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This chapter describes recent results on Bilu–Linial stability, also known

as perturbation resilience. It offers an overview of the subject and presents

algorithms for stable and weakly stable instances of graph partitioning and

clustering problems, including Max Cut, Minimum Multiway Cut, k-center,

and clustering problems with separable center-based objectives.

1.1 Introduction

In this chapter, we survey recent research on instance stability and pertur-

bation resilience. Many discrete optimization problems in machine learning,

operations research, and other areas are NP-hard. For many of them, not

only the exact but even a good approximate solution cannot be found ef-

ficiently in the worst case. At the same time, instances appearing in real

life can often be solved exactly or almost exactly. This raises the following

question:

Why are real-life instances often significantly easier than worst-case

instances?

To formally study this question, we must define a model for real-life in-

stances. The two most popular approaches are either to assume that a real-
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life instance has certain structural properties, or to assume that it is gener-

ated by a random or semi-random process. Both approaches are very natural

and have led to the discovery of many interesting results. In this chapter,

we study the former approach, focusing on stable instances of clustering and

graph partitioning problems. We refer the reader to several papers describ-

ing the latter approach (Blum and Spencer, 1995; Feige and Kilian, 1998;

Mathieu and Schudy, 2010; Makarychev et al., 2012, 2014a, 2013, 2015; Feige

et al., 2015).

Instance stability, or perturbation resilience, was introduced by Bilu and

Linial (2010). Informally, an instance is Bilu–Linial stable if the optimal

solution does not change when we perturb the instance.

Definition 1.1. Consider an instance of a graph partitioning problem, a

graph G = (V,E,w) with a set of edge weights we. An instance G′ =

(V,E,w′) is an α-perturbation (α ≥ 1) of G if w(e) ≤ w′(e) ≤ αw(e); that

is, if we can obtain the perturbed instance from the original by multiplying

the weight of each edge by a number from 1 to α (the number may be different

for every edge).

Now, consider an instance I = (V, d) of a clustering problem, where V is a

set of points and d is a metric on V . An instance (V, d′) is an α-perturbation

of (V, d) if d(u, v) ≤ d′(u, v) ≤ αd(u, v); here, d′ does not have to be a metric.

If, in addition, d′ is a metric, then d′ is an α-metric perturbation of d.

Definition 1.2. An instance I is α-stable if every α-perturbation of I has

the same optimal solution as I.

Adhering to the literature, we will refer to α-stable instances of graph par-

titioning problems as “Bilu–Linial stable” and to α-stable instances of clus-

tering problems as “α-perturbation resilient”. Additionally, for clustering

problems, we will consider a weaker, and perhaps somewhat more natural,

notion of α-metric perturbation resilience.

Definition 1.3. An instance (V, d) of a clustering problem is α-metric

perturbation resilient if every α-metric perturbation of (V, d) has the same

optimal solution as I.

Why is it reasonable to assume that many real-life instances are stable?

As Bilu and Linial (2010); Balcan et al. (2009); Bilu et al. (2013) argue,

the reason is that often the optimal solution “stands out” among all other

solutions — it is significantly better than all other solutions, and, therefore,

the optimal solution remains the same even if we slightly perturb the

instance. Also, we are often interested not in optimizing the objective

function per se, but rather in finding the “true” clustering or partitioning.
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problem main results reference

Max Cut & 2-corre- O(
√

logn log logn) Makarychev et al. (2014b)

lation clustering (incl. weakly stable instances)

SDP gap and hardness result

Min Multiway Cut 4, (incl. weakly stable instances) Makarychev et al. (2014b)

Max k-Cut hardness for ∞-stable instances Makarychev et al. (2014b)

sym./asym. k-center 2 Balcan et al. (2015)

hardness for (2− ε)-pert. resil.

s.c.b. objective 1 +
√

2 Balcan and Liang (2016)

(2 +
√

3, ε) for k-median

2, assuming cluster verifiability Balcan et al. (2015)

s.c.b., Steiner points 2 +
√

3 Awasthi et al. (2012)

min-sum objective O(ρ) and (O(ρ), ε), where ρ is Balcan and Liang (2016)

the ratio between the sizes of

the largest and smallest clusters

TSP 1.8 Mihalák et al. (2011)

Table 1.1: The table summarizes some known results for Bilu–Linial stability.
It shows a number α if there is an algorithm for α-stable/perturbation resilient
instances; it shows (α, ε) if there is an algorithm for (α, ε)-perturbation resilient
instances. “s.c.b.” is a shortcut for a clustering problem with a separable center-
based objective.

If the optimal solution changes drastically when we slightly perturb the

weights, then by solving the problem exactly, we will likely not find the true

clustering since we often know the values of edge weights or distances only

approximately. Therefore, if the instance is not stable, we are not interested

in solving it in the first place.

Nevertheless, the definition of Bilu–Linial stability is somewhat too strict.

Perhaps, it is more natural to require that the optimal solution to a per-

turbed instance be “ε-close” but not necessarily equal to the optimal solution

for the original instance. This notion is captured in the definitions of α-weak

Bilu–Linial stability and (α, ε)-perturbation resilience (we present a formal

definition of weak Bilu–Linial stability for Max Cut in Section 1.2.3).

Let us now briefly describe the research on Bilu–Linial stability. We refer

the reader to Table 1.1 for the list of known results. The notion of instance

stability was introduced by Bilu and Linial (2010). They offered the first

evidence that stable instances are much easier than worst-case instances;

specifically, they gave an exact algorithm for O(n)-stable instances of Max

Cut. This result was improved by Bilu et al. (2013), who designed an

algorithm for O(
√
n)-stable instances. Makarychev et al. (2014b) developed
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a general approach to analyzing stable instances of graph partitioning

problems, showing that if there exist a convex relaxation and a rounding

scheme for a problem satisfying certain properties, then

the convex relaxation for stable instances of the problem is integral;

there are polynomial-time algorithms for stable and weakly stable in-

stances of the problem;

the algorithm for stable instances is robust — it either solves the problem

or certifies that the instance is not stable.

In particular, this result applies to O(
√

log n log log n)-stable and weakly

stable instances of Max Cut, and 4-stable and weakly stable instances of

Minimum Multiway Cut. Moreover, the results for Max Cut are essentially

tight; see (Makarychev et al., 2014b) for details.

Awasthi et al. (2012) initiated the study of perturbation resilience of

clustering problems. They defined a wide class of clustering problems with

separable center-based objectives, including such problems as k-center, k-

means, and k-median, and presented an algorithm for solving 3-perturbation

resilient instances of such problems. Additionally, in a more general setting,

where Steiner points are allowed, they gave an algorithm for (2 +
√

3)-

perturbation resilient instances, and showed that there is no polynomial-time

algorithm for 3-perturbation resilient instances with Steiner points.

Later, Balcan and Liang (2016) improved the result of Awasthi et al.

(2012) for clustering problems with separable center-based objectives (with-

out Steiner points), by showing that (1+
√

2)-perturbation resilient instances

can be efficiently solved. In addition, they gave an approximation algorithm

for (2 +
√

3, ε)-perturbation resilient (weakly stable) instances. They also

presented an algorithm for clustering with the min-sum objective, as well as

sub-linear algorithms for clustering problems.

