A Short Proof of Kuratowski's Graph Planarity Criterion

Yury Makarychev
DEPARTMENT OF DIFFERENTIAL GEOMETRY
FACULTY OF MECHANICS AND MATHEMATICS
MOSCOW STATE UNIVERSITY
MOSCOW 119899, RUSSIA
E-mail: mail@makarych.mccme.rssi.ru

Abstract

We present a new short combinatorial proof of the sufficiency part of the well-known Kuratowski's graph planarity criterion. The main steps are to prove that for a minor minimal non-planar graph G and any edge $x y$: (1) $G-x-y$ does not contain θ-subgraph; (2) $G-x-y$ is homeomorphic to the circle; (3) G is either K_{5} or $K_{\{3,3\}}$. (C) 1997 John Wiley \& Sons, Inc.

In 1930, K. Kuratowski published his well-known graph planarity criterion [1]: a graph is planar if and only if it does not contain a subgraph, homeomorphic to either K_{5} or $K_{\{3,3\}}$. Since then, many new and shorter proofs of this criterion appeared [2]. In this paper we present a short combinatorial proof of the 'if'"part. It is based on contracting edge, similar to that of [2, section 5], but we avoid the reduction to 3 -connected graphs. By θ-subgraph we mean a subgraph homeomorphic to $K_{\{3,2\}}$.

Consider a minor minimal non-planar graph G.

Lemma 1. If $x y \in E(G)$, then G-x-y does not contain a θ-subgraph.
Proof. Suppose not. Consider an embedding of $G / x y$ in the plane. Let $G^{\prime}=G-x-y=$ $(G / x y)-(x y)$. Let F be the subgraph of G^{\prime} bounding the face of G^{\prime} containing the deleted vertex $x y$ of $G / x y$. Then F cannot contain a θ-subgraph [2, section 1]. But since G^{\prime} does, there is an edge e in $E\left(G^{\prime}\right)-E(F)$. Since for each forest $T \subseteq R^{2}, R^{2}-T$ is connected, F contains a cycle

FIGURE 1.
C about which we can assume that its exterior contains e and that its interior contains the deleted vertex $x y$. It is clear that no pair of vertices on C is connected by a path in $G^{\prime}-E(C)-E$ (ext C). This means that in an embedding of G-ext C, which exists by the minimality of G, C may be assumed to be the outer boundary. This embedding can then be combined with the restriction of that of $G / x y$ to G^{\prime}, which contradicts the non-planarity of G.

Lemma 2. If $x y \in E(G)$, then $G-x-y$ does not have two vertices of degree one.
Proof. If u, v are such vertices, then by minimality of G, they are both of degree more than 2 in G and hence adjacent to x and y. By Lemma 1, there is no edge disjoint from x, y, u, v in G since these vertices contain a θ-subgraph. But each vertex in $G-x-y-u-v$ is of degree more than two and hence joined to at least three among u, v, x, y. Since u and v are of degree three in G, in G there are at most two vertices besides the x, y, u, v and hence G is one of the graphs in Figure 1. The cases are determined by whether, in $G-x-y, u$ and v are adjacent, have a common neighbor or have distinct neighbors. All of them are planar.

Lemma 3. If $x y \in E(G)$, then $G-x-y$ is a cycle.
Proof. Let $G^{\prime}=G-x-y$. Then every block of G^{\prime} is either a cycle or just an edge (by Lemma 1). If G^{\prime} is not a cycle, it has at least two end blocks (as it cannot be an edge). By Lemma 2, one of them is a cycle; denote it by C. There is a unique cut vertex v of G^{\prime} contained in C. All vertices of $C-v$ are adjacent to x or y (since their degree is more than two).

Since there are not less than two such vertices, we have a θ-subgraph. Hence no edge is disjoint from it by Lemma 1. Also there are no isolated vertices in G^{\prime} (since they are most of degree two in G, which contradicts the minimality of G). Therefore all other blocks of G are just edges at v. By Lemma 2, there is just one. Since G - (the endpoints of this edge) does not contain a θ-subgraph, G is the 3-prism, which is planar.

Proof of the Criterion. Let x_{1}, x_{2} be two adjacent vertices of a minor minimal non-planar graph G. If a point $u \in G=G-x_{1}-x_{2}$ is connected to x_{i} but not connected to $x_{(3-i)}$, then the point v, next to u along G^{\prime}, is not connected to x_{i} (for otherwise, G - $\left(v x_{i}\right)$ is planar by the minimality of G and we can add $v x_{i}$ to a planar embedding of G - $v x_{i}$ to get a planar embedding of G. Therefore either every point of G^{\prime} is connected to both x_{1} and x_{2} or the points of G^{\prime}, connected to x_{1} and x_{2} alternate along G^{\prime}. In the first case G contains a subdivision of K_{5}, in the second, it contains a subdivision of $K_{\{3,3\}}$.

ACKNOWLEDGMENTS

I would like to acknowledge B. Mohar for useful discussions, A. Skopenkov for his concern and referees for their helpful suggestions on improving the exposition of this paper.

References

[1] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund Math. 15 (1930), 271-283.
[2] C. Thomassen, Kuratowski's theorem. J. Graph Theory 5 (1981), 225-241.

Received April 18, 1995

