Homework Assignment 2
TTIC 31010 and CMSC 37000-1
January 24, 2012

Problem 1.
(a) Suppose that we are given two arrays of bits, \(A = (a_0, \ldots, a_{n-1}) \) and \(B = (b_0, \ldots, b_{k-1}) \), where \(k \leq n \). Let \(c_j = \sum_{i=0}^{k-1} a_{j+i} b_i \) for \(j \in \{0, \ldots, n-k\} \). Give an algorithm that computes \(C = (c_0, \ldots, c_{n-k}) \) in time \(O(n \log n) \).

(b) Suppose that we are given a string of bits \(A = (a_0, \ldots, a_{n-1}) \) and a “pattern” \(B = (b_0, \ldots, b_{k-1}) \) (where \(k \leq n \)). Every \(b_i \) is either 0, 1 or a special character \(\star \) (“a wildcard character”). We say that \(B \) matches \(A \) at position \(j \in \{0, \ldots, n-k\} \) if for every \(i \in \{0, \ldots, k-1\} \) either \(b_i = a_{j+i} \) or \(b_i = \star \). For example, the string “0011011” matches the pattern “0\(\star \)1” at positions 0, 1 and 4.

Give an algorithm that outputs the list of all positions \(j \) at which \(B \) matches \(A \) in time \(O(n \log n) \).

Hint: Let us say that \(b_i \) is a mismatched character of type 0 at position \(j \) if \(b_i = 0 \) and \(a_{j+i} = 1 \); \(b_i \) is a mismatched character of type 1 at position \(j \) if \(b_i = 1 \) and \(a_{j+i} = 0 \). Let \(c_j^0 \) and \(c_j^1 \) be the number of mismatched characters of type 0 and 1, respectively, at position \(j \).
Show how to find the values of all \(c_j^0 \) and \(c_j^1 \) (for \(j \in \{0, \ldots, n-k\} \)) in time \(O(n \log n) \).

Problem 2. Let \(G = (V, E) \) be an arbitrary directed graph, with a source \(s \), a sink \(t \), and a positive integer capacity \(c(e) \) on every edge \(e \in E \). Decide whether the following statement is true or false. If it is true, give a proof, and if it is false, show a counterexample.

- If \(f \) is a maximum \(s-t \) flow in \(G \), then \(f \) saturates every edge in \(out(s) \) with flow. That is, for each \(e \in out(s) \), \(f(e) = c(e) \).

Problem 3. Removed (see Problem 1 in Homework 3).