Bourgain’s Theorem
Computational and Metric Geometry
Instructor: Yury Makarychev

1 Notation

Given a metric space \((X, d)\) and \(S \subset X\), the distance from \(x \in X\) to \(S\) equals

\[d(x, S) = \inf_{s \in S} d(x, s). \]

The distance between two sets \(S_1, S_2 \subset X\) equals

\[d(S_1, S_2) = \inf_{s_1 \in S_1, s_2 \in S_2} d(s_1, s_2). \]

Exercise 1. Show that distances between sets do not necessarily satisfy the triangle inequality. That is, it is possible that

\[d(S_1, S_2) + d(S_2, S_3) > d(S_1, S_3) \]

for some sets \(S_1, S_2\) and \(S_3\).

Exercise 2. Prove that

\[d(x, y) \geq d(S, x) - d(S, y) \]

and thus

\[d(x, y) \geq |d(S, x) - d(S, y)|. \]

Proof. Fix \(\varepsilon > 0\). Let \(y' \in S\) be such that \(d(y', y) \leq d(S, y) + \varepsilon\) (if \(S\) is a finite set, there is \(y' \in S\) s.t. \(d(y, y') = d(S, y)\)). Then

\[d(x, S) \leq d(x, y') \leq d(x, y) + d(y, y') \leq d(x, y) + d(S, y) + \varepsilon. \]

We proved that \(d(x, S) \leq d(x, y) + d(S, y) + \varepsilon\) for every \(\varepsilon > 0\). Therefore,

\[d(x, S) \leq d(x, y) + d(S, y). \]

Definition 1.1. Let \((X, d)\) be a metric space, \(x_0 \in X\) and \(r > 0\). The (closed) ball of radius \(r\) around \(x_0\) is

\[B_r(x_0) = \text{Ball}_r(x_0) = \{x : d(x, x_0) \leq r\}. \]
2 Warm-up

Consider two normed spaces \((U, \| \cdot \|_U)\) and \((V, \| \cdot \|_V)\). Let \(f\) be a linear operator between \(U\) and \(V\). What is the Lipschitz norm of \(f\)? It is equal

\[
\sup_{x, y \in U, x \neq y} \frac{|f(x) - f(y)|}{\|x - y\|_U}
\]

by linearity of \(f\)

\[
\sup_{x, y \in U, x \neq y} \frac{|f(x) - f(y)|}{\|x - y\|_U} = \sup_{z \in U, z \neq 0} \frac{\|f(z)\|_V}{\|z\|_U}.
\]

The expression \(\sup_{z \in U, z \neq 0} \frac{\|f(z)\|_V}{\|z\|_U}\) is called the operator norm of \(f\). The above computation shows that the Lipschitz norm of a linear operator equals its operator norm.

At the previous lecture, we proved that \(\ell_q \subset \ell_p\) and \(L_p[0,s] \subset L_q[0,s]\) when \(p < q\) and \(a, b \in \mathbb{R}\). These embeddings define inclusion maps \(i_1 : \ell_p \hookrightarrow \ell_q\) and \(i_2 : L_q[0,s] \hookrightarrow L_p[0,s]\) defined by

\[
i_1(a) = a \quad \text{for every } a \in \ell_p \quad \text{and} \quad i_2(f) = f \quad \text{for every } f \in L_q[0,s].
\]

Note that even though maps \(i_1\) and \(i_2\) “do not do much”—they just map every element to itself—they are not low distortion maps!

Exercise 3. Compute the Lipschitz norm and distortion of map \(i_1 : \ell_p \hookrightarrow \ell_q\).

Solution. Consider \(a \in \ell_p\). Note that \(|a_j| \leq \|a\|_p\) and \(|a_j|q = |a_j|p \cdot |a_j|q-p \leq |a_j|p \cdot \|a\|q-p\).