Most recently, Balcan et al. (2015) designed algorithms for 2-perturbation

resilient instances of symmetric and asymmetric k-center and obtained a

matching hardness result. They also considered clustering instances with

separable center-based objectives satisfying the cluster verifiability condi-

tion. This condition requires that there be a polynomial-time algorithm that,

given a set S, determines which of the following statements holds true:

(1) S = Ci for some i, (2) S ⊂ Ci for some i, (3) S ⊃ Ci for some i

(where C1, . . . , Ck is the optimal clustering); under the promise that one of

these statements is true. Balcan et al. (2015) showed how to solve 2-stable

instances satisfying this condition.

There has also been research on algorithms for stable instances of other
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problems. Mihalák et al. (2011) gave an algorithm for 1.8-stable instances of

the Travelling Salesperson Problem (TSP). Balcan and Braverman (2010)

studied the problem of finding the Nash equilibrium under stability assump-

tions. Also of much interest are the papers by Ostrovsky et al. (2006) and

Balcan et al. (2009), which study notions of stability closely related to Bilu–

Linial stability. Finally, let us mention that Leontev gave a similar definition

of stability for combinatorial optimization problems in 1975. However, his

motivation for studying instance stability was different from the motiva-

tion of Bilu and Linial; and the questions studied in his paper (Leontev,

1975) and a number of subsequent papers are not related to the questions

addressed in this survey.

1.1.1 Organization

We describe several results for stable instances of graph partitioning and

clustering problems. We begin with a general definition of graph partition-

ing problems in Section 1.2.1. Then, we prove that convex relaxations for

γ-stable instances of graph partitioning problems, which satisfy certain as-

sumptions, are integral (for the appropriate choice of γ), and, therefore,

these instances can be solved in polynomial time. In Section 1.2.2, we apply

this theorem to the Minimum Multiway Cut problem to show that 4-stable

instances of the problem have an integral LP relaxation. In Section 1.2.1,

we also state a general theorem for weakly stable instances of graph par-

titioning problems (Theorem 1.1, part II). However, we omit the proof in

this survey. Instead, in Section 1.2.3, we prove a special case of the theo-

rem, presenting an algorithm for γ-weakly stable instances of Max Cut (for

γ ≥ c√log n log log n).

Then we proceed to clustering problems. In Section 1.3.1, we give an

algorithm for 2-metric perturbation resilient instances of k-center (due

to Balcan et al., 2015). Then, in Section 1.3.2, we give the definition of

clustering problems with a center-based objective and present an algorithm

for solving (
√

2+1)-metric perturbation resilient instances of such problems

(due to Balcan and Liang, 2016).

1.2 Stable instances of graph partitioning problems

1.2.1 Relaxations for stable instances are integral

In this section, we study stable instances of graph partitioning problems.

We show that under certain conditions convex relaxations (e.g., linear pro-
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gramming and semidefinite programming relaxations) for stable instances

of graph partitioning problems are integral. In particular, the result of

this section implies that 4-stable instances of Minimum Multiway Cut and

c
√

log n log log n-stable instances of Max Cut have integral convex relax-

ations.

The result applies to a wide class of graph partitioning problems. Let us

start with defining graph partitioning problems — our definition will include

such problems as Min Cut, Max Cut, Minimum Multiway Cut, Minimum

Balanced Cut, Minimum Multicut, and many others.

Definition 1.4. In a graph partitioning problem, we are given a graph

G = (V,E,w) with positive edge weights w(e). Our goal is to remove a

subset of edges Ecut ⊂ E that satisfies certain conditions, which depend on

the specific problem at hand, so as to minimize or maximize the weight of cut

edges. Specifically, in a minimization problem, we minimize
∑

e∈Ecut
w(e);

in a maximization problem, we maximize
∑

e∈Ecut
w(e).

Consider a few examples that show how our definition captures standard

graph partitioning problems; for each problem, we will state the require-

ments on the set Ecut. The global Min Cut problem is a minimization prob-

lem, in which we require that the set of edges Ecut consist exactly of all the

edges between some set A and its complement Ā (both sets A and Ā must

not be empty). Max Cut is a maximization problem, in which we similarly

require that Ecut consist of all the edges between sets A and Ā. Minimum

Multiway Cut is a minimization problem, in which we require that every two

terminals si and sj in a given set of terminals {s1, . . . , sk} be disconnected

in G− Ecut.

We show an interesting connection between Bilu–Linial stability and

rounding algorithms or schemes for convex relaxations of graph partition-

ing problems. First, let us briefly discuss how rounding schemes are used in

solving graph partitioning problems. We write a linear programming (LP) or

semidefinite programming (SDP) relaxation for the problem. The relaxation

has two types of feasible solutions. First of all, the relaxation has feasible

integral solutions, which are in one-to-one correspondence with feasible so-

lutions to the graph partitioning problem (we will refer to solutions of the

graph partitioning problem as combinatorial solutions). Secondly, the relax-

ation has solutions that do not correspond to any combinatorial solutions.

We solve the relaxation and find an optimal fractional solution, which might

not be integral. However, since there is an integral solution corresponding

to the optimal combinatorial solution, the optimal fractional solution value

must be at least the optimal combinatorial value for a maximization problem

and at most the optimal combinatorial value for a minimization problem.
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Now we use a (randomized) rounding scheme to transform a fractional solu-

tion to a combinatorial solution.1 Most linear and semidefinite programming

relaxations for graph partitioning problems are metric-based. Let us give a

very general definition of a metric-based fractional solution.

Definition 1.5. We say that x is a metric-based fractional solution of

value val(x) for a graph partitioning problem if there is a polynomial-time

algorithm that, given x, finds a distance function d : E → [0, 1] such that

val(x) =
∑

(u,v)∈E

w(u, v) d(u, v).

We say that distance d is defined by solution x.

Assume that there is a polynomial-time (optimization) algorithm A that,

given an instance of the problem, finds a metric-based fractional solution x

of value val(x),

val(x) ≥ OPT for a maximization problem,

val(x) ≤ OPT for a minimization problem,

where OPT is the value of the optimal combinatorial solution. Then we say

that x is an optimal fractional solution found by the optimization algorithm

A.

A standard example of an algorithm A is an LP or SDP solver that finds

an optimal solution to an LP or SDP relaxation of a graph partitioning

problem. Then an optimal fractional solution x is just an optimal LP or

SDP solution to the relaxation.

Definition 1.6. Consider a graph partitioning problem and an optimization

algorithm A as in Definition 1.5. We say that a randomized algorithm R is

a rounding scheme (w.r.t. A) if, given an optimal fractional solution x for

an instance of the problem, it returns a feasible solution to the instance.

Now note that, by combining an optimization procedure A and (polynomial-

time) rounding scheme R, we get a randomized approximation algorithm

(see Algorithm 1.1). The mere existence of a rounding scheme, however, does

not guarantee that the approximation algorithm based on it performs well.

