1 The Perceptron Algorithm

Algorithm 1 PERCEPTRON

\[w_1 \leftarrow 0 \]

for \(t = 1 \) to \(T \) do
 Receive \(x_t \in \mathbb{R}^d \)
 Predict \(\text{sgn}(w_t \cdot x_t) \)
 Receive \(y_t \in \{-1, +1\} \)
 if \(\text{sgn}(w_t \cdot x_t) \neq y_t \) then
 \(w_{t+1} \leftarrow w_t + y_t x_t \)
 else
 \(w_{t+1} \leftarrow w_t \)
 end if
end for

The following theorem gives a dimension independent bound on the number of mistakes the PERCEPTRON algorithm makes.

Theorem 1.1. Suppose Assumption M holds. Let

\[M_T := \sum_{t=1}^{T} 1[\text{sgn}(w_t \cdot x_t) \neq y_t] \]

denote the number of mistakes the PERCEPTRON algorithm makes. Then we have,

\[M_T \leq \frac{\|x_{1:T}\|^2 \cdot \|w^*\|^2}{\gamma^2} . \]

Proof. The key idea of the proof is to look at how the quantity \(w^* \cdot w_t \) evolves over time. We first provide an lower bound for it. Define \(m_t = 1[\text{sgn}(w_t \cdot x_t) \neq y_t] \). Note that \(w_{t+1} = w_t + y_t x_t m_t \) and \(M_T = \sum_t m_t \). We have,

\[w^* \cdot w_{t+1} = w^* \cdot w_t + y_t x_t m_t \]
\[= w^* \cdot w_t + y_t (w^* \cdot x_t) m_t \]
\[\geq w^* \cdot w_t + \gamma m_t . \] (Assumption M)

Unwinding the recursion, we get

\[w^* \cdot w_{T+1} \geq w^* \cdot w_1 + \gamma M_T = \gamma M_T . \] (1)

Now, we use Cauchy-Schwarz inequality to get the upper bound,

\[w^* \cdot w_{T+1} \leq \|w^*\| \cdot \|w_{T+1}\| . \] (2)
Moreover,
\[
\|w_{t+1}\|^2 = \|w_t + y_t x_t m_t\|^2 = \|w_t\|^2 + 2y_t (w_t \cdot x_t) m_t + \|x_t\|^2 m_t \leq \|w_t\|^2 + 0 + \|x_{1:T}\|^2 m_t,
\]
where the last step follows because \(y_t (w_t \cdot x_t) < 0\) when a mistake is made and \(\|x_t\| \leq \|x_{1:T}\|\). Unwinding the recursion once again, we get,
\[
\|w_{T+1}\|^2 \leq \|w_1\|^2 + \|x_{1:T}\|^2 M_T = \|x_{1:T}\|^2 M_T.
\]
(3)

Combining (1), (2) and (3) gives,
\[
\gamma M_T \leq \|w^*\| \cdot \|w_{T+1}\| \leq \|w^*\| \cdot \|x_{1:T}\| \sqrt{M_T}.
\]

This implies that \(M_T \leq \|w^*\|^2 \cdot \|x_{1:T}\|^2 / \gamma^2\).

\[\square\]

2 Lower Bound

Theorem 2.1. Suppose \(\mathcal{X} = \{x \in \mathbb{R}^d | \|x\| \leq 1\}\) and \(\frac{1}{\gamma} \leq d\). Then for any deterministic algorithm, there exists a data set which is separable by a margin of \(\gamma\) on which the algorithm makes at least \(\lfloor \frac{1}{\gamma^2} \rfloor\) mistakes.

Proof. Let \(n = \lfloor \frac{1}{\gamma^2} \rfloor\). Note that \(n \leq d\) and \(\gamma^2 n \leq 1\). Let \(e_i\) be the unit vector with a 1 in the \(i\)th coordinate and zeroes in others. Consider \(e_1, \ldots, e_n\). We now claim that, for any \(b \in \{-1, +1\}^n\), there is a \(w\) with \(\|w\| \leq 1\) such that
\[
\forall i \in [n], \ b_i (w_i \cdot e_i) = \gamma.
\]

To see this, simply choose \(w_i = \gamma b_i\). Then the above equality is true. Moreover, \(\|w\|^2 = \gamma^2 \sum_{i=1}^n b_i^2 = \gamma^2 n \leq 1\).

Now given an algorithm \(\mathcal{A}\), define the data set \(\{(x_i, y_i)\}_{i=1}^n\) as follows. Let \(x_i = e_i\) for all \(i\) and \(y_1 = -\mathcal{A}(x_1)\). Define \(y_i\) for \(i > 1\) recursively as
\[
y_i = -\mathcal{A}(x_1, y_1, \ldots, x_{i-1}, y_{i-1}, x_i).
\]

It is clear that the algorithm makes \(n\) mistakes when run on this data set. By the above claim, no matter what \(y_i\)’s turn out to be, the data set is separable by a margin of \(\gamma\).

\[\square\]

3 The Winnow Algorithm

Algorithm 2 Winnow

Input parameter: \(\eta > 0\) (learning rate)

\[
w_1 = \frac{1}{\eta} 1
\]

for \(t = 1\) to \(T\) do

Receive \(x_t \in \mathbb{R}^d\)

Predict \(\text{sgn}(w_t \cdot x_t)\)

Receive \(y_t \in \{-1, +1\}\)

if \(\text{sgn}(w_t \cdot x_t) \neq y_t\) then

\[
\forall i \in [d], w_{t+1,i} \leftarrow \frac{w_{t,i} \exp(\eta y_t x_{t,i})}{Z_t} \quad \text{where} \quad Z_t = \sum_{i=1}^d w_{t,i} \exp(\eta y_t x_{t,i})
\]

else

\[
w_{t+1} \leftarrow w_t
\]

end if

end for
Theorem 3.1. Suppose Assumption M holds. Further assume that $w^* \geq 0$. Let

$$M_T := \sum_{t=1}^{T} 1[\text{sgn}(w_t \cdot x_t) \neq y_t]$$

denote the number of mistakes the Winnow algorithm makes. Then, for a suitable choice of η, we have,

$$M_T \leq \frac{2\|x_{1:T}\|_\infty^2 \cdot \|w^*\|_1^2}{\gamma^2} \ln d.$$

Proof. Let $u^* = w^*/\|w^*\|$. Since we assume $w^* \geq 0$, u^* is a probability distribution. At all times, the weight vector w_t maintained by Winnow is also a probability distribution. Let us measure the progress of the algorithm by analyzing the relative entropy between these two distributions at time t. Accordingly, define

$$\Phi_t := \sum_{i=1}^{d} u^*_i \ln \frac{u^*_i}{w_{t,i}}.$$

When there is no mistake $\Phi_{t+1} = \Phi_t$. On a round when a mistake occurs, we have

$$\Phi_{t+1} - \Phi_t = \sum_{i=1}^{d} u^*_i \ln \frac{w_{t,i}}{w_{t+1,i}}$$
$$= \sum_{i=1}^{d} u^*_i \ln \frac{Z_t}{\exp(\eta y_t x_{t,i})}$$
$$= \ln(Z_t) \sum_{i=1}^{d} u^*_i - \eta y_t \sum_{i=1}^{d} u^*_i x_{t,i}$$
$$= \ln(Z_t) - \eta y_t (u^* \cdot x_t)$$
$$\leq \ln(Z_t) - \eta \gamma / \|w^*\|_1,$$

where the last inequality follows from the definition of u^* and Assumption M. Let $L = \|x_{1:T}\|_\infty$. Then $y_t x_{t,i} \in [-L, L]$ for all t, i. Then we can bound

$$Z_t = \sum_{i=1}^{d} w_{t,i} e^{\eta y_t x_{t,i}},$$

using the convexity of the function $t \mapsto e^{\eta t}$ on the interval $[-L, L]$ as follows,

$$Z_t \leq \sum_{i=1}^{d} \frac{1 + y_t x_{t,i}/L}{2} e^{\eta L} + \frac{1 - y_t x_{t,i}/L}{2} e^{-\eta L}$$
$$= \frac{e^{\eta L} + e^{-\eta L}}{2} \sum_{i=1}^{d} w_{t,i} + \frac{e^{\eta L} - e^{-\eta L}}{2} \left(y_t \sum_{i=1}^{d} w_{t,i} x_{t,i} \right)$$
$$= \frac{e^{\eta L} + e^{-\eta L}}{2} + \frac{e^{\eta L} - e^{-\eta L}}{2} y_t (w_t \cdot x_t)$$
$$\leq \frac{e^{\eta L} + e^{-\eta L}}{2},$$

because having a mistake implies $y_t (w_t \cdot x_t) \leq 0$ and $e^{\eta L} - e^{-\eta L} > 0$. So we have proved

$$\ln(Z_t) \leq \ln \left(\frac{e^{\eta L} + e^{-\eta L}}{2} \right).$$ (5)
Define
\[C(\eta) := \eta \gamma / \| w^* \|_1 - \ln \left(\frac{e^{\eta L} + e^{-\eta L}}{2} \right). \]

Combining (4) and (5) then gives us
\[\Phi_{t+1} - \Phi_t \leq -C(\eta)1 \{ y_t \neq \text{sgn}(w_t \cdot x_t) \}. \]

Unwinding the recursion gives,
\[\Phi_{T+1} \leq \Phi_1 - C(\eta)M_T. \]

Since relative entropy is always non-negative \(\Phi_{T+1} \geq 0 \). Further,
\[\Phi_1 = \sum_{i=1}^{d} u_i^* \ln(d u_i^*) \leq \sum_{i=1}^{d} u_i^* \ln d = \ln d \]

which gives us
\[0 \leq \ln d - C(\eta)M_T \]

and therefore \(M_T \leq \frac{\ln d}{C(\eta)}. \) Setting
\[\eta = \frac{1}{2L} \ln \left(\frac{L + \gamma / \| w^* \|_1}{L - \gamma / \| w^* \|_1} \right) \]
to maximize the denominator \(C(\eta) \) gives
\[M_T \leq \frac{\ln d}{g \left(\frac{\gamma}{L \| w^* \|_1} \right)} \]

where \(g(\epsilon) := \frac{1+\epsilon}{2} \ln(1 + \epsilon) + \frac{1-\epsilon}{2} \ln(1 - \epsilon) \). Finally, noting that \(g(\epsilon) \geq \epsilon^2 / 2 \) proves the theorem. \(\square \)