Abstract

When doing regression with inputs and outputs that are high-dimensional, it often makes sense to reduce the dimensionality of the inputs before mapping to the outputs. We propose a method where both the dimensionality reduction and the regression mapping can be nonlinear and are estimated jointly. Our key idea is to define an objective function where the low-dimensional coordinates are free parameters, in addition to the dimensionality reduction and the regression mapping. This has the effect of decoupling many groups of parameters from each other, affording a more effective optimization, and to use a good initialization from other methods.

Initialization and Validation

We jointly optimize over both mappings \(g \) and \(f \) using auxiliary coordinates \(Z \) (a \(4 \)-dimensional mapping, \(\theta \)). This has the effect of decoupling many groups of parameters from each other, affording a more effective optimization, and to use a good initialization from other methods.

Optimization over \(f \) and \(g \)

We use nested functions \(F \)–RBFs on \(\Phi \) for \(f \) and \(g \).

• Linear: \(g \) is a direct regression that acts on a lower input dimension \(D_n \), reduces to least squares problem.

• RBFs \((\theta) \): \(W \Phi \) with \(\Phi = [\omega_1, \omega_2, \ldots, \omega_{D_n}] \). Gaussian RBFs \(\omega_\alpha \sim N(0, \rho^2) \). Centers \(\alpha \) are chosen by \(\mathcal{L}_2 \) on \(\mathcal{L}_2 \) (since few iterations, initialized at previous centers).

• Weights \(W \) have a unique solution given by a linear system.

• Time complexity: \(O(N D_n + D_n^2) \), linear in training set size.

• Complexity: \(O(D_n D_m) \), \(D_m \) linear in output size.

Low-dimensional regression using auxiliary coordinates

Given a training set \(\mathcal{X}_{\text{train}}, \mathcal{Y}_{\text{train}} \) instead of directly optimizing

\[
L(X, f) = \frac{1}{2n} \sum (y_i - f(x_i))^2 + \lambda \|g\|_2^2 + \lambda_2 \|F\|_2^2
\]

where \(\lambda_2 \geq 0 \) for dimension reduction mapping \(f \) and regression mapping \(g \), we let the low-dimensional coordinates \(X_{\text{auxcoord}}, Y_{\text{auxcoord}} \) be independent, auxiliary parameters to be optimized over, and unfold the squared error into two terms that decouple given \(Z \):

\[
L(X, f, Z) = \frac{1}{2n} \sum (y_i - g(Z_i)) - f(x_i))_{\|Z\|_2^2}^2 + \lambda_2 \|F\|_2^2
\]

This has the effect of decoupling many groups of parameters from each other, affording a more effective optimization, and to use a good initialization from other methods.

Advantages of low-dimensional regression

• We jointly optimize over both mappings \(f \) and \(g \), unlike one-shot methods.

• Our optimization is more efficient than using a deep network with nested mappings (pretty good model/prety fast).

• The low-dimensional regressor has fewer parameters when \(D_n \) is small or \(\mathcal{RBFs} \) is small.

• The smooth functions \(f \) and \(g \) improve regularization on the regressor and may result in a better generalization performance.

Optimization over \(Z \)

For fixed \(f \) and \(g \), optimization of the objective function decouples over each \(\alpha \) \(\in \mathcal{R}^D \).

• We have \(N \) independent nonlinear minimizations each on \(D_n \) parameters, of the form

\[
\text{minimize } w_{\alpha}(X) = \|y - g(Z(X)) - f(x)\|^2 + \lambda_2 \|g\|^2
\]

• If \(g \) is linear, then \(\alpha \) can be solved in closed form by solving a linear system of \(\alpha \).

• If \(g \) is nonlinear, we use Gauss-Newton method with line search.

• Cost over all \(Z \): \(O(N D_n) \), \(D_n \) in training set size.

• The distribution of the coordinates \(Z \) changes dramatically in the first few iterations, while the error decreases quickly, but after that \(Z \) changes little.

Experimental evaluation

• We use \(g \) as a test on the test set (ESR), and \(f \) as our regression function for testing, which is the natural “out-of-sample” extension for above optimization.

• We use \(g \) as a test on the test set (ESR), and \(f \) as our regression function for testing, which is the natural “out-of-sample” extension for above optimization.

• Early stopping for training, usually happens in 100 iterations.

Validation of \(D_m \) by our algorithm.

Comparison of run time of our approach and optimizing the nested objective function.