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1 Bounded Differences Inequality
Suppose Z1, . . . , Zm are independent random variables taking values in some space Z and f : Zm → R is a function
that satisfies, for all i,

sup
z1,...,zm,z′

i

|f(z1, . . . , zi−1, zi, zi+1, . . . , zm)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)| ≤ ci

for some constants c1, . . . , cm. Then we have,

P (f(Zm1 )− E [f(Zm1 )] ≥ t) ≤ exp
(
−2t2∑m
i=1 c

2
i

)
.

2 Rademacher Averages
Recall that we are interested in bounding the difference between empirical and true expectations uniformly over some
function class G. In the context of classification or regression, we are typically interested in a class G that is the loss
class associated with some function class F . That is, given a bounded loss function φ : D × Y → [0, 1], we consider
the class

φF := {(x, y) 7→ φ(f(x), y) | f ∈ F} .

Rademacher averages give us a powerful tool to obtain uniform convergence results. We begin by examining the
quantity

E

[
sup
g∈G

(
E [g(Z)]− 1

m

m∑
i=1

g(Zi)

)]
,

where Z, {Zi}mi=1 are i.i.d. random variables taking values in some space Z and G ⊆ [a, b]Z is a set of bounded
functions. By the bounded differences inequality, the random quantity we are interested in, namely

sup
g∈G

(
E [g(Z)]− 1

m

m∑
i=1

g(Zi)

)
,

will be close to the above expectation with high probability.
Let ε1, . . . , εm be i.i.d. {±}-valued random variables with P (εi = +1) = P (εi = −1) = 1/2. These are also

independent of the sample Z1, . . . , Zm. Define the empirical Rademacher average of G as

R̂m(G) := E

[
sup
g∈G

1
m

m∑
i=1

εig(Zi)

∣∣∣∣∣Zm1
]
.

The Rademacher average of G is defined as

Rm(G) := E
[
R̂m(G)

]
.
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Theorem 2.1. We have,

E

[
sup
g∈G

(
E [g(Z)]− 1

m

m∑
i=1

g(Zi)

)]
≤ 2Rm(G) .

Proof. Introduce the ghost sample Z ′1, . . . , Z
′
m. By that we mean that Z ′i’s are independent of each other and of Zi’s

and have the same distribution as the latter. Then we have,

E

[
sup
g∈G

(
E [g(Z)]− 1

m

m∑
i=1

g(Zi)

)]

= E

[
sup
g∈G

(
1
m

m∑
i=1

(E [g(Z)]− g(Zi))

)]

= E

[
sup
g∈G

(
1
m

m∑
i=1

E [g(Z ′i)− g(Zi)|Zm1 ]

)]

≤ E

[
E

[
sup
g∈G

(
1
m

m∑
i=1

(g(Z ′i)− g(Zi))

)∣∣∣∣∣Zm1
]]

= E

[
sup
g∈G

(
1
m

m∑
i=1

(g(Z ′i)− g(Zi))

)]

= E

[
sup
g∈G

(
1
m

m∑
i=1

εi(g(Z ′i)− g(Zi))

)]

≤ E

[
sup
g∈G

1
m

m∑
i=1

εig(Z ′i)

]
+ E

[
sup
g∈G

1
m

m∑
i=1

εig(Zi)

]
= 2Rm(G) .

Since Rm(−G) = Rm(G), we have the following corollary.

Corollary 2.2. We have,

E

[
sup
g∈G

(
1
m

m∑
i=1

g(Zi)− E [g(Z)]

)]
≤ 2Rm(G) .

Since g(Xi) ∈ [a, b],

sup
g∈G

(
E [g(Z)]− 1

m

m∑
i=1

g(Zi)

)
does not change by more than (b − a)/m if some Zi is changed to Z ′i. Applying the bounded differences inequality,
we get the following corollary.

Corollary 2.3. With probability at least 1− δ,

sup
g∈G

(
E [g(Z)]− 1

m

m∑
i=1

g(Zi)

)
≤ 2Rm(G) + (b− a)

√
ln(1/δ)

2m

Recall that we denote the empirical φ-risk minimizer by f̂∗φ . We refer to Lφ(f̂∗φ)−minf∈F Lφ(f) as the estimation
error. The next theorem bounds the estimation error using Rademacher averages.
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Theorem 2.4. Let φF denote the loss class associated with F . Then, we have, with probability at least 1− 2δ,

Lφ(f̂∗φ)−min
f∈F

Lφ(f) ≤ 2Rm(φF ) + 2

√
ln(1/δ)

2m
.

Proof. Denote the function in F with minimum risk by f∗F . Since the loss function takes values in the interval [0, 1],
applying the previous corollary to the class φF , we get, with probability at least 1− 2δ,

Lφ(f̂∗φ)− L̂φ(f̂∗φ) ≤ 2Rm(φF ) +

√
ln(1/δ)

2m
.

Also, by the bounded differences inequality, we have with probability at least 1− δ,

L̂φ(f∗F )− Lφ(f∗F ) ≤
√

ln(1/δ)
2m

.

Thus we have, with probability at least 1− 2δ,

Lφ(f̂∗φ)− Lφ(f∗F ) ≤ L̂φ(f̂∗φ)− Lφ(f∗F ) + 2Rm(φF ) +

√
ln(1/δ)

2m

≤ L̂φ(f̂∗φ)− L̂φ(f∗F ) + 2Rm(φF ) + 2

√
ln(1/δ)

2m

≤ 0 + 2Rm(φF ) + 2

√
ln(1/δ)

2m
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