Problem 1. Let A be a linear operator from ℓ^d_2 to ℓ^d_2. Suppose that A has singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d > 0$. Compute the distortion of A.

Problem 2.

1. Suppose that f is a linear map from ℓ^d_1 to ℓ^d_2. Prove that f has distortion at least \sqrt{d}.

 Hint: Consider the standard basis e_1, \ldots, e_d of ℓ^d_1. Let $r_1, \ldots, r_d \in \{\pm 1\}$ be independent unbiased Bernoulli random variables. Choose an index $j \in \{1, \ldots, d\}$ uniformly at random. Define r'_i by $r'_i = r_i$ if $i \neq j$, and $r'_i = -r_i$ if $i = j$. (That is, $r'_i = r_i$ for all but one index i.) Let r.v. $u = \sum_{i=1}^d r_i e_i$ and $u' = \sum_{i=1}^d r'_i e_i$. Compute the value of

 $$\frac{E[\|u - u'\|^2]}{E[\|u - (-u)\|^2]}$$

 and

 $$\frac{E[\|f(u) - f(u')\|^2]}{E[\|f(u) - f(-u)\|^2]}.$$

2. Give an example of a linear map f from ℓ^d_1 to ℓ^d_2 that has distortion \sqrt{d}.

3*. (extra credit) Suppose that f is a differentiable bijective map from ℓ^d_1 to ℓ^d_2 (f is not necessarily linear). Prove that f has distortion at least \sqrt{d}.

Problem 3.

1. Show that every embedding of the n-cycle into \mathbb{R} has distortion $\Omega(n)$.

2. Recall that $K_{3,3}$ is the complete bipartite graph with parts of size 3.
Let G be the graph obtained from $K_{3,3}$ by replacing every edge with a path of length n. Show that every embedding of the shortest path metric on G into the Euclidean plane, has distortion $\Omega(n)$.

3*. (extra credit) Prove that every metric space on n points embeds into \mathbb{R} with distortion $O(n)$.

Problem 4* [extra credit]. Consider two metric spaces (X, d_X) and (Y, d_Y). Let $A \subset X$ be a subset of X and $f : A \to Y$ be a Lipschitz map from A to Y. We say that a map $\tilde{f} : X \to Y$ is an extension of f if $\tilde{f}(x) = f(x)$ for every $x \in A$. The Lipschitz extendability constant $e_k(X, Y)$ is the infimum over all numbers C such that the following property holds: for every $A \subset X$ of size at most k and every map $f : A \to Y$ there exists an extension $\tilde{f} : X \to Y$ of f with $\|\tilde{f}\|_{Lip} \leq C\|f\|_{Lip}$.

1. Give an example of two normed spaces $(U, \|\cdot\|_U)$ and $(V, \|\cdot\|_V)$ such that $e_3(U, V) > 1$.

2. Prove that for every metric space (X, d_X) and every k, $e_k(X, \mathbb{R}) = 1$.

3. Prove that for every metric space (X, d_X), k and N, $e_k(X, \ell_N^\infty) = 1$.

4. Prove that for every $X \subset \ell_2^2$, $e_k(X, \ell_2^2) = 1$.

You may assume that X is a finite metric space in parts 2–4.