Let us say that we have a minimization problem. One of the most common

ways to ensure that the approximation algorithm has an approximation

factor of α is to use a rounding scheme R satisfying the following condition:

1. We note that “rounding algorithms” are often very non-trivial; they do not merely
round real numbers to integers as their name might suggest.
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Algorithm 1.1 Approximation algorithm based on optimization procedure A and

rounding scheme R

1: Run A on the input instance I and get an optimal fractional solution x.
2: Run R on x and get a feasible solution to I.

given an optimal fractional solution x, R returns a random solution E′cut
such that

Pr
(
(u, v) ∈ E′cut

)
≤ αd(u, v), (1.1)

where d is the distance defined by x. Observe that, then, the expected cost

of the solution E′cut is

E
[
w(E′cut)

]
=

∑
(u,v)∈E

w(u, v) Pr
(
(u, v) ∈ E′cut

)
≤ α

∑
(u,v)∈E

w(u, v) d(u, v) = α val(x) ≤ αOPT.

That is, in expectation, the algorithm finds a solution of cost at most αOPT,

and thus has an approximation factor of α. Now consider the complementary

optimization problem of maximizing the weight of uncut edges, w(E \E′cut).
Note that an optimal solution to the original problem is also an optimal

solution to the complementary problem, since the sum of their objectives,

w(E′cut) + w(E \ E′cut) = w(E), depends only on the instance and not on

the solution E′cut. However, the problems might be very different in terms of

multiplicative approximability — a good approximation algorithm for one

of them is not necessarily good for the other. It is not hard to see that in

order to get a β approximation algorithm for the complementary problem,

we can use a rounding procedure R satisfying the following condition,

Pr
(
(u, v) /∈ E′cut

)
≥ β−1(1− d(u, v)). (1.2)

We stress that conditions (1.1) and (1.2) are completely independent, and a

rounding procedure may satisfy one of them and not the other.

Makarychev et al. (2014b) showed that if there is a rounding scheme R

satisfying both conditions (1.1) and (1.2), then the relaxation for (αβ)-stable

instances is integral, and, consequently, there is a robust exact algorithm for

(αβ)-stable instances.

Theorem 1.1 (Makarychev et al. (2014b)). I. Consider a graph partitioning

problem. Suppose that there is a rounding scheme that, given a graph G =

(V,E,w) and an optimal fractional solution x, returns a feasible solution

E′cut such that for some α ≥ 1 and β ≥ 1 (α and β may depend on n),
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For a cut minimization problem,

1. Pr ((u, v) ∈ E′cut) ≤ αd(u, v),

2. Pr (u /∈ E′cut) ≥ β−1(1− d(u, v)).

For a cut maximization problem,

1′. Pr ((u, v) ∈ E′cut) ≥ α−1d(u, v)

2′. Pr ((u, v) /∈ E′cut) ≤ β(1− d(u, v))

where distance d is defined by the fractional solution x.

Then distance d is integral for (αβ)-stable instances of the problem; specifi-

cally, for every edge (u, v) ∈ E

d(u, v) =

{
0, if (u, v) /∈ E∗cut,
1, if (u, v) ∈ E∗cut,

where E∗cut is the optimal combinatorial solution.2 Consequently, there is a

robust polynomial-time algorithm for (αβ)-stable instances.

II. Furthermore, there is an algorithm for (αβ + ε,N)-weakly stable in-

stances of the problem that finds a feasible solution E′cut ∈ N (for every

ε > 0).

The theorem also holds for graph partitioning problems with positive and

negative weights if we require that all four properties 1, 1′, 2 and 2′ hold.

In this survey, we are going to prove only part I of Theorem 1.1. Since

the proofs of Theorem 1.1 for minimization and maximization problems are

completely analogous, let us only consider a minimization problem. Before

we proceed with the proof itself, we prove the following auxiliary lemmas.

Lemma 1.2 (Bilu and Linial (2010)). Consider a γ-stable instance of

a minimization graph partitioning problem. Suppose E∗cut is the optimal

combinatorial solution. Then, for any combinatorial solution E′cut, we have

γ w(E∗cut \ E′cut) < w(E′cut \ E∗cut).

Proof. Consider the following γ-perturbation of w: w′(u, v) = γw(u, v) for

(u, v) ∈ E∗cut \ E′cut; and w′(u, v) = w(u, v) otherwise. Since the instance is

is γ-stable, we have w′(E∗cut) < w′(E′cut). Write,

w′(E∗cut \ E′cut) + w′(E∗cut ∩ E′cut)︸ ︷︷ ︸
w′(E∗cut)

< w′(E′cut \ E∗cut) + w′(E∗cut ∩ E′cut)︸ ︷︷ ︸
w′(E′cut)

.

Thus, w′(E∗cut \ E′cut) < w′(E′cut \ E∗cut). Using the definition of w′, we get

2. In particular, given d, we can find E∗cut: E
∗
cut = {(u, v) : d(u, v) = 1}.
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the desired inequality: γ w(E∗cut \ E′cut) < w(E′cut \ E∗cut).
Lemma 1.3. If the distance d defined by a fractional solution x is not

integral, then the rounding algorithm returns a solution E′cut different from

the optimal combinatorial solution E∗cut with non-zero probability.

Proof. Note that if d(u, v) < 1 for some edge (u, v) ∈ E∗cut, then (u, v) /∈ E′cut
with probability at least β−1(1 − d(u, v)) > 0, and hence E∗cut 6= E′cut with

non-zero probability. So let us assume that d(u, v) = 1 for every (u, v) ∈ E∗cut.
Since the cost of the optimal combinatorial solution is at least the cost of

the optimal fractional solution x, we have∑
(u,v)∈E∗cut

w(u, v) ≥ val(x) =
∑

(u,v)∈E

w(u, v) d(u, v)

=
∑

(u,v)∈E∗cut

w(u, v) +
∑

(u,v)∈E\E∗cut

w(u, v) d(u, v).

Therefore, ∑
(u,v)∈E\E∗cut

w(u, v) d(u, v) ≤ 0,

and d(u, v) = 0 for every (u, v) ∈ E \ E∗cut.
Proof of Theorem 1.1. Consider an (αβ)-stable instance of the problem. Let

d be the distance defined by an optimal solution. We are going to prove that

d is integral. Assume to the contrary that it is not. Let E′cut be a random

combinatorial solution obtained by rounding d, and let E∗cut be the optimal

combinatorial solution. Since d is not integral, E′cut 6= E∗cut with non-zero

probability.

From (αβ)-stability of the instance (see Lemma 1.2), we get that

(αβ)w(E∗cut \ E′cut) < w(E′cut \ E∗cut) unless E∗cut = E′cut,

and therefore (here we use that Pr(E∗cut 6= E′cut) > 0),

(αβ)E
[
w(E∗cut \ E′cut)

]
< E

[
w(E′cut \ E∗cut)

]
. (1.3)

Let

LP+ =
∑

(u,v)∈E∗cut

w(u, v)(1− d(u, v)),

LP− =
∑

(u,v)∈E\E∗cut

w(u, v) d(u, v).
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From conditions 1 and 2 in the statement of the theorem, we get

E
[
w(E∗cut \ E′cut)

]
=

∑
(u,v)∈E∗cut

w(u, v) Pr((u, v) /∈ E′cut)

≥
∑

(u,v)∈E∗cut

w(u, v)β−1(1− d(u, v)) = β−1LP+,

E
[
w(E′ \ E∗)cut

]
=

∑
(u,v)∈E\E∗cut

w(u, v) Pr((u, v) ∈ E′cut)

≤
∑

(u,v)∈E∗cut

w(u, v)αd(u, v) = α LP−.

