Convex Optimization
Lecture 16

Today:

- Projected Gradient Descent
- Conditional Gradient Descent
- Stochastic Gradient Descent
- Random Coordinate Descent
Recall: Gradient Descent

Gradient descent algorithm:

\[\Delta x = -\nabla f(x^k) \]

Init \[x^{(0)} \in \text{dom}(f) \]
Iterate \[x^{(k+1)} \leftarrow x^{(k)} - t^{(k)} \nabla f(x^{(k)}) \]

Convergence:\(^1\)

<table>
<thead>
<tr>
<th>#iter (\mu \leq \nabla^2 \leq M)</th>
<th>#iter (\nabla^2 \leq M)</th>
<th>#iter (|\nabla| \leq L)</th>
<th>(|\nabla| \leq L)</th>
<th>(\mu \leq \nabla^2)</th>
<th>Oracle/ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>(\kappa \log 1/\epsilon)</td>
<td>(M \frac{|x^*|^2}{\epsilon})</td>
<td>(L^2 \frac{|x^*|^2}{\epsilon^2})</td>
<td>(\frac{L^2}{\mu\epsilon})</td>
<td>(\nabla f + O(n))</td>
</tr>
</tbody>
</table>

\(^1\kappa = M/\mu\)
Smoothness and Strong Convexity

Def: \(f \) is \(\mu \)-strongly convex

\[
f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{\mu}{2} \|\Delta x\|^2 \leq f(x + \Delta x) \leq f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{M}{2} \|\Delta x\|^2
\]

Can be viewed as a condition on the directional 2\(^{nd}\) derivatives

\[
\mu \leq f_{v''}(x) = \frac{\partial^2}{\partial t^2} f(x + tv) = v^T \nabla^2 f(x) v \leq M \quad \text{(for } \|v\|_2 = 1)\]

Def: \(f \) is \(M \)-smooth
What about constraints?

\[
\min_x f(x) \\
\text{s.t. } x \in \mathcal{X}
\]

where \(\mathcal{X} \) is convex
Projected Gradient Descent

Idea: make sure that points are feasible by projecting onto \mathcal{X}

Algorithm:

- $y^{(k+1)} = x^{(k)} - t^{(k)} g^{(k)}$
 where $g^{(k)} \in \partial f(x^{(k)})$

- $x^{(k+1)} = \Pi_{\mathcal{X}}(y^{(k+1)})$

The projection operator $\Pi_{\mathcal{X}}$ onto \mathcal{X}:

$$\Pi_{\mathcal{X}}(x) = \min_{z \in \mathcal{X}} \|x - z\|$$

Notice: subgradient instead of gradient (even for differentiable functions)
Projected gradient descent – convergence rate:

\[\mu \leq \nabla^2 \leq M \quad \nabla^2 \leq M \quad ||\nabla|| \leq L \quad ||\nabla|| \leq L, \mu \leq \nabla^2 \]

<table>
<thead>
<tr>
<th>$\kappa \log \frac{1}{\epsilon}$</th>
<th>$M|x^|^2 + (f(x_1) - f(x^))$</th>
<th>$\frac{L^2|x^*|^2}{\epsilon^2}$</th>
<th>$\frac{L^2}{\mu \epsilon}$</th>
</tr>
</thead>
</table>

Same as unconstrained case!
But, requires projection... how expensive is that?

Examples:
- Euclidean ball
- PSD constraints
- Linear constraints $Ax \leq b$

Sometimes as expensive as solving the original optimization problem!
Conditional Gradient Descent

A projection-free algorithm!
Introduced for QP by Marguerite Frank and Philip Wolfe (1956)

Algorithm

• Initialize: $x^{(0)} \in \mathcal{X}$
• $s^{(k)} = \arg\min_{s \in \mathcal{X}} \langle \nabla f(x^{(k)}), s \rangle$
• $x^{(k+1)} = x^{(k)} + t^{(k)}(s^{(k)} - x^{(k)})$
Notice

- f assumed M-smooth
- \mathcal{X} assumed bounded
- First-order oracle
- Linear optimization (in place of projection)
- Sparse iterates (e.g., for polytope constraints)

Convergence rate

For M-smooth functions with step size $t^{(k)} = \frac{2}{k+1}$:

\[
\frac{M R^2}{\epsilon}
\]

where $R = \sup_{x,y \in \mathcal{X}} \|x - y\|$
Proof

\[f(x^{(k+1)}) \leq f(x^{(k)}) + \langle \nabla f(x^{(k)}), x^{(k+1)} - x^{(k)} \rangle + \frac{M}{2} \| x^{(k+1)} - x^{(k)} \|^2 \]
[smoothness]

\[= f(x^{(k)}) + t^{(k)} \langle \nabla f(x^{(k)}), s^{(k)} - x^{(k)} \rangle + \frac{M}{2} (t^{(k)})^2 \| s^{(k)} - x^{(k)} \|^2 \]
[update]

\[\leq f(x^{(k)}) + t^{(k)} \langle \nabla f(x^{(k)}), x^* - x^{(k)} \rangle + \frac{M}{2} (t^{(k)})^2 R^2 \]

\[\leq f(x^{(k)}) + t^{(k)} (f(x^*) - f(x^{(k)})) + \frac{M}{2} (t^{(k)})^2 R^2 \]
[convexity]

