You can discuss problems 1 and 3 with other students, but you must write solutions on your own. This homework is due on Thursday, February 19.

Problem 1. Let P be a set of points in the plane, and D be the Voronoi diagram of P. Suppose that D has k vertices with degrees d_1, \ldots, d_k. How many Delaunay triangulations for P are there? (Hint: use Catalan numbers in your solution.)

Problem 2. (Solve this problem on your own.)

1. Let S be a set of points in the plane, and DG be a Delaunay triangulation for S. Consider a site $p \in S$ and let p' be the site in $S \setminus \{p\}$ closest to p. Prove that p and p' are adjacent in DG.

2. Solve problem 9.11 from the textbook.

Problem 3. Suppose we are given the Voronoi diagram of a set P of n points in the plane, but we are not given the set P itself. Describe an algorithm to reconstruct the point set P from its Voronoi diagram in $O(n)$ time. Assume that every Voronoi vertex has degree 3. If there is more than one point set consistent with the given diagram, return one (arbitrary) such set.