Using inequality (1.3), we conclude that LP+ < LP−. On the other hand,

from the formulas for LP+ and LP−, we get

LP+ − LP− = w(E∗cut)−
∑

(u,v)∈E

w(u, v) d(u, v) ≥ 0,

since the value of the fractional solution is at most the value of the integral

solution. We get a contradiction, which concludes the proof.

1.2.2 An LP relaxation and rounding scheme for Minimum Multiway

Cut

In this section, we show that the linear programming relaxation for 4-stable

instances of Minimum Multiway Cut is integral. To this end, we present an

LP relaxation for Minimum Multiway Cut and a rounding scheme satisfying

the conditions of Theorem 1.1. Recall the definition of the Multiway Cut

problem.

Definition 1.7. An instance of Minimum Multiway Cut consists of a

graph G = (V,E,w) with positive edge weights we and a set of terminals

T = {s1, . . . , sk} ⊂ V . The goal is to partition the graph into k pieces

S1, . . . , Sk with si ∈ Si so as to minimize the total weight of cut edges

Ecut = {(u, v) ∈ E : u ∈ Si, v ∈ Sj for i 6= j}.

The problem has been actively studied since it was introduced by Dahlhaus

et al. (1994). There has been a series of approximation algorithms for

it (Călinescu et al., 1998; Karger et al., 2004; Buchbinder et al., 2013); the

current state-of-the-art approximation algorithm by Sharma and Vondrák

(2014) gives a 1.30217 approximation.

We use the LP relaxation of Călinescu et al. (1998). In this relaxation, we

have a variable ū = (ū1, . . . , ūk) ∈ Rk for every vertex u ∈ V . Let e1, . . . , ek
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be the standard basis in Rk and ∆ = {x : ‖x‖1 = 1, x1 ≥ 0, . . . , xk ≥ 0} be

the simplex with vertices e1, . . . , ek.

minimize
1

2

∑
(u,v)∈E

w(u, v) ‖ū− v̄‖1 (1.4)

subject to:

s̄i = ei for every i,

ū ∈ ∆ for every u ∈ V.

Every feasible LP solution defines a metric on V : d(u, v) = ‖ū− v̄‖1/2. Note

that the objective function equals
∑

e∈E w(u, v) d(u, v). Let us now present

a randomized rounding scheme for this LP relaxation.

Theorem 1.4 (Makarychev et al. (2014b)). Consider a feasible LP solution

{ū : u ∈ V } and metric d(u, v) = ‖ū − v̄‖1/2. There is a randomized

algorithm that finds a partition S1, . . . , Sk of V and a set Ecut such that

si ∈ Si for every i ∈ {1, . . . , k} (always),

Pr((u, v) ∈ Ecut) ≤ 2d(u,v)
1+d(u,v) for every (u, v) ∈ E. In particular,

Pr((u, v) ∈ Ecut) ≤ 2d(u, v) and Pr((u, v) /∈ Ecut) ≥
1− d(u, v)

2
.

The rounding procedure satisfies the conditions of Theorem 1.1 with pa-

rameters α = β = 2, and, therefore, the LP relaxation for 4-stable instances

of Multiway Cut is integral.

Proof. We use the rounding algorithm by Kleinberg and Tardos (2002). The

algorithm starts with empty sets S1, . . . , Sk and then iteratively adds vertices

to sets S1, . . . , Sk. It stops when each vertex is assigned to some set Si.

In each iteration, the algorithm chooses independently and uniformly at

random r ∈ (0, 1) and i ∈ {1, . . . , k}. It adds each vertex u to Si if r ≤ ūi
and u has not yet been added to any set Sj .

Algorithm 1.2 Rounding Algorithm for Minimum Multiway Cut

1: S1 = ∅, . . . , Sk = ∅
2: R = V . R is the set of unpartitioned vertices
3: while R 6= ∅ do
4: r ∈U (0, 1); i ∈U {1, . . . , k}
5: Si = Si ∪ {u ∈ R : ūi ≥ r}
6: R = R \ {u ∈ R : ūi ≥ r}
7: end while
8: return S1, . . . , Sk and Ecut = {(u, v) ∈ E : u ∈ Si, v ∈ Sj for i 6= j}.
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First, note that we add every vertex u to some Si with probability∑k
i=1 ūi/k = 1/k in each iteration (unless u already lies in some Sj). So

eventually we will add every vertex to some set Si. Also note that we cannot

add si to Sj if j 6= i. Therefore, si ∈ Si.
Now consider an edge (u, v). Consider one iteration of the algorithm.

Suppose that neither u nor v is assigned to any set Sj in the beginning

of the iteration. The probability that at least one of them is assigned to

some Si in this iteration is

1

k

k∑
i=1

Pr(ūi ≥ r or v̄i ≥ r) =
1

k

k∑
i=1

max(ūi, v̄i)

=
1

k

k∑
i=1

(
ūi + v̄i

2
+
|ūi − v̄i|

2

)
=

1

k

(
1 +
‖ū− v̄‖1

2

)
=

1 + d(u, v)

k
.

The probability that exactly one of them is assigned to some Si is

1

k

k∑
i=1

Pr(ūi < r ≤ v̄i or v̄i < r ≤ ūi) =
1

k

k∑
i=1

|ūi−v̄i| =
‖ū− v̄‖1

k
=

2d(u, v)

k
.

We get that in one iteration, the conditional probability that u and v

are separated given that at least one of them is assigned to some set is

2d(u, v)/(1 + d(u, v)). Therefore, the probability that u and v are separated

in some iteration is 2d(u, v)/(1 +d(u, v)). Thus the probability that (u, v) is

cut is at most 2d(u, v)/(1 + d(u, v)).

1.2.3 Weakly Stable Instances of Max Cut

Bilu–Linial stability imposes rather strong constraints on an instance of

a graph partitioning problem. Can these constraints be relaxed? In this

section, we give a definition of a more robust notion — a notion of weak

stability. Then we present an algorithm for weakly stable instances of the

Max Cut problem. Note that using Theorem 1.1 from the previous section,

one can show that a certain SDP relaxation for Max Cut is integral for γ-

stable instances of Max Cut with γ ≥ c
√

log n log log n. However, the SDP

does not have to be integral for weakly stable instances of Max Cut. Let us

now recall the definition of Max Cut.

Definition 1.8 (Max Cut). In the Max Cut Problem, we are given a

weighted graph G = (V,E,w). Our goal is to partition the set of vertices

into two sets S and S̄ so as to maximize w(E(S, S̄)).

Max Cut is an NP-hard problem (Karp, 1972). The approximation factor
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of the best known algorithm due to Goemans and Williamson (1995) is 0.878.

It cannot be improved if the Unique Games Conjecture holds true (Khot

et al., 2007). We now give the definition of weak stability for Max Cut.

Definition 1.9. Consider a weighted graph G = (V,E,w). Let (S, S̄) be a

maximum cut in G, N be a set of cuts that contains (S, S̄), and γ ≥ 1.

We say that G is a (γ,N)-weakly stable instance of Max Cut if for every

γ-perturbation G′ = (V,E,w′) of G, and every cut (T, T̄ ) /∈ N , we have

w′(E(S, S̄)) > w′(E(T, T̄ )).

