1 The Method of Types

Fix a finite universe \(U \) with \(|U| = m \), and let \(x = (x_1, x_2, \ldots, x_n) \) be a sequence with each element drawn i.i.d. from some distribution \(Q \) over \(U \).

Definition 1.1 The type \(P_x \) of \(x \), also called the empirical distribution of \(x \), is a distribution \(\hat{P} \) on \(U \). Here \(\hat{P} \) is defined by
\[
\forall a \in U : \hat{P}(a) = \frac{|\{i : x_i = a\}|}{n}.
\]

The number of possible types on \(U^n \) is \((n + 1)^m \leq (n + 1)^m\). The type class of a type \(P \) is
\[
\mathcal{T}_P^n := \{x \in U^n : P_x = P\}.
\]

First, we bound the size of a given type class in terms of the entropy of that type.

Proposition 1.2 For any type \(P \) on \(U^n \), we have
\[
\frac{2^n H(P)}{(n + 1)^m} \leq |\mathcal{T}_P^n| \leq 2^n H(P).
\]

Proof: For each \(a_i \in U \), let \(P(a_i) = k_i/n \). Then \(|\mathcal{T}_P^n| = n!/(k_1!k_2! \ldots k_m!) \). So for the upper bound:

\[
n^n = (k_1 + k_2 + \cdots + k_m)^n = \sum_{j_1 + \cdots + j_m = n} \frac{n!}{j_1! \ldots j_m!} (k_1^{j_1} \ldots k_m^{j_m}) \\
\geq \frac{n!}{k_1! \ldots k_m!} (k_1^{k_1} \ldots k_m^{k_m}) \\
n^n \geq |\mathcal{T}_P^n| \cdot (k_1^{k_1} \ldots k_m^{k_m})
\]

\[
|\mathcal{T}_P^n| \leq \frac{n^{k_1 + k_2 + \cdots + k_m}}{k_1^{k_1} \ldots k_m^{k_m}} = \left(\frac{n}{k_1^{k_1}} \right) \ldots \left(\frac{n}{k_m^{k_m}} \right)^{k_m} = 2^{k_1 \log(n/k_1) + \cdots + k_m \log(n/k_m)} = 2^{n(P(a_1) \log(1/P(a_1)) + \cdots + P(a_m) \log(1/P(a_m)))} = 2^n H(P).
\]
For the lower bound:

\[
n^n = (k_1 + k_2 + \cdots + k_m)^n \\
= \sum_{j_1 + \cdots + j_m = n} \frac{n!}{j_1! \cdots j_m!} (k_1^{j_1} \cdots k_m^{j_m}) \\
\leq \left(\frac{n + m - 1}{m - 1} \right)^n \max_{j_1 + \cdots + j_m = n} \frac{n!}{j_1! \cdots j_m!} (k_1^{j_1} \cdots k_m^{j_m}) \\
= \left(\frac{n + m - 1}{m - 1} \right)^n \frac{n!}{k_1! \cdots k_m!} (k_1^{k_1} \cdots k_m^{k_m}) \\
\leq (n + 1)^n \frac{n!}{k_1! \cdots k_m!} (k_1^{k_1} \cdots k_m^{k_m}) \\
\leq \frac{1}{(n+1)^m} \frac{n^{k_1+k_2+\cdots+k_m}}{k_1^{k_1} \cdots k_m^{k_m}} \leq \frac{n!}{k_1! \cdots k_m!} \frac{2^n H(P)}{(n+1)^m} \leq |T^n_P|.
\]

(Here (1) is left as an exercise. Hint: if \(j_r > k_r \) for some \(r \), then \(j_s < k_s \) for some \(s \).)

Proposition 1.3 Sequences of the same type are assigned the same probability by any product distribution \(Q^n \).

Proof: Let \(Q^n(X_1, \ldots, X_n) = \prod_{i=1}^n Q(X_i) \) be the product distribution on \(U^n \), obtained from some distribution \(Q \). Then we have:

\[
Q^n(x) = \prod_{a \in U} (Q(a))^{|\{i : x_i = 1\}|} = \prod_{a \in U} (Q(a))^{n_{P_x}(a)}.
\]

So if \(P_x = P_y \), then \(Q^n(x) = Q^n(y) \).

Now we give bounds on the probability of a certain type occurring, in terms of the KL divergence of the true distribution from the empirical distribution.

Theorem 1.4 For any product distribution \(Q^n \) and type \(P \) on \(U^n \), we have

\[
\frac{2^{-n D(P\|Q)}}{(n+1)^m} \leq \frac{\text{Prob}(T^n_P)}{Q^n} \leq 2^{-n D(P\|Q)}.
\]
Proof: Let \(x \) be of type \(P_x = P \). For the upper bound:

\[
Q^n(x) = \frac{\prod_{a \in U} (Q(a))^{nP(a)}}{\prod_{a \in U} (P(a))^{nP(a)}} = \prod_{a \in U} \left(\frac{Q(a)}{P(a)} \right)^{nP(a)} = 2^n \sum_{a \in U} P(a) \log \left(\frac{Q(a)}{P(a)} \right) = 2^{-nD(P\|Q)}
\]

\[
Q^n(x) = P^n(x) 2^{-nD(P\|Q)}
\]

\[
\sum_{y \in T^n_P} Q^n(y) = \sum_{y \in T^n_P} P^n(y) 2^{-nD(P\|Q)}
\]

\[
\text{Prob}_{Q^n}(T^n_P) \leq 2^{-nD(P\|Q)}.
\]

For the lower bound:

\[
\text{Prob}_{Q^n}(T^n_P) = |T^n_P| \cdot P^n(x) \cdot 2^{-nD(P\|Q)}
\]

\[
= |T^n_P| \cdot \left(\frac{k_1}{n} \right)^{k_1} \cdots \left(\frac{k_m}{n} \right)^{k_m} 2^{-nD(P\|Q)}
\]

\[
= |T^n_P| \cdot 2^{-nH(P)} \cdot 2^{-nD(P\|Q)}
\]

\[
\geq \frac{2^{nH(P)}}{(n+1)^m} \cdot 2^{-nH(P)} \cdot 2^{-nD(P\|Q)}
\]

\[
\geq \frac{2^{-nD(P\|Q)}}{(n+1)^m},
\]

using Proposition 1.2.