Therefore,

\[
\|a\|_q^q = \sum |a_j|q \leq \sum |a_j|p \cdot \|a\|q-p = (\sum |a_j|p) \cdot \|a\|q-p = \|a\|p \cdot \|a\|q-p = \|a\|q.
\]

We get that \(\|a\|_q \leq \|a\|_p\). That is, \(\|i_1\|_{\text{Lip}} \leq 1\). On the other hand, \(\|e_1\|_p = \|e_1\|_q = 1\), where \(e_1 = (1,0,\ldots)\). We get, \(\|i_1\|_{\text{Lip}} = 1\).

Now let \(n \geq 1\). Consider \(a = (\underbrace{1,0,\ldots,0}_n,\ldots) \in \ell_p\). We have, \(\|a\|_p = n^{1/p}\) and \(\|a\|_q = n^{1/q}\). Thus

\[
\|i_1^{-1}\|_{\text{Lip}} \geq \frac{\|a\|_p}{\|a\|_q} = \frac{n^{1/p}}{n^{1/q}} = n^{1/p-1/q}.
\]

Since \(n^{1/p-1/q} \to \infty \) as \(n \to \infty\), the norm \(\|f^{-1}\|_{\text{Lip}}\) is unbounded.

Answer: \(\|i_1\|_{\text{Lip}} = 1\), \(i_1\) has infinite distortion.

We will need the following inequality.

Theorem 2.1 (Lyapunov’s inequality). Let \(1 \leq p < q = \infty\). For every random variable \(\alpha\) with finite \(q\)-th moment, we have \(\|\alpha\|_p \leq \|\alpha\|_q\).

Proof. The statement is obvious for \(q = \infty\) since \(|\alpha| \leq \|\alpha\|_\infty\) almost surely. Let us assume that \(q < \infty\). Let \(f(x) = x^{q/p}\) for \(x \geq 0\). Note that \(f(x)\) is a convex function. Let \(\beta = |\alpha|^p\) (\(\beta\) is a random variable). We have

\[
\|\alpha\|_q^q = \mathbb{E}[|\alpha|^q] = \mathbb{E}[|\beta|^{q/p}] = \mathbb{E}[f(|\beta|)] \geq f(\mathbb{E}[|\beta|]) = (\mathbb{E}[|\alpha|^p])^{q/p}.
\]

We conclude that \(\|\alpha\|_q \geq \|\alpha\|_p\) as required.

\[2\]
Exercise 4. Compute the Lipschitz norm and distortion of map $i_2 : L_q[0, s] \hookrightarrow L_p[0, s]$.

Proof. First, consider $f(x) = 1$, a constant function defined on $[0, s]$. We have $\|f\|_{L_p} = s^{1/p}$ and $\|f\|_{L_q} = s^{1/q}$. Therefore,

$$\|i_2\|_{\text{Lip}} \geq \frac{\|i_2(f)\|_p}{\|f\|_q} = s^{1/p-1/q}.$$

Now consider $f \in L_q[0, s]$. Let ξ be a random variable uniformly distributed on $[0, s]$. Note that for every function h on $[0, s]$, we have

$$\int_0^s h(x)dx = s \int_0^1 h(ys)dy = s \mathbb{E}\left[h(\xi) \right].$$

Therefore, $\|f\|^p_{L_p} = s \mathbb{E}\left[|f(\xi)|^p \right] = s \|f(\xi)\|^p_{L_p}$, and $\|f\|_{L_p} = s^{1/p} \|f(\xi)\|_{L_p}$ (here, $f(\xi)$ is a random variable). Similarly, $\|f\|_{L_q} = s^{1/q} \|f(\xi)\|_{L_q}$. By Lyapunov’s inequality for $\alpha = f(\xi)$,

$$\|f\|_{L_p} = s^{1/p} \|f(\xi)\|_{L_q} \leq s^{1/p} \|f(\xi)\|_{L_q} = s^{1/p-1/q} \left(s^{1/q} \|f(\xi)\|_{L_q} \right) = s^{1/p-1/q} \|f\|_{L_q}.$$

We get that $\|f\|_{\text{Lip}} \leq s^{1/p-1/q}$ and therefore $\|f\|_{\text{Lip}} = s^{1/p-1/q}$

Let $\varepsilon \in (0, 1)$. Consider $f_\varepsilon(x) = x^{1-\varepsilon}$. We compute its p and q norms and get that

$$\|f_\varepsilon\|_p \rightarrow \left(\frac{qs-q}{q-p} \right)^{1/p} < \infty \quad \text{as } \varepsilon \rightarrow 0,$$

$$\|f_\varepsilon\|_q \rightarrow \infty \quad \text{as } \varepsilon \rightarrow 0.$$

Therefore, i_2 has infinite distortion.

