CMSC 35900 (Spring 2008) Learning Theory Lecture: 2
Perceptron and Winnow

Instructors: Sham Kakade and Ambuj Tewari

1 The Perceptron Algorithm

Algorithm 1 PERCEPTRON
wy < 0
fort =1to T do
Receive z; € R?
Predict sgn(w; - )
Receive y, € {—1,+1}
if sgn(w; - x) # y; then
Wiyl < Wt + YTt
else
W41 < Wy
end if
end for

The following theorem gives a dimension independent bound on the number of mistakes the PERCEPTRON algo-
rithm makes.

Theorem 1.1. Suppose Assumption M holds. Let

T

My = Z 1 [sgn(wy - 1) # yi)

t=1

denote the number of mistakes the PERCEPTRON algorithm makes. Then we have,
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Proof. The key idea of the proof is to look at how the quantity w™* - w; evolves over time. We first provide an lower
bound for it. Define m; = 1 [sgn(w; - z+) # y¢|. Note that wy 1 = w; + ysxym¢ and Mp = >, m;. We have,
W' Wi =W wy + Yeremy

=w" - w + yr(W* - z)my

*

w* - wy + ymy (Assumption M)

v

Unwinding the recursion, we get
w* - wryr > w* - wy +yMp =~yMr . (D

Now, we use Cauchy-Schwarz inequality to get the upper bound,

w* - wryy < Jlwt]] - lwrgall 2



Moreover,

we||* = llwe + yeweme ||
= [well? + 2y (wy - me)my + [|24]*my

< Nlwell® + 0 + [z |Pme

where the last step follows because y;(w; - ;) < 0 when a mistake is made and ||z;|| < ||z1.7||. Unwinding the
recursion once again, we get,

[wria]|? < [lwi|l? + lzrr My = ||lz1r|*Mr - 3)
Combining (1), (2) and (3) gives,

YMr <w” - wryy < ||| - floral] < ol -z llv Mr

This implies that M7 < ||w*||? - ||lz1.7]|% /% O

2 Lower Bound

Theorem 2.1. Suppose X = {x € R? ’ lz] < 1} and 712 < d. Then for any deterministic algorithm, there exists a
data set which is separable by a margin of v on which the algorithm makes at least LW%J mistakes.

Proof. Letn = LV—EJ Note that n < d and nyn < 1. Let e; be the unit vector with a 1 in the ith coordinate and zeroes
in others. Consider ey, . . ., e,. We now claim that, for any b € {—1,41}", there is a w with ||w|| < 1 such that

Vi € [n], bi(wi . ei) =7.

To see this, simply choose w; = yb;. Then the above equality is true. Moreover, ||w||? = 72 S b2 =92n<1.
Now given an algorithm .4, define the data set {(x;, y;)}, as follows. Let x; = e; for all ¢ and y; = —A(x1).
Define y; for ¢ > 1 recursively as

Yi = _A(xhyla"'7xi—1’yi_l’l‘i) .

It is clear that the algorithm makes n mistakes when run on this data set. By the above claim, no matter what y;’s turn
out to be, the data set is separable by a margin of ~. O

3 The Winnow Algorithm

Algorithm 2 WINNOW
Input parameter: 77 > 0 (learning rate)

Wy — %1

fort =1to T do
Receive z; € R
Predict sgn(wy - x4)
Receive y; € {—1,+1}
if sgn(w; - ) # y; then

. We,i €XP(NYtTt,i _ d
Vi € [d], wit1,i < % where Z; = 3 ., we; exp(ny:T¢ ;)
else
W1 < Wt
end if
end for




Theorem 3.1. Suppose Assumption M holds. Further assume that w* > 0. Let

T

My = Z 1 [sgn(w; - 2¢) # yi]

t=1
denote the number of mistakes the WINNOW algorithm makes. Then, for a suitable choice of n, we have,
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Proof. Let uv* = w*/||w*||. Since we assume w* > 0, u* is a probability distribution. At all times, the weight
vector w; maintained by WINNOW is also a probability distribution. Let us measure the progress of the algorithm by
analyzing the relative entropy between these two distributions at time ¢. Accordingly, define

D, :—Zu ln

i=1

wtz

When there is no mistake ;1 = ®;. On a round when a mistake occurs, we have
<I)t+1 Z’U, In
a Z " exp(nyewes)
d
= In(Z;) Zu —nytZu Ty

1=t
= In(Z;) — nys(u* 'fft)
<In(Z:) —ny/llw*|l1 4)
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where the last inequality follows from the definition of u* and Assumption M. Let L = ||z1.7||c. Then yz;; €
[-L, L] for all ¢, 4. Then we can bound

d
Zt — § wt’ienytlt,i
i=1

using the convexity of the function ¢ — € on the interval [— L, L] as follows.
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because having a mistake implies y;(w; - 2;) < 0 and e™ — e~ > 0. So we have proved
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Define
et + e”L)

Cn =l ~tn (%

Combining (4) and (5) then gives us
i1 — P < —C(n)1 [ye # sgn(wy - a4)] -

Unwinding the recursion gives,
(I)T+1 S (I)l — C(’I])MT .

Since relative entropy is always non-negative &7, > 0. Further,

d d
O =Y wln(du}) <> uilnd=Ind
i=1 i=1

which gives us
0<Ind—-C(n)Mrp

and therefore My < lezfll). Setting

1y (HWwIM>
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to maximize the denominator C'(n) gives
Ind

v
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where g(€) := 1< In(1 + €) + 3¢ In(1 — €). Finally, noting that g(e) > €2/2 proves the theorem.
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