The notion of weak stability generalizes the notion of stability: an instance

is γ-stable if and only if it is (γ, {(S, S̄)})-weakly stable. We think of the set

N in the definition of weak stability as a neighborhood of the maximum

cut (S, S̄); it contains cuts that are “close enough” to (S, S̄). Intuitively, the

definition requires that every cut that is sufficiently different from (S, S̄) be

much smaller than (S, S̄), but does not impose any restrictions on cuts that

are close to (S, S̄). One natural way to define the neighborhood of (S, S̄) is

captured in the following definition.

Definition 1.10. Consider a weighted graph G. Let (S, S̄) be a maximum

cut in G, δ ≥ 0, and γ ≥ 1. We say that G is a (γ, δ)-weakly stable instance

of Max Cut if G is (γ, {(S′, S̄′) : |S∆S′| ≤ δn})-weakly stable. In other

words, G is (γ, δ)-weakly stable if for every cut (T, T̄ ) such that |S∆T | > δn

and |S∆T̄ | > δn, we have w′(E(S, S̄)) > w′(E(T, T̄ )).

We prove the following analog of Lemma 1.2.

Lemma 1.5. Consider a (γ,N)-weakly stable instance of Max Cut G =

(V,E,w). Let (S, S̄) be a maximum cut in G. Then, for every cut (T, T̄ ) /∈ N :

w(E(S, S̄) \ E(T, T̄ )) > γ · w(E(T, T̄ ) \ E(S, S̄)). (1.5)

Proof. Fix a cut (T, T̄ ) /∈ N . Consider the following γ-perturbation of w:

w′(u, v) = γw(u, v) for (u, v) ∈ E(T, T̄ ) \ E(S, S̄); and w′(u, v) = w(u, v)

otherwise. Since G is a γ-weakly stable instance, and (T, T̄ ) /∈ N , we have

w′(E(S, S̄)) > w′(E(T, T̄ )).

Write,

w′(E(S, S̄)) = w′(E(S, S̄) \ E(T, T̄ )) + w′(E(S, S̄) ∩ E(T, T̄ ));

w′(E(T, T̄ )) = w′(E(T, T̄ ) \ E(S, S̄)) + w′(E(S, S̄) ∩ E(T, T̄ )).

Thus, w′(E(S, S̄)\E(T, T̄ )) > w′(E(T, T̄ )\E(S, S̄)). Using the definition of

w′, we get inequality (1.5).
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We are now ready to state the main result.

Theorem 1.6 (Makarychev et al. (2014b)). There is a polynomial-time

algorithm that, given a (γ,N)-stable instance of Max Cut, returns a cut

from N if γ ≥ c
√

log n log log n (for some absolute constant c). The set N

is not part of the input and is not known to the algorithm.

Overview of the algorithm. The algorithm starts with an arbitrary cut

(S0, S̄0) and then iteratively improves it: first, it finds a cut (S1, S̄1) that is

better than (S0, S̄0), then a cut (S2, S̄2) that is better than (S1, S̄1), etc.

(S0, S̄0)→ (S1, S̄1)→ (S2, S̄2)→ · · · → (St, S̄t);

finally, it gets a cut (St, S̄t) that it cannot improve. This cut necessarily

belongs to the set N , and the algorithm outputs it. The key component of

the algorithm is a procedure Improve that, given a cut (Si, S̄i) /∈ N , finds

a better cut (Si+1, S̄i+1) (if (Si, S̄i) ∈ N , the procedure may either find an

improved cut or output that (Si, S̄i) ∈ N).

Now, we are going to present Improve. We note that we also must show

that the improvement process finishes in polynomially many steps, and, thus,

the running time is polynomial. In this survey, we assume for simplicity

that all edge weights are polynomially bounded integers. Then the weight of

every cut is a polynomially bounded integer; therefore, the weight of the cut

increases by at least 1 in each iteration, and the algorithm terminates after

polynomially many iterations. In the paper (Makarychev et al., 2014b), the

theorem is proved without this simplifying assumption.

Before we describe the procedure Improve, we recall the definition of

Sparsest Cut with non-uniform demands.

Definition 1.11 (Sparsest Cut with non-uniform demands). We are given

a graph H = (V,Ec, cap) with non-negative edge capacities cap(u, v), a set

of demand pairs Ed, and non-negative demands dem : Ed → R≥0. Our goal

is to find a cut (A, Ā) so as to minimize the ratio between the capacity of

the cut edges and the amount of separated demands

minimize
∑

(u,v)∈Ec

u∈A, v∈Ā

cap(u, v)

/ ∑
(u,v)∈Ed

u∈A, v∈Ā

dem(u, v).

We call this ratio the sparsity of the cut (A, Ā).

We use the approximation algorithm for Sparsest Cut by Arora et al.

(2008) that gives a (Csc
√

log n log logn)-approximation (where Csc is an

absolute constant).
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T T̄

S

S̄

Ed Ed

Ec

Ec

Ec

S ∩ T S ∩ T̄

S̄ ∩ T S̄ ∩ T̄

Figure 1.1: The figure shows sets S, S̄, T , T̄ , and their pairwise intersections. Set
Ec consists of horizontal and diagonal edges; set Ed consists of vertical edges, as
well as edges within S ∩T , S ∩ T̄ , S̄ ∩T , S̄ ∩ T̄ ; set E(A∗, Ā∗) consists of horizontal
and vertical edges.

Theorem 1.7. Let γ = Csc
√

log n log log n. There is a polynomial-time

algorithm Improve that, given a (γ,N)-weakly stable instance of Max Cut

and a cut (T, T̄ ) /∈ N , finds a cut (T ′, T̄ ′) of greater value,

w(E(T ′, T̄ ′)) > w(E(T, T̄ )).

Proof. Define an auxiliary Sparsest Cut instance Gaux = (V,Ec, cap) on V :

Ec = E(T, T̄ ) cap(u, v) = w(u, v)

Ed = E \ E(T, T̄ ) dem(u, v) = w(u, v).

Now run the approximation algorithm for Sparsest Cut by Arora et al.

(2008) and find an approximate cut (A, Ā). Let T ′ = (T ∩ A) ∪ (T̄ ∩ Ā).

If w(T ′, T̄ ′) > w(T, T̄ ), return the cut (T ′, T̄ ′); otherwise, output that

(T, T̄ ) ∈ N .

We need to show that if (T, T̄ ) /∈ N then w(T ′, T̄ ′) > w(T, T̄ ). Let (S, S̄) be

the maximum cut. First, we prove that there is a sparsest cut with sparsity

at most 1/γ in the auxiliary graph. Let A∗ = (S ∩ T ) ∪ (S̄ ∩ T̄ ). Since

(T, T̄ ) /∈ N , we have by Lemma 1.5:

w(E(S, S̄) \ E(T, T̄ )) > γ · w(E(T, T̄ ) \ E(S, S̄)).

Note that E(A∗, Ā∗) = E(S ∩ T, S ∩ T̄ ) ∪ E(S ∩ T, S̄ ∩ T ) ∪ E(S̄ ∩ T, S̄ ∩
T̄ ) ∪ E(S ∩ T̄ , S̄ ∩ T̄ ) (see Figure 1.1), and

E(S, S̄) \ E(T, T̄ ) = Ed ∩ E(A∗, Ā∗)

E(T, T̄ ) \ E(S, S̄) = Ec ∩ E(A∗, Ā∗).
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The sparsity of the cut (A∗, Ā∗) is therefore at most

cap(Ec ∩ E(A∗, Ā∗))

dem(Ed ∩ E(A∗, Ā∗))
=
w(E(T, T̄ ) \ E(S, S̄))

w(E(S, S̄) \ E(T, T̄ ))
<

1

γ
.