Answer: $\|i_2\|_{\text{Lip}} = s^{1/p-1/q}$, i_2 has infinite distortion.

3 Bourgain’s Theorem

Definition 3.1. Let X be a finite metric space and $p \geq 1$. Suppose that $Z \neq \emptyset$ is a random subset of X (chosen according to some probability distribution). For every $u \in X$, define random variable $\xi_u = d(u, Z) = \min_{z \in Z} d(u, z)$. Consider the map f from X to the space of random variables $L_p(\Omega, \mu)$ that sends u to ξ_u (where Ω is the probability space and μ is the probability measure on Ω). We say that f is a Fréchet embedding.

Lemma 3.2. Every Fréchet embedding f is non-expanding. That is, $\|f\|_{\text{Lip}} \leq 1$.

Proof. Consider a Fréchet embedding that sends u to $\xi_u = d(u, Z)$. For every $u, v \in X$, we have

$$\|\xi_u - \xi_v\|_p = (\mathbb{E}[|d(u, Z) - d(v, Z)|^p])^{1/p} \leq (\mathbb{E}[|d(u, v)|^p])^{1/p} = d(u, v).$$

□
Remark 3.3. If X is infinite, then the random variable $\xi_u = d(u, Z)$ does not necessarily belong to $L_p(\Omega, \mu)$ (its p-norm might be infinite). However, we can define $\hat{\xi}_u$ as $\hat{\xi}_u = d(u, Z) - d(x_0, Z)$, where x_0 is some point in X. Then the proof of Lemma 3.2 shows that $\|\hat{\xi}_u\|_p \leq d(u, x_0) < \infty$ and the map $f: u \mapsto \hat{\xi}_u$ is non-expanding.

Theorem 3.4 (Bourgain’s Theorem). Every metric space X on n points embeds into $L_p(X, \mu)$ with distortion $O(\log n)$ (for every $p \geq 1$). That is, $c_p(X) = O(\log n)$.

Proof. Let $l = \lceil \log_2 n \rceil + 1$. Construct a random set Z as follows.

- Choose s uniformly at random from $\{1, \ldots, l\}$.
- Initially, let $Z = \emptyset$.
- Add every point of X to Z with probability $1/2^s$, independently.

Now let f be the Fréchet embedding that maps $u \in X$ to random variable $\xi_u = d(Z, u)$. By Lemma 3.2, f is non-expanding. We are going to prove that for every u and v,

$$\|f(u) - f(v)\|_p \geq \frac{c}{l} \cdot d(u, v),$$

for some absolute constant c. Note that it is sufficient to prove this statement for $p = 1$, since by Lyapunov’s inequality $\|f(u) - f(v)\|_p \geq \|f(u) - f(v)\|_1$.

Consider two points u and v. Let $\Delta = d(u, v)/2$. Write,

$$\|f(u) - f(v)\|_1 = \mathbb{E} \left[|d(u, Z) - d(v, Z)| \right] = \mathbb{E} \left[\int_{[d(u, Z), d(v, Z)]} \right] \cdot dt \quad \text{(by Fubini’s theorem)}$$

$$\geq \int_0^\Delta \mathbb{P} \left(d(u, Z) \leq t < d(v, Z) \right) dt.$$

We now prove that $\mathbb{P} \left(d(u, Z) \leq t < d(v, Z) \right)$ or $d(v, Z) \leq t < d(u, Z)$.

That will imply that $\|f(u) - f(v)\|_1 \geq \Omega(1) \cdot \Delta = \frac{\Omega(1)}{l} \cdot d(u, v)$.