Define: \(\delta^{(k)} = f(x^{(k)}) - f(x^*) \), we have:

\[\delta^{(k+1)} \leq (1 - t^{(k)}) \delta^{(k)} + \frac{M (t^{(k)})^2 R^2}{2} \]

A simple induction shows that for \(t^{(k)} = \frac{2}{k+1} \):

\[\delta^{(k)} \leq \frac{2MR^2}{k+1} \]

Same rate as projected gradient descent, but without projection!
Does need linear optimization
What about strong convexity?
Not helpful! Does not give linear rate ($\kappa \log(1/\epsilon)$)
★ Active research
Randomness in Convex Optimization

Insight: first-order methods are robust – inexact gradients are sufficient.

As long as gradients are correct on average, the error will vanish.

Long history (Robbins & Monro, 1951)
Stochastic Gradient Descent

Motivation
Many machine learning problems have the form of *empirical risk minimization*

\[
\min_{x \in \mathbb{R}^n} \sum_{i=1}^{m} f_i(x) + \lambda \Omega(x)
\]

where \(f_i \) are convex and \(\lambda \) is the regularization constant

Classification: SVM, logistic regression
Regression: least-squares, ridge regression, LASSO

Cost of computing the gradient?
\(m \cdot n \)

What if \(m \) is VERY large?
We want cheaper iterations
Idea: Use stochastic first-order oracle: for each point \(x \in \text{dom}(f) \) returns a stochastic gradient

\[
\tilde{g}(x) \quad \text{s.t.} \quad \mathbb{E}[\tilde{g}(x)] \in \partial f(x)
\]

That is, \(\tilde{g} \) is an unbiased estimator of the subgradient

Example

\[
\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^{m} \left(f_i(x) + \lambda \Omega(x) \right)
\]

For this objective, select \(j \in \{1, \ldots, m\} \) u.a.r. and return \(\nabla F_j(x) \)

Then,

\[
\mathbb{E}[\tilde{g}(x)] = \frac{1}{m} \sum_i \nabla F_i(x) = \nabla f(x)
\]
SGD iterates:

\[x^{(k+1)} \leftarrow x^{(k)} - t^{(k)} \tilde{g}(x^{(k)}) \]

How to choose step size \(t^{(k)} \)?

- Lipschitz case: \(t^{(k)} \propto \frac{1}{\sqrt{k}} \)
- \(\mu \)-strongly-convex case: \(t^{(k)} \propto \frac{1}{\mu k} \)

Note: decaying step size!

(Figures borrowed from Francis Bach’s slides)
Convergence rates

<table>
<thead>
<tr>
<th></th>
<th>$\mu \leq \nabla^2 \leq M$</th>
<th>$\nabla^2 \leq M$</th>
<th>$|\nabla| \leq L$</th>
<th>$|\nabla| \leq L$, $\mu \leq \nabla^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>$\kappa \log \frac{1}{\epsilon}$</td>
<td>$\frac{M|x^*|^2}{\epsilon}$</td>
<td>$\frac{L^2|x^*|^2}{\epsilon^2}$</td>
<td>$\frac{L^2}{\mu\epsilon}$</td>
</tr>
<tr>
<td>SGD</td>
<td>$?$</td>
<td>$?$</td>
<td>$\frac{B^2|x^*|^2}{\epsilon^2}$</td>
<td>$\frac{B^2}{\mu\epsilon}$</td>
</tr>
</tbody>
</table>

Additional assumption: $\mathbb{E}[\|\tilde{g}(x)\|^2] \leq B^2$ for all $x \in \text{dom}(f)$

Comment: holds in expectation, with averaged iterates

$$\mathbb{E} \left[f \left(\frac{1}{K} \sum_{k=1}^{K} x^{(k)} \right) \right] - f(x^*) \leq \ldots$$