Hence, the sparsity of the cut (A, Ā) returned by the approximation al-

gorithm is less than (Csc
√

log n log logn) × (1/γ) ≤ 1. That is, dem(Ed ∩
E(A, Ā)) > cap(Ec ∩ E(A, Ā)). We get

w(E(T ′, T̄ ′) \ E(T, T̄ )) = dem(Ed ∩ E(A, Ā)) >

> cap(Ec ∩ E(A, Ā)) = w(E(T, T̄ ) \ E(T ′, T̄ ′)),

and, consequently,

w(T ′, T̄ ′) = w(E(T ′, T̄ ′) \ E(T, T̄ )) + w(E(T ′, T̄ ′) ∩ E(T, T̄ )) >

> w(E(T, T̄ ) \ E(T ′, T̄ ′)) + w(E(T ′, T̄ ′) ∩ E(T, T̄ )) = w(T, T̄ ).

Thus, the weight of the cut (T ′, T̄ ′) obtained by the improvement algorithm

Improve is greater than the weight of the cut (T, T̄ ). This finishes the

proof.

1.3 Stable Instances of Clustering Problems

1.3.1 Metric perturbation resilient instances of k-Center

In this section, we present an algorithm by Balcan et al. (2015) that

solves 2-metric perturbation resilient instances of k-center. In fact, we prove

that any α-approximation algorithm for k-center finds the optimal solution

of an α-metric perturbation resilient instance of k-center. Therefore, we

can use known 2-approximation algorithms for k-center to solve 2-metric

perturbation resilient instances of the problem (see Hochbaum and Shmoys

(1985), and Dyer and Frieze (1985)). Recall the definition of the k-center

problem.

Definition 1.12. Consider a set of vertices V , a metric d on V , and a

parameter k. Given a set of points (“centers”) c1, . . . , ck in V , define a

clustering C1, . . . , Ck by assigning each vertex u to the closest center among

c1, . . . , ck:

Ci = {u : d(u, ci) ≤ d(u, cj) for every i 6= j}

(we break the ties arbitrarily). We say that ci is the center of cluster Ci.

The cost of the clustering is the maximum distance between a point and the
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center of the cluster it belongs to.

cost = max
i∈{1,...,k}

max
u∈Ci

d(u, ci).

In the k-center problem, our goal is to find a clustering of minimum cost

given V , d, and k.

Note that given a set of centers we can efficiently find the corresponding

clustering, and given a clustering we can efficiently find an optimal set of

centers for it. In this section, however, it will be more convenient for us to

view a solution for k-center as a clustering rather than a set of centers. The

reason for that is that in the definition of the perturbation resilience, we

do not want to require that the set of centers not change when we perturb

the distances — that would be a very strong requirement (indeed, it might

not be even satisfied by instances with k = 1; furthermore, there would be

no 2-perturbation resilient instances). Instead, we require that the optimal

clustering C1, . . . , Ck not change when we perturb the distances.

Remark 1.1. In this section, we consider perturbations d′ of the metric d

satisfying d(u, v)/γ ≤ d′(u, v) ≤ d(u, v) for all u,v instead of perturbations

satisfying d(u, v) ≤ d′(u, v) ≤ γ d(u, v) as in Definition 1.3. We can do so as

long as the clustering problem is invariant under rescaling of all distances by

the same positive factor, i.e. the clustering for d is the same as the clustering

for αd for every α > 0. All clustering problems we consider in this section

satisfy this property.

Balcan et al. (2015) obtained their result for 2-perturbation resilient in-

stances of k-center. Most recently, Makarychev and Makarychev (2016)

strengthened this result, by showing that it also holds for α-metric per-

turbation resilient instances.

Theorem 1.8 (Balcan et al. (2015); see also Makarychev and Makarychev

(2016)). An α-approximation algorithm for k-center finds the optimal clus-

tering of an α-metric perturbation resilient instance of k-center.3

Proof. Consider the optimal clustering C1, . . . , Ck and the clustering C ′1, . . . , C
′
k

found by the approximation algorithm. We are going to show that they are

identical. Let r∗ be the value of the clustering C1, . . . , Ck. Let {c′1, . . . , c′k} be

an optimal set of centers for the clustering C ′1, . . . , C
′
k. Since the algorithm

gives an α-approximation, d(u, c′i) ≤ αr∗ for every u ∈ C ′i.

3. Note that the algorithm finds the optimal clustering C1, . . . , Ck but not necessarily
an optimal set of centers {c1, . . . , ck}; however, an optimal set of centers can be easily
deduced from C1, . . . , Ck.
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Define a new distance d′ as follows

d′(u, v) =


d(u, v)/α, if d(u, v) ≥ αr∗,
r∗, if d(u, v) ∈ [r∗, αr∗],

d(u, v), if d(u, v) ≤ r∗.

We first prove that d′ satisfies the triangle inequality. Define a function f(x)

as follows: f(x) = 1/α for x ≥ αr∗; f(x) = r∗/x for x ∈ [r∗, αr∗], and f(x) =

1 for x ≤ r∗. Observe, that d′(u, v) = f(d(u, v)) d(u, v); f(x) is a nonincreas-

ing function; xf(x) is a nondecreasing function. Consider three points u, v, w

and assume without loss of generality that d′(u,w) ≥ max(d′(u, v), d′(v, w)).

We need to prove that d′(u,w) ≤ d′(u, v)+d′(v, w). Note that since xf(x) is

a nondecreasing function, d(u,w) ≥ max(d(u, v), d(v, w)) and f(d(u,w)) ≤
min(f(d(u, v)), f(d(v, w))). Thus,

d′(u, v) + d′(v, w) = f(d(u, v))d(u, v) + f(d(v, w))d(v, w) ≥
≥ f(d(u,w))

(
d(u, v) + d(v, w)

)
≥ f(d(u,w))d(u,w) = d′(u,w).

The last inequality follows from the triangle inequality d(u, v) + d(v, w) ≥
d(u,w) for the metric d.

Next, we check that d′(u, v) is an α-perturbation, i.e. d(u, v)/α ≤
d′(u, v) ≤ d(u, v) (see Remark 1.1). We have, f(x) ∈ [1/α, 1], and, thus,

d′(u, v)/d(u, v) = f(d(u, v)) ∈ [1/α, 1].

By the definition of α-metric perturbation resilience, C1, . . . , Ck is the

unique optimal clustering for d′. However, the optimal set of centers for d′

may be different from c1, . . . , ck. Denote it by c′′1, . . . , c
′′
k. We prove that the

cost of the clustering C1, . . . , Ck is the same for metrics d and d′. Let

r(Ci) = min
c∈Ci

max
u∈Ci

d(u, c).

Since the cost of the clustering C1, . . . , Ck equals r∗ w.r.t. d, we have

r(Ci) = r∗ for some i. Fix this i. By the definition of r(Ci), for every c ∈ Ci

there exists u ∈ Ci such that d(u, c) ≥ r(Ci) = r∗. Particularly, for c = c′′i ,

there exists u such that d(u, c′′i ) ≥ r∗. Then d′(u, c′′i ) ≥ r∗ as well. Hence, the

cost of the clustering C1, . . . , Ck for the metric d′ is at least r∗. (It cannot

be larger than r∗, since d′(u, v) ≤ d(u, v) for all u and v.)

