}} \mathcal{M}_\infty(2, \mathcal{F}^{\alpha/2}, x_{1:n})$$

$$< 2(n(b + 1)^2)^{\lceil \log y \rceil}$$

where $b = \lfloor 2/\alpha \rfloor$ and $y = \sum_{i=1}^{d'} \binom{n}{i} b^i$ with $d' = \text{Sdim}(\mathcal{F}^{\alpha/2})$. By Lemma 1.3, part 1, $d' \leq \text{fat}_{\alpha/4}(\mathcal{F}) = d$. Therefore,

$$y \leq \sum_{i=1}^{d} \binom{n}{i} b^i$$

$$\leq b^d \sum_{i=1}^{d} \binom{n}{i} \leq b^d \left(\frac{en}{d} \right)^d$$

Thus, $\log y \leq d \log(ben/d)$.

The rest of this lecture is devoted to proving Lemma 1.4.

Proof of Lemma 1.4. Fix $b \geq 2$ as the result trivially holds otherwise. For $h \geq 2$, $n \geq 1$, define the function

$$t(h, n) = \max\{k \mid \forall F \subseteq \mathcal{F}, |F| = h, F \text{ pairwise separated} \Rightarrow F \text{ strongly shatters at least } k \text{ } (X, s) \text{ pairs} \}$$

When we say F strongly shatters a pair (X, s), we mean F strongly shatters X according to s. Note that $t(h, n) = \infty$ when no pairwise separated F of cardinality h exists. Because of the following claim, it suffices to show

$$t \left(2(n(b + 1)^2)^{\lceil \log y \rceil}, n \right) \geq y$$

(1)
Claim 1.6. If \(t(h, n) \geq y \) for some \(h \) and \(\text{Sdim}(F) \leq d \) then
\[\mathcal{M}_{t^+}(2, F) < h . \]

Proof. For the sake of deriving a contradiction, suppose \(\mathcal{M}_{t^+}(2, F) \geq h \). This means there is a pairwise separated set \(F \) of cardinality at least \(h \). Since \(t(h, n) \geq y \), \(F \) strongly shatters at least \(y \) \((X,s)\) pairs. On the other hand, since \(\text{Sdim}(F) \leq d \), if \(F \) strongly shatters \((X,s)\) then \(|X| \leq d \). For any choice of \(X \) of size \(i \) (there are \(\binom{n}{i} \) such choices), there are strictly less than \(b^i \) choices for \(s \). This is because if \((X,s) = (s_1, \ldots, s_{|X|})\)
is strongly shattered then \(s_i \)'s cannot be 0 or \(b \). Thus, \(F \) can strongly shatter strictly less than
\[\sum_{i=1}^{d} \binom{n}{i} b^i = y \]
\((X,s)\) pairs. This gives us a contradiction. \(\square \)

To prove (1) by induction, we will establish the following two claims,
\[
\begin{align*}
t(2, n) & \geq 1 \quad n \geq 1 , \\
t(2mn(b + 1)^2, n) & \geq 2t(2m, n - 1) \quad m \geq 1, n \geq 2 .
\end{align*}
\]
Any separated functions \(f,g \) strongly shatters at least some singleton \(X = \{x\} \) (choose any \(x \) such that \(|f(x) - g(x)| \geq 2\)), so \(t(2, n) \geq 1 \). To prove (3), consider a set \(F \) of \(2mn(b + 1)^2 \) pairwise separated functions. If such a set does not exist then \(t(2mn(b + 1)^2, n) = \infty \) so (3) anyway holds. Pair up the functions in \(F \) arbitrarily to form \(mn(b + 1)^2 \) pairs \(\{f,g\} \). Call the set of these pairs \(P \). For each pair \(f,g \), fix an \(x \) on which they differ by at least 2 and denote it by \(\chi(f,g) \). For \(x \in X \) and \(i,j \in B, j \geq i + 1, \) define
\[\text{bin}(x,i,j) = \{(f,g) \in P | \chi(f,g) = x, \{f(x),g(x)\} = \{i,j\}\}. \]
The number of bins is no more than \(n \binom{b+1}{2} < n(b + 1)^2/2 \) and the numbers of pairs is \(mn(b + 1)^2 \), so for some \(x^* \in X, i^*, j^* \in B \) such that \(j^* > i^* + 1 \), we have
\[|\text{bin}(x^*,i^*,j^*)| \geq 2m . \]
Now define the following two set of functions,
\[F_1 := \left\{ f \in \bigcup \text{bin}(x^*,i^*,j^*) \mid f(x^*) = i^* \right\} , \]
\[F_2 := \left\{ f \in \bigcup \text{bin}(x^*,i^*,j^*) \mid f(x^*) = j^* \right\} . \]
Clearly \(|F_1| = |F_2| = 2m \). The first important observation is that \(F_1 \) is pairwise separate on the domain \(X - \{x^*\} \) (which has cardinality \(n - 1 \)). This is because all \(f \in F_1 \) take value \(i^* \) on \(x^* \). Similarly \(F_2 \) is pairwise separate on \(X - \{x^*\} \). Therefore, there exists sets \(U,V \) consisting of pairs \((X,s)\) such that \(F_1, F_2 \) strongly shatter pairs in \(U, V \) respectively. Further, \(|U| \geq t(2m, n - 1) \) and \(|V| \geq t(2m, n - 1) \). Any pair in \(U \cup V \) is obviously shattered by \(F \). Now consider any pair \((X,s) \in U \cap V \). Then, \((x^* \cup X, ([i^*+j^*]/2],s)) \) is also shattered by \(F \) (remember that \(j^* > i^* + 1 \)). Thus, \(F \) strongly shatters
\[|U \cup V| + |U \cap V| = |U| + |V| \geq 2t(2m, n - 1) \]
pairs. This completes the proof of (3).

Once we have (2) and (3), it easily follows that for \(n > r \geq 1, \)
\[t(2(n(b + 1)^2)^r, n) \geq 2^r t(2, n-r) \geq 2^r . \]
Thus if $\lceil \log y \rceil < n$, we can set $r = \lceil \log y \rceil$ above and (1) follows. On the other hand, if $\lceil \log y \rceil \geq n$, then

$$2(n(b+1)^2)^{\lceil \log y \rceil} > (b+1)^n$$

which exceeds the total number of B-valued functions defined on a set of size n. Thus, a pairwise separated set F of size $2(n(b+1)^2)^{\lceil \log y \rceil}$ does not exist and hence

$$t(2(n(b+1)^2)^{\lceil \log y \rceil}, n) = \infty.$$

So (1) still holds.

\[\Box\]