Similar rates as with exact gradients!
<table>
<thead>
<tr>
<th></th>
<th>$\mu \leq \nabla^2 \leq M$</th>
<th>$\nabla^2 \leq M$</th>
<th>$|\nabla| \leq L$</th>
<th>$|\nabla| \leq L, \mu \leq \nabla^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>$\kappa \log \frac{1}{\epsilon}$</td>
<td>$\frac{M|x^*|^2}{\epsilon}$</td>
<td>$\frac{L^2|x^*|^2}{\epsilon^2}$</td>
<td>$\frac{L^2}{\mu \epsilon}$</td>
</tr>
<tr>
<td>AGD</td>
<td>$\sqrt{\kappa} \log \frac{1}{\epsilon}$</td>
<td>$\frac{M|x^*|^2}{\sqrt{\epsilon}}$</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>SGD</td>
<td>?</td>
<td>$\frac{|x^|\sigma}{\epsilon^2} + \frac{M|x^|^2}{\epsilon}$</td>
<td>$\frac{B^2|x^*|^2}{\epsilon^2}$</td>
<td>$\frac{B^2}{\mu \epsilon}$</td>
</tr>
</tbody>
</table>

where $\mathbb{E}[\|\nabla f(x) - \tilde{g}(x)\|^2] \leq \sigma^2$

Smoothness?
Not helpful! (same rate as non-smooth)
Lower bounds (Nemirovski & Yudin, 1983)
★ Active research

Acceleration?
Cannot be easily accelerated!
Mini-batch acceleration
★ Active research
Random Coordinate Descent

Recall: cost of computing exact GD update: $m \cdot n$

What if n VERY is large?
We want cheaper iterations

Random coordinate descent algorithm:

- Initialize: $x^{(0)} \in \text{dom}(f)$
- Iterate: pick $i(k) \in \{1, \ldots, n\}$ randomly

\[
x^{(k+1)} = x^{(k)} - t^{(k)} \nabla_{i(k)} f(x^{(k)}) e_{i(k)}
\]

where we denote: $\nabla_i f(x) = \frac{\partial f}{\partial x_i}(x)$

Assumption: f is convex and differentiable
What if f not differentiable?

(Figures borrowed from Ryan Tibshirani’s slides)
Iteration cost? $\nabla_i f(x) + O(1)$
Compare to $\nabla f(x) + O(n)$ for GD

Example: quadratic

$$f(x) = \frac{1}{2} x^\top Q x - v^\top x$$
$$\nabla f(x) = Q x - v$$
$$\nabla_i f(x) = q_i^\top x - v_i$$

Can view CD as SGD with oracle: $\tilde{g}(x) = n \nabla_i f(x)e_i$
Clearly,

$$\mathbb{E}[\tilde{g}(x)] = \frac{1}{n} n \sum_i \nabla_i f(x)e_i = \nabla f(x)$$

Can replace individual coordinates with blocks of coordinates
Example: SVM
Primal:
\[
\min_w \frac{\lambda}{2}\|w\|^2 + \sum_i \max(1 - y_i w^\top z_i, 0)
\]
Dual:
\[
\min_\alpha \frac{1}{2} \alpha^\top Q \alpha - 1^\top \alpha \\
\text{s.t. } 0 \leq \alpha_i \leq 1/\lambda \quad \forall i
\]
where \(Q_{ij} = y_i y_j z_i^\top z_j \)

(Shalev-Schwartz & Zhang, 2013)
Convergence rate

Directional smoothness for f: there exist M_1, \ldots, M_n s.t. for any $i \in \{1, \ldots, n\}$, $x \in \mathbb{R}^n$, and $u \in \mathbb{R}$

$$|\nabla_i f(x + ue_i) - \nabla_i f(x)| \leq M_i |u|$$

Note: implies f is M-smooth with $M \leq \sum_i M_i$

Consider the update:

$$x^{(k+1)} = x^{(k)} - \frac{1}{M_i(k)} \nabla_i(k) f(x^{(k)}) \cdot e_i(k)$$

No need to know M_i’s, can be adjusted dynamically
Rates (Nesterov, 2012):

<table>
<thead>
<tr>
<th></th>
<th>$\mu \leq \nabla^2 \leq M$</th>
<th>$\nabla^2 \leq M$</th>
<th>$|\nabla| \leq L$</th>
<th>$|\nabla| \leq L$, $\mu \leq \nabla^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>$\kappa \log \frac{1}{\epsilon}$</td>
<td>$\frac{M|x^*|^2}{\epsilon}$</td>
<td>$\frac{L^2|x^*|^2}{\epsilon^2}$</td>
<td>$\frac{L^2}{\mu \epsilon}$</td>
</tr>
<tr>
<td>CD</td>
<td>$n\kappa \log \frac{1}{\epsilon}$, $\kappa = \frac{\sum_i M_i}{\mu}$</td>
<td>$\frac{n|x^*|^2 \sum_i M_i}{\epsilon}$</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>

Same total cost as GD, but with much cheaper iterations

Comment: holds in expectation

$$\mathbb{E} \left[f(x^{(k)}) \right] - f^* \leq \ldots$$

Acceleration?
Yes!

* Active research