To conclude the proof, we observe that the cost of the clustering C ′1, . . . , C
′
k

with centers c′1, . . . , c
′
k also equals r∗ w.r.t. the metric d′. Indeed, for u ∈ C ′i,

we have d(u, c′i) ≤ αr∗, and, therefore, d′(u, c′i) ≤ r∗. Thus, C ′1, . . . , C
′
k is

an optimal clustering for d′. Therefore, it must be equal to the clustering

C1, . . . , Ck.
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1.3.2 Clustering problems with separable center-based objectives

In this section, we present an algorithm by Balcan and Liang (2016) that

solves (
√

2+1)-metric perturbation resilient instances of clustering problems

with separable center-based objectives.4

Definition 1.13. In a clustering problem, we are given a set of vertices

(points) V and a distance function d on V . Our goal is to partition the

vertices into clusters so as to minimize a cost function, which depends on

the clustering problem.

Following Awasthi et al. (2012), we define the notion of a clustering prob-

lem with a center-based objective. (We note that the definition in Awasthi

et al. (2012) makes several implicit assumptions that we make explicit here.)

Definition 1.14. Consider a clustering problem. We say that it has a

center-based objective if the following three properties hold.

1. Given a subset S ⊂ V and distance dS on S, we can find the optimal

center c ∈ S for S, or, if there is more than one choice of an optimal center,

a set of optimal centers center(S, dS). (In the former case, center(S, dS) =

{c}).

2. The set of centers does not change if we multiply all distances between

points in S by α. That is,

center(S, αdS) = center(S, dS).

Also, the optimal clustering does not change if we multiply all distances

between points in V by α.

3. Let C1, . . . , Ck be an optimal clustering of V (the clustering of minimum

cost). For every i, let ci ∈ center(Ci, d|Ci
) be an optimal center for Ci (here,

d|Ci
is the restriction of d to Ci). Then each point p ∈ Ci is closer to ci than

to any other center cj, d(p, ci) < d(p, cj).

A clustering-objective is separable if we can define individual cluster scores

so that the following holds.

1. The cost of the clustering is either the maximum or sum of the cluster

scores.

2. The score score(S, d|S) of each cluster S depends only on S and d|S, and

4. The original result by Balcan and Liang (2016) applies to (
√

2+1)-perturbation resilient
instances; recently, Makarychev and Makarychev (2016) showed that their algorithm also
works for (

√
2 + 1)-metric perturbation resilient instances.
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can be computed in polynomial time.

Many standard clustering problems, including k-center, k-means, and k-

median, have separable center-based objectives.

We will assume below that the instance is α-metric perturbation resilient

with α = 1+
√

2. Denote the optimal clustering by C1, . . . , Ck. Fix an optimal

set of centers c1, . . . , ck for the clustering (ci ∈ center(S, dS)). Define the

radius of cluster Ci as ri = maxu∈Ci
d(ci, u). For every point u, denote the

ball of radius r around u by B(u, r): B(u, r) = {v : d(u, v) ≤ r}.
We start with proving some basic structural properties of the optimal

clustering C1, . . . , Ck.

Lemma 1.9 (Awasthi et al. (2012); Makarychev and Makarychev (2016)).

Clusters satisfy the following α-center proximity property: for all i 6= j and

p ∈ Ci,

d(p, cj) > αd(p, ci).

Proof. Suppose that d(p, cj) ≤ αd(p, ci). Let r∗ = d(p, ci). Define a new

metric d′ as follows: for all u and v,

d′(u, v) = min(d(u, v), d(u, p) + r∗ + d(cj , v), d(v, p) + r∗ + d(cj , u)).

The metric d′(u, v) is the shortest path metric on the complete graph on V

with edge lengths len(u, v) = d(u, v) for all edges (u, v) but the edge (p, cj).

The length of the edge (p, cj) equals len(p, cj) = r∗. Observe that since the

ratio d(u, v)/len(u, v) is at most d(p, cj)/r
∗ ≤ α for all edges (u, v), we have

d(u, v)/d′(u, v) ≤ α for all u and v. Hence, d′ is an α-metric perturbation

of d (see Remark 1.1).

Let us now show that d′ is equal to d within the cluster Ci and within the

cluster Cj .

Lemma 1.10. For all u, v ∈ Ci, we have d(u, v) = d′(u, v), and for all

u, v ∈ Cj, we have d(u, v) = d′(u, v).

Proof. I. Consider two points u, v in Ci. We need to show that d(u, v) =

d′(u, v). It suffices to prove that

d(u, v) ≤ min(d(u, p) + r∗ + d(cj , v), d(v, p) + r∗ + d(cj , u)).

Assume without loss of generality that d(u, p)+r∗+d(cj , v) ≤ d(v, p)+r∗+

d(cj , u). We have

d(u, p) + r∗ + d(cj , v) = d(u, p) + d(p, ci) + d(cj , v) ≥ d(u, ci) + d(cj , v).
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Since v ∈ Ci, we have d(v, ci) < d(v, cj), and thus

d(u, p) + r∗ + d(cj , v) > d(u, ci) + d(ci, v) ≥ d(u, v).

II. Consider two points u, v in Cj . Similarly to the previous case, we need

to show that d(u, v) ≤ d(u, p) + r∗ + d(cj , v). Since now u ∈ Cj , we have

d(u, cj) < d(u, ci). Thus,

d(u, p) + r∗ + d(cj , v) =
(
d(u, p) + d(p, ci)

)
+ d(cj , v)

≥ d(u, ci) + d(cj , v) > d(u, cj) + d(cj , v) ≥ d(u, v).

By the definition of α-metric perturbation stability, the optimal clusterings

for metrics d and d′ are the same. By Lemma 1.10, the distance functions d

and d′ are equal within the clusters Ci and Cj . Hence, the centers of Ci and

Cj w.r.t. metric d′ are also points ci and cj , respectively (see Definition 1.14,

item 1). Thus, d′(ci, p) < d′(cj , p), and, consequently,

d(ci, p) = d′(ci, p) < d′(cj , p) = r∗ = d(ci, p).

We get a contradiction, which finishes the proof.

Lemma 1.11 (Awasthi et al. (2012); Balcan and Liang (2016)).

1. All points outside of Ci lie at distance greater than ri from ci. Thus,

Ci = B(ci, ri).

2. Each point p in Ci is closer to ci than to any point q outside of Ci.

Furthermore, for every p ∈ Ci and q /∈ Ci, we have
√

2 d(p, ci) < d(p, q).

3. For every two distinct clusters Ci and Cj,

d(ci, cj) >
√

2 max(ri, rj).

Proof. We will prove items in the following order: 3, 1, and finally 2.

3. Let p be the farthest from ci point in Ci. Then ri = d(ci, p). By Lemma 1.9,

d(p, cj) > αd(p, ci) = αri. By the triangle inequality,

d(ci, cj) ≥ d(p, cj)− d(p, ci) > αri − ri =
√

2ri.

Similarly, d(ci, cj) >
√

2rj .