We fix $t \in (0, \Delta)$. Consider balls $B_t(u)$ and $B_t(v)$. Note that they are disjoint since $2t < 2\Delta = d(u, v)$. Assume without loss of generality that $|B_t(u)| \leq |B_t(v)|$. Denote $m = |B_t(u)|$. Let $s_0 = \lfloor \log_2 m \rfloor + 1$. Then $m < 2^{s_0} \leq 2m$. Let E_u be the event that $d(u, Z) > t$ and E_v be the event that $d(v, Z) \leq t$. We have,

$$\mathbb{P} \left(d(u, Z) < t < d(v, Z) \right) \geq \mathbb{P} \left(E_u \text{ and } E_v \right).$$

Note that the event E_u occurs if and only if there is a point in Z at distance at most t from v; that is, when $B_t(v) \cap Z \neq \emptyset$. The event E_u occurs if and only if $B_t(u) \cap Z = \emptyset$. The proof follows from these considerations.
Consider the event $s = s_0$. It happens with probability $1/l$. Conditioned on this event, events \mathcal{E}_u and \mathcal{E}_v are independent (since $B_t(u)$ and $B_t(v)$ are disjoint) and

$$\Pr(\mathcal{E}_u|s = s_0) = \prod_{w \in B_t(u)} \Pr(w \notin Z|s = s_0) = \prod_{w \in B_t(u)} \left(1 - \frac{1}{2^{s_0}}\right) = \left(1 - \frac{1}{2^{s_0}}\right)^m \geq \frac{1}{e}.$$

$$\Pr(\mathcal{E}_v|s = s_0) = 1 - \prod_{w \in B_t(v)} \Pr(w \notin Z|s = s_0) = 1 - \prod_{w \in B_t(v)} \left(1 - \frac{1}{2^{s_0}}\right) \geq 1 - \left(1 - \frac{1}{2^{s_0}}\right)^m \geq 1 - \frac{1}{e^{1/2}}.$$

We get

$$\Pr(d(u, Z) < t < d(v, Z) \text{ or } d(v, Z) < t < d(u, Z)) \geq \Pr(\mathcal{E}_u \text{ and } \mathcal{E}_v) \geq \frac{1}{l} \Pr(\mathcal{E}_u|s = s_0) \Pr(\mathcal{E}_v|s = s_0) \geq \Omega \left(\frac{1}{l}\right).$$

Exercise 5. The set Z might be equal to \emptyset in our proof, then random variables $\xi_u = d(u, Z)$ are not well defined. Show how to fix this problem.

Proof. There are many ways to fix this problem. For instance, we can add an extra point x_{∞} to the metric space X, and define $d(u, x_{\infty}) = 2 \text{diam}(X)$, where $\text{diam}(X) = \max_{u, v \in X} d(u, v)$. Then construct the set Z as before, except that always add x_{∞} to Z. Thus we ensure that $Z \neq \emptyset$. In other words, we can define ξ_u as before if $Z \neq \emptyset$, and $\xi_u = 2 \text{diam}(X)$ if $Z = \emptyset$. The rest of the proof goes through without any other changes.

The proof of Bourgain's theorem provides an efficient randomized procedure for generating set Z. As presented here, this procedure gives an embedding only in $L_p(\Omega, \mu)$ and not in ℓ_p^n. We already know that if a set of n points embeds in $L_p(\Omega, \mu)$ with distortion D then it embeds in ℓ_p^n with distortion D. However, in fact, we need only $N = O((\log n)^2)$ dimensions: for every value of $s \in \{1, \ldots, l\}$ we make $\Theta((\log n)^2)$ samples of the set Z. Then the total number of samples equals $\Theta((\log n)^2)$. Using the Chernoff bound, it is easy to show that the distortion of the obtained embedding is $O((\log n)$ w.h.p.

Fact 3.5 (Matoušek). Let $D_{n,p}$ be the smallest number D such that every metric space on n points embeds in ℓ_p with distortion at most $D_{n,p}$. Then

$$D_{n,p} = \Theta \left(\frac{\log n}{p}\right).$$