It may be that \(\text{Supp}(Q) \subseteq \text{Supp}(P) \), i.e. \(\exists a \in U : Q(a) = 0, P(a) \neq 0 \). Then the \(\log(1/Q(a)) \) term makes \(D(P\|Q) \) undefined, so thinking of \(D(P\|Q) \) as \(+\infty \), \(2^{-nD(P\|Q)} = \text{Prob}_{Q^n}(T^n_P) = 0 \). \(\blacksquare \)

2 Chernoff bounds

Take \(U = \{0,1\} \), and let \(x = (x_1, \ldots, x_n) \) be a sequence drawn from \(U^n \) according to \(Q^n \), where

\[
Q = \begin{cases}
0 : \text{ with probability } \frac{1}{2} \\
1 : \text{ with probability } \frac{1}{2}.
\end{cases}
\]

We expect there to be around \(n/2 \) occurrences of 1 in \(X \); that is, \(\mathbb{E}[\sum_{i=1}^n x_i] = n/2 \). It is natural to ask how much the empirical distribution is likely to deviate from \(n/2 \). If we set

\[
P = \begin{cases}
0 : \text{ with probability } \frac{1}{2} - \varepsilon \\
1 : \text{ with probability } \frac{1}{2} + \varepsilon,
\end{cases}
\]
then we have
\[
\text{Prob}_{Q^n}(X_1 + \cdots + X_n = \frac{n}{2} + \epsilon n) = \text{Prob}_{Q^n}(T^n_P)
\]
\[
\leq 2^{-nD(P\|Q)}
\]
\[
= 2^{-n\epsilon^2},
\]
by Theorem 1.4, for a constant c. This gives one answer to our question, but we may want to know how likely we are to see any sufficiently large deviation.

Theorem 2.1 (Chernoff bound) For \(X = (X_1, \ldots, X_n) \sim Q^n U^n \) with \(Q \) the uniform distribution on \(U = \{0, 1\} \), we have
\[
\text{Prob}_{Q^n}(x : \sum_{i=1}^n x_i \geq \frac{n}{2} + \epsilon n) \leq (n + 1)^2 \cdot 2^{-nD(P^*\|Q)},
\]
where
\[
P^* = \begin{cases}
0 & \text{with probability } \frac{1}{2} - \epsilon \\
1 & \text{with probability } \frac{1}{2} + \epsilon.
\end{cases}
\]

Proof:
Let \(|U| = m \). By Theorem 1.4, for any type \(P \) on \(U \), we have \(Q^n(T^n_P) \leq 2^{-nD(P\|Q)} \). For any \(\delta \):
\[
\text{Prob}_{Q^n}(x : D(P\|Q) \geq \delta) \leq \sum_{P : D(P\|Q) \geq \delta} \text{Prob}_{Q^n}(T^n_P)
\]
\[
\leq \sum_{P : D(P\|Q) \geq \delta} 2^{-nD(P\|Q)}
\]
\[
\leq \sum_{P} 2^{-n\delta}
\]
\[
\leq (n + 1)^m \cdot 2^{-n\delta}.
\]
Note that the \((n + 1)^m \) term was obtained by counting all types on \(U^n \), not just the ones with \(D(P\|Q) \geq \delta \), so this might be improved somewhat. For the case where \(U = \{0, 1\} \), if \(P_X(1) \geq \frac{1}{2} + \epsilon \) then \(D(P_X\|Q) \geq D(P^*\|Q) := \delta \). Hence,
\[
\text{Prob}_{Q^n}(x : \sum_{i=1}^n x_i \geq \frac{n}{2} + \epsilon n) = \text{Prob}_{Q^n}(x : P_X(1) \geq \frac{1}{2} + \epsilon)
\]
\[
\leq \text{Prob}_{Q^n}(x : D(P_X\|Q) \geq \delta)
\]
\[
\leq (n + 1)^{|U|} \cdot 2^{-n\delta}
\]
\[
\leq (n + 1)^2 \cdot 2^{-nD(P^*\|Q)}.
\]
3 Sanov’s theorem (preview)

We obtained the bound
\[-D(P\|Q) - \frac{\log(n + 1)^m}{n} \leq \frac{\log(\text{Prob}_Q^n(\mathbf{X} \in T_P^n))}{n} \leq -D(P\|Q).\]

With \(m\) held constant, \(\frac{1}{n} \log(\text{Prob}_Q^n(\mathbf{x} \in T_P^n)) \to -D(P\|Q)\) as \(n \to \infty\).

Theorem 3.1 (Sanov’s theorem) Let \(\Pi\) be a set of distributions which is equal to the closure of its interior. Then as \(n \to \infty\),
\[
\frac{1}{n} \log \left(\text{Prob}_Q^n(\mathbf{x} \in T_P^n) \right) \to -D(P^*\|Q),
\]
where
\[
P^* = \arg\min_{P \in \Pi} D(P\|Q).
\]

We will prove this theorem in the next lecture.