1. Consider a point q /∈ Ci. Assume that q ∈ Cj . Then

d(ci, cj) ≤ d(ci, q) + d(q, cj)
by Lemma 1.9

≤ d(ci, q) + d(ci, q)/α =
√

2d(ci, q).

Combining this inequality with the inequality d(ci, cj) >
√

2ri from item 3,
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we get that d(ci, q) > ri.

2. Assume that q ∈ Cj . If d(cj , q) ≥ d(ci, p), we have

d(p, q) ≥ d(ci, q)− d(ci, p)
by Lemma 1.9

> αd(cj , q)− d(ci, p) ≥
√

2d(ci, p).

If d(cj , q) < d(ci, p), we similarly have

d(p, q) ≥ d(cj , p)− d(cj , q)
by Lemma 1.9

> αd(ci, p)− d(cj , q) ≥
√

2d(ci, p).

Now we sketch the algorithm of Balcan and Liang (2016). The algorithm

consists of two stages. During the first stage, the algorithm employs a greedy

approach: it starts with a trivial clustering of V , in which each vertex belongs

to its own cluster. Then it repeatedly finds and links two “closest” clusters.

The algorithm runs until it gets one cluster that contains all of the vertices.

(Importantly, the algorithm does not stop when it gets k clusters — these

k clusters are not necessarily optimal!) The result of the first stage of the

algorithm is a binary decomposition tree T of V : the leaves of the tree are

singleton clusters; internal nodes of T are intermediate clusters, obtained

during the execution of the first stage; the root of T is V . We will show that

each cluster Ci in the optimal clustering appears in the decomposition tree

T. During the second stage, the algorithm uses a simple bottom-up dynamic

program to identify all clusters Ci in T.

For the algorithm to succeed, it is important to use the right distance

between clusters. We shall now define the closure distance to be used.

Definition 1.15. We say that a point x ∈ A is an r-central point for a set

A ⊂ V if it satisfies

Coverage condition: A ⊂ B(x, r).

Padding condition: Every point p in B(x, r) is closer to x than to any

point outside of B(x, r); that is, if d(p, q) ≤ d(p, x) ≤ r, then d(q, x) ≤ r.
Definition 1.16. The closure distance DS(A1, A2) between two sets A1 ⊂ V
and A2 ⊂ V is equal to the minimal r such that A1 ∪ A2 has an r-central

point.

Note that the closure distance is well-defined since every point in A1 ∪ A2

is r-central for r = diam(V ) = maxu,v∈V d(u, v).

Now we formally present Algorithm 1.3 (see the figure). It is clear that the

algorithm runs in polynomial time. To prove the correctness of the algorithm,

we need to show that every cluster Ci from the optimal clustering appears

in the decomposition tree.
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Algorithm 1.3 Clustering Algorithm

1: Create n singleton clusters — one for each vertex in V . Add them to C. . Stage 1
2: Initialize a tree T. Add all singletons from C to T.
3: while |C| 6= 1 do
4: Find two closest clusters A and B in C w.r.t. the closure distance.
5: Merge A and B:
6: Replace A and B with A ∪B in C.
7: Add node A ∪B to T and make it the parent of A and B.
8: end while

. Stage 2
9: Using bottom-up dynamic programming, find among all clusterings (C′1, . . . , C

′
k) of V ,

in which all C′i appear in the decomposition tree T, the clustering of minimum cost.
10: return clustering (C′1, . . . , C

′
k).

Lemma 1.12. Consider two subsets A1 and A2 of Ci. Assume that ci ∈
A1 ∪A2. Then dS(A1, A2) ≤ ri.
Proof. We show that ci is an ri-central point for A1 ∪ A2. Indeed, by

Lemma 1.11, item 1, Ci = B(ci, ri). Thus A1 ∪ A2 ⊂ Ci = B(ci, ri). Now

consider p ∈ B(xi, ri) and q /∈ B(xi, ri). We have p ∈ Ci and q /∈ Ci, and

from Lemma 1.11, item 2, we get that d(p, q) < d(ci, p).

Lemma 1.13. Assume that a set A contains points from both Ci and the

complement of Ci. If a point x is ∆-central for A then ∆ > ri.

In particular, the closure distance between non-empty sets A1 ⊂ Ci and

A2 ⊂ V \ Ci is at least ri.

Proof. Consider two cases. First, assume that x ∈ Ci. Consider an arbitrary

point q ∈ A \ Ci. Let Cj be the cluster q lies in (then, j 6= i). Since x is

∆-central for A and q ∈ A, we have d(x, q) ≤ ∆. By Lemma 1.11, item

2, d(q, cj) < d(q, x). From the definition of a central point, we get that

d(cj , x) ≤ ∆. By Lemma 1.9, d(ci, x) ≤ ∆/α. Therefore,

d(ci, cj) ≤ d(ci, x) + d(x, cj) ≤ ∆/α+ ∆ =
√

2∆.

On the other hand, d(ci, cj) >
√

2 ri by Lemma 1.11, item 3. We conclude

that ∆ > ri.

Now assume that x /∈ Ci. Consider a point p ∈ A∩Ci. Since x is a ∆-central

point for A, we have d(x, p) ≤ ∆. By Lemma 1.11, item 2, point p is closer

to ci than to x. Thus by the definition of a central point, ci ∈ B(x,∆).

On the other hand, by our assumption, x /∈ Ci = B(ci, ri). We get that

ri < d(ci, x) ≤ ∆. This concludes the proof.

Now consider A1 ⊂ Ci and A2 ⊂ V \ Ci. Applying the lemma to the set

A1 ∪A2, we get that DS(A1, A2) ≥ ri.
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Lemma 1.14. Consider a cluster Ci in the optimal clustering.

1. Let C be a cluster/node in the decomposition tree T. Then

C ⊂ Ci, Ci ⊂ C, or C ∩ Ci = ∅. (1.6)

2. Ci appears in the decomposition tree T.

Proof. 1. We prove that the statement holds for all sets C in C by induc-

tion. Initially, all clusters C in C are singletons, and therefore, satisfy con-

dition (1.6). Now suppose that we proved that condition (1.6) holds until

some iteration, in which we merge clusters A and B, and obtain a cluster

C = A ∪B. We need to prove that C also satisfies the condition. Note that

C satisfies condition (1.6) in the following 3 cases:

Neither A nor B intersects Ci. Then C ∩ Ci = ∅.

Both sets A and B are subsets of Ci. Then C ⊂ Ci.

One of the sets A and B contains Ci. Then Ci ⊂ C.

The only remaining case is that one of the sets is a proper subset of Ci and

the other does not intersect Ci; let us say A ⊂ Ci and B ⊂ C̄i. We will show

now that this case actually cannot happen.

Since A is a proper subset of Ci, there is another cluster A′ ⊂ Ci in C.

Furthermore, if ci /∈ A, then there is A′ in C that contains ci. By Lemma 1.12,

point ci is ri-central for A ∪ A′, and therefore dS(A,A′) ≤ ri. On the

other hand, by Lemma 1.13, dS(A,B) > ri ≥ dS(A,A′). Therefore, A and

B are not two closest clusters in C w.r.t. the closure distance. We get a

contradiction.

2. Consider the smallest cluster C in T that contains Ci. If C is a singleton,

then C = Ci. Otherwise, C is the union of its child clusters A and B.

By item 1, both A and B are subsets of Ci, and so C ⊂ Ci. Therefore,

C = Ci.
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