
CMSC 35900 (Spring 2008) Learning Theory Lecture: 2

Perceptron and Winnow

Instructors: Sham Kakade and Ambuj Tewari

1 The Perceptron Algorithm

Algorithm 1 PERCEPTRON

w1 ← 0
for t = 1 to T do

Receive xt ∈ Rd
Predict sgn(wt · xt)
Receive yt ∈ {−1,+1}
if sgn(wt · xt) 6= yt then
wt+1 ← wt + ytxt

else
wt+1 ← wt

end if
end for

The following theorem gives a dimension independent bound on the number of mistakes the PERCEPTRON algo-
rithm makes.

Theorem 1.1. Suppose Assumption M holds. Let

MT :=
T∑
t=1

1 [sgn(wt · xt) 6= yt]

denote the number of mistakes the PERCEPTRON algorithm makes. Then we have,

MT ≤
‖x1:T ‖2 · ‖w∗‖2

γ2
.

Proof. The key idea of the proof is to look at how the quantity w∗ · wt evolves over time. We first provide an lower
bound for it. Define mt = 1 [sgn(wt · xt) 6= yt]. Note that wt+1 = wt + ytxtmt and MT =

∑
tmt. We have,

w∗ · wt+1 = w∗ · wt + ytxtmt

= w∗ · wt + yt(w∗ · xt)mt

≥ w∗ · wt + γmt . (Assumption M)

Unwinding the recursion, we get
w∗ · wT+1 ≥ w∗ · w1 + γMT = γMT . (1)

Now, we use Cauchy-Schwarz inequality to get the upper bound,

w∗ · wT+1 ≤ ‖w∗‖ · ‖wT+1‖ . (2)

1



Moreover,

‖wt+1‖2 = ‖wt + ytxtmt‖2

= ‖wt‖2 + 2yt(wt · xt)mt + ‖xt‖2mt

≤ ‖wt‖2 + 0 + ‖x1:T ‖2mt ,

where the last step follows because yt(wt · xt) < 0 when a mistake is made and ‖xt‖ ≤ ‖x1:T ‖. Unwinding the
recursion once again, we get,

‖wT+1‖2 ≤ ‖w1‖2 + ‖x1:T ‖2MT = ‖x1:T ‖2MT . (3)

Combining (1), (2) and (3) gives,

γMT ≤ w∗ · wT+1 ≤ ‖w∗‖ · ‖wT+1‖ ≤ ‖w∗‖ · ‖x1:T ‖
√
MT .

This implies that MT ≤ ‖w∗‖2 · ‖x1:T ‖2/γ2.

2 Lower Bound
Theorem 2.1. Suppose X =

{
x ∈ Rd

∣∣ ‖x‖ ≤ 1
}

and 1
γ2 ≤ d. Then for any deterministic algorithm, there exists a

data set which is separable by a margin of γ on which the algorithm makes at least b 1
γ2 c mistakes.

Proof. Let n = b 1
γ2 c. Note that n ≤ d and γ2n ≤ 1. Let ei be the unit vector with a 1 in the ith coordinate and zeroes

in others. Consider e1, . . . , en. We now claim that, for any b ∈ {−1,+1}n, there is a w with ‖w‖ ≤ 1 such that

∀i ∈ [n], bi(wi · ei) = γ .

To see this, simply choose wi = γbi. Then the above equality is true. Moreover, ‖w‖2 = γ2
∑n
i=1 b

2
i = γ2n ≤ 1.

Now given an algorithm A, define the data set {(xi, yi)}ni=1 as follows. Let xi = ei for all i and y1 = −A(x1).
Define yi for i > 1 recursively as

yi = −A(x1, y1, . . . , xi−1, yi−1, xi) .

It is clear that the algorithm makes n mistakes when run on this data set. By the above claim, no matter what yi’s turn
out to be, the data set is separable by a margin of γ.

3 The Winnow Algorithm

Algorithm 2 WINNOW

Input parameter: η > 0 (learning rate)

w1 ← 1
d1

for t = 1 to T do
Receive xt ∈ Rd
Predict sgn(wt · xt)
Receive yt ∈ {−1,+1}
if sgn(wt · xt) 6= yt then
∀i ∈ [d], wt+1,i ← wt,i exp(ηytxt,i)

Zt
where Zt =

∑d
i=1 wt,i exp(ηytxt,i)

else
wt+1 ← wt

end if
end for

2



Theorem 3.1. Suppose Assumption M holds. Further assume that w∗ ≥ 0. Let

MT :=
T∑
t=1

1 [sgn(wt · xt) 6= yt]

denote the number of mistakes the WINNOW algorithm makes. Then, for a suitable choice of η, we have,

MT ≤
2‖x1:T ‖2∞ · ‖w∗‖21

γ2
ln d .

Proof. Let u∗ = w∗/‖w∗‖. Since we assume w∗ ≥ 0, u∗ is a probability distribution. At all times, the weight
vector wt maintained by WINNOW is also a probability distribution. Let us measure the progress of the algorithm by
analyzing the relative entropy between these two distributions at time t. Accordingly, define

Φt :=
d∑
i=1

u∗i ln
u∗i
wt,i

.

When there is no mistake Φt+1 = Φt. On a round when a mistake occurs, we have

Φt+1 − Φt =
d∑
i=1

u∗i ln
wt,i
wt+1,i

=
d∑
i=1

u∗i ln
Zt

exp(ηytxt,i)

= ln(Zt)
d∑
i=t

u∗i − ηyt
d∑
i=1

u∗i xt,i

= ln(Zt)− ηyt(u∗ · xt)
≤ ln(Zt)− ηγ/‖w∗‖1 , (4)

where the last inequality follows from the definition of u∗ and Assumption M. Let L = ‖x1:T ‖∞. Then ytxt,i ∈
[−L,L] for all t, i. Then we can bound

Zt =
d∑
i=1

wt,ie
ηytxt,i

using the convexity of the function t 7→ eηt on the interval [−L,L] as follows.

Zt ≤
d∑
i=1

1 + ytxt,i/L

2
eηL +

1− ytxt,i/L
2

e−ηL

=
eηL + e−ηL

2

d∑
i=1

wt,i +
eηL − e−ηL

2

(
yt

d∑
i=1

wt,ixt,i

)

=
eηL + e−ηL

2
+
eηL − e−ηL

2
yt(wt · xt)

≤ eηL + e−ηL

2

because having a mistake implies yt(wt · xt) ≤ 0 and eηL − e−ηL > 0. So we have proved

ln(Zt) ≤ ln
(
eηL + e−ηL

2

)
. (5)

3



Define

C(η) := ηγ/‖w∗‖1 − ln
(
eηL + e−ηL

2

)
.

Combining (4) and (5) then gives us

Φt+1 − Φt ≤ −C(η)1 [yt 6= sgn(wt · xt)] .

Unwinding the recursion gives,
ΦT+1 ≤ Φ1 − C(η)MT .

Since relative entropy is always non-negative ΦT+1 ≥ 0. Further,

Φ1 =
d∑
i=1

u∗i ln(du∗i ) ≤
d∑
i=1

u∗i ln d = ln d

which gives us
0 ≤ ln d− C(η)MT

and therefore MT ≤ ln d
C(η) . Setting

η =
1

2L
ln
(
L+ γ/‖w∗‖1
L− γ/‖w∗‖1

)
to maximize the denominator C(η) gives

MT ≤
ln d

g
(

γ
L‖w∗‖1

)
where g(ε) := 1+ε

2 ln(1 + ε) + 1−ε
2 ln(1− ε). Finally, noting that g(ε) ≥ ε2/2 proves the